期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
An Rapid Assessment Method for Bearing Capacity of RC Girder Bridges Based on Residual Strain
1
作者 Ming Zhong 《Open Journal of Civil Engineering》 2024年第2期225-239,共15页
In order to realize the in-situ evaluation of reinforced concrete bridges subjected to fatigue for a long time or after earthquake, an evaluation method for cumulative damage of concrete structures based on unloading ... In order to realize the in-situ evaluation of reinforced concrete bridges subjected to fatigue for a long time or after earthquake, an evaluation method for cumulative damage of concrete structures based on unloading elastic modulus was proposed. First, according to the concrete stress-strain curve and the statistical relationship between residual strain and cumulative strain, the calculation method of static equivalent strain and residual strain concrete based on unloading elastic modulus and the method for estimating the strength of concrete after damage were proposed. The detailed steps of field test and analysis and the practical damage indicators of residual strain were given. Then, the evaluation method of existing stress and strain of Reinforced Concrete Bridge under dead load and the concept of “equivalent dead load bending moment” were put forward. On this basis, the paper analyzed the root cause of the decrease of bearing capacity of Reinforced Concrete Bridge after fatigue damage, and pointed out that the equivalent strain or residual strain of reinforced concrete increases under the fatigue effect, which led to the decreasing of actual live moment and deformation performance while the ultimate load-carrying capacity remained constant or very little decrease. The evaluation method of structure residual capacity was given, and through comparative analysis of eight T reinforced concrete beams that had been in service for 35 years with the static failure tests, the effectiveness of the method was verified. 展开更多
关键词 Bridge Engineering Reinforced Concrete Fatigue Damage Unloading Elastic Modulus residual strain residual Bearing Capacity
下载PDF
Measurement of Temperature and Residual Strain during Fatigue of a CFRP Composite Using Fiber Bragg Grating Sensors 被引量:2
2
作者 SHEN Xiaoyan LIN Yuchi WANG Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第3期364-368,共5页
Fatigue behaviour has important implications for engineering composite structures in sectors ranging from automotive to aerospace. Optical sensing technology displays excellent performance in these fields for monitori... Fatigue behaviour has important implications for engineering composite structures in sectors ranging from automotive to aerospace. Optical sensing technology displays excellent performance in these fields for monitoring. In this paper, temperature and residual strain during fatigue of a carbon fiber reinforced polymer(CFRP) are investigated. Four autoclaved CFRP beam specimens, with fiber Bragg grating(FBG) sensors and thermocouples embedded at selected locations, are subjected to three-point bending cyclic loading on the BOSE testing machine for fatigue testing. Thennocouples are used to measure the temperature while FBGs can sense the temperature and strain as well. Seven tests in total are conducted at different frequencies, and each test lasts for several days. From the experimental results, transient steep peaks of temperature increases (up to 2.3℃) are discovered at the beginning of the load. The following constant temperature increments are around 1.0℃, which is not relevant to frequencies from 0.1 Hz to 20 Hz and suspected due to fatigue. Residual strains of 1×10^-5-2×10^-5 during fatigue, fading away rapidly when unloading, are also reported. Embedded FBGs here are validated to sense temperature and strains in composite structures, which demonstrates promising potentials in structure monitoring fields. CFRP are verified to have an excellent performance during fatigue with low temperature increase and residual strain. 展开更多
关键词 fatigue temperature residual strain FREQUENCY CFRP composite embedded fiber Bragg grating
下载PDF
Experimental research on the development of residual strain in seasonal frozen soil under freezing-thawing and impact type traffic loads 被引量:1
3
作者 Liu Tianhua Wang Miao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第2期335-345,共11页
Vehicle load is among the main factors affecting the deformation of subgrade soil.In this research study,the concept of impact type traffic load is introduced to investigate the effects of vehicle load based on the dy... Vehicle load is among the main factors affecting the deformation of subgrade soil.In this research study,the concept of impact type traffic load is introduced to investigate the effects of vehicle load based on the dynamic stress and displacement time histories acquired from seasonal frozen subgrade soils.Using freezing-thawing and dynamic triaxial tests and considering the amplitude and loading sequence of impact type traffic load,the residual deformation characteristics of subgrade soil under impact type traffic loads and freezing-thawing cycles is studied.It was found that under impact type traffic load,the residual deformation of soils increased sharply as the amplitude of impact type traffic load increased.It was also found that the increase in the amplitude of impact type traffic load led to the increase of residual deformation in a scale of power and exponential function.The amplitudes of impact type traffic load affect the development stress-strain path of the residual strain.After the soil experienced the proper amount of pre-vibration of the light load,residual deformation decreased by 15%.After freezing-thawing,the residual strain of soil increased as the amplitude of the impact type traffic loads increased.Also,when the amplification effect of freezing-thawing on the residual strain was basically stable,the residual deformation increased by about 10%.The peak impact type traffic load had a large effect on soil deformation after the freezing-thawing process,leading to the observation that of the earlier the peaks,the stronger the effect of freezing-thawing.After the soil was subjected to preloading with a small load,the influence of the freezing-thawing cycles gradually stabilized.The results may be useful in preventing and controlling the risk of subgrade soil failure when construction takes place spring thaw periods. 展开更多
关键词 impact type traffic load FREEZING-THAWING dynamic triaxial test loading sequence residual strain
下载PDF
Residual strain evaluation of curved surface by grating-transferring technique and GPA 被引量:1
4
作者 Zhanwei Liu,1,Jiangfan Zhou,1 Xianfu Huang,1 Jian Lu,2 and Huimin Xie 3,1) Department of Mechanics,School of Astronautics,Beijing Institute of Technology,Beijing 100081,China 2) Department of Mechanical Engineering,The Hong Kong Polytechnic University,Hong Kong,China 3) AML,Department of Engineering Mechanics,Tsinghua University,Beijing 100084,China 《Theoretical & Applied Mechanics Letters》 CAS 2011年第5期31-35,共5页
This paper investigates an advanced grating-transferring technique combined with geometric phase analysis (GPA) for residual strain evaluation of curved surface.A standard holographic grating is first transferred to a... This paper investigates an advanced grating-transferring technique combined with geometric phase analysis (GPA) for residual strain evaluation of curved surface.A standard holographic grating is first transferred to a pre-produced epoxy resin film and then consolidated to a test region of curved surface.With a rubber mold and silicone rubber the deformed grating is replicated to a sheet metal after hole-drilling for release of residual stress.After that the grating is transferred from the sheet metal to the glass plate,which would be served as an analyzer grating (specimen grating).By GPA the local strain distributions related to the phase difference between the reference grating and analyzer grating for the released stress can be evaluated.A validation test has been conducted on the weld joint of a stainless steel tube and the obtained results demonstrate the ability of the method in measuring the residual strain of curved surface. 展开更多
关键词 residual strain grating-transferring hole-drilling GPA curved surface
下载PDF
Analysis on residual strain of Zipingpu Concrete Faced Rockfill Dam after Wenchuan earthquake
5
作者 Liu Zhenping Chi Shichun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第2期221-228,共8页
The Zipingpu Concrete Faced Rockfill Dam (CFRD) was subjected to significant local damage in the "5.12" Wenchuan earthquake. It is the first rockfill dam of more than one hundred meters high to encounter a strong ... The Zipingpu Concrete Faced Rockfill Dam (CFRD) was subjected to significant local damage in the "5.12" Wenchuan earthquake. It is the first rockfill dam of more than one hundred meters high to encounter a strong earthquake anywhere in the world. Based on the finite element smoothing method, the residual strains at a typical cross-section and a downstream slope of the dam were obtained by processing the dam monitored displacement data. The position of and reason for the dam settlement and deformation ofrockfill dilatancy in the earthquake were analyzed according to the section residual strain. The results show that the maximum settlement ratio on the dam body approximately occurs at 2/3 of the dam height; dilatancy occurs from the dam crest to 25-30 m in the upstream and downstream slope; the immediate cause of the face slabs horizontal construction joint dislocation is excessive residual shear strain. Meanwhile, the position of and reason for the dam fissure in the earthquake were analyzed according to the dam slope residual strain. 展开更多
关键词 Zipingpu CFRD Wenchuan earthquake FEM data smooth residual strain damage mechanism
下载PDF
Residual Strains in a Nanometer Thick Cr Film Measured on Micromachined Beams
6
作者 Z.M. Zhou Yong Zhou Ying Cao Haiping Mao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第1期77-80,共4页
A Cr film with a 75 nm thickness sputtered on a Si substrate was used to fabricate microbridge and microcantilever samples with the MEMS (microelectromechanical system) technique. The profile of the buckled beams wa... A Cr film with a 75 nm thickness sputtered on a Si substrate was used to fabricate microbridge and microcantilever samples with the MEMS (microelectromechanical system) technique. The profile of the buckled beams was measured by using the interference technique with white light and fitted with a theoretical result. The uniform residual strain in the bridge samples was deduced from the variation of buckling amplitude with the beam length. On the other hand, the gradient residual strain was determined from the deflection profile of the cantilever. The residual uniform and gradient strain in the Cr film are about 4.96×10^-3 and 4.2967×10^-5, respectively. 展开更多
关键词 residual strain Microelectromechanical system (MEMS) Microbridge MICROCANTILEVER
下载PDF
A semi-empirical formula for evaluating residual strain of soils under earthquake loading
7
作者 袁晓铭 孟上九 孙锐 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2003年第2期307-313,共7页
A new semi-empirical formula for evaluating the residual strain of soils under earthquake loading is presented in this paper based on the incremental method and the increment model proposed by the authors.When the inc... A new semi-empirical formula for evaluating the residual strain of soils under earthquake loading is presented in this paper based on the incremental method and the increment model proposed by the authors.When the incident loading is uniform,the results calculated by the new formula are nearly the same as those by the existing formula.For excitation of the random earthquake loading,the results calculated by the new formula are compared to the results obtained by dynamic triaxial tests.The dynamic triaxial tests had been performed considering different seismic waves,confining stresses, consolidation ratios,and types of cohesive soils.The comparison between the calculated and tested results indicate that the presented formula can efficiently and practically describe the time-dependent process of the soil residual strains under actual seismic loads. 展开更多
关键词 SOIL residual strain semi-empirical formula carthquake loading
下载PDF
The Characterisation of Residual Strain in Ensis siliqua Shells
8
作者 D. J. Scurr R. J. Cernik +2 位作者 S. P. Thompson P. M. Mummery S. J. Eichhorn 《Journal of Bionic Engineering》 SCIE EI CSCD 2006年第1期33-38,共6页
This study reports the variation of residual strains within the posterior ventral area of the Ensis siliqua mollusc shell, as determined using glancing incidence synchrotron X-ray diffraction. The outer layer of this ... This study reports the variation of residual strains within the posterior ventral area of the Ensis siliqua mollusc shell, as determined using glancing incidence synchrotron X-ray diffraction. The outer layer of this structure exhibits a tensile strain, in contrast to a compressive strain observed within the inner layer. Fluctuations in unit cell parameters for the inner layer have been determined, showing that the microscopic prismatic layer of the structure exhibits a compressive strain orientated parallel to the surface of the shell. This is thought to enhance the crack deflection properties of this layer, and aid in resisting catastrophic failure. Further analysis of residual strains has been performed using the same method, throughout several stages of compressive testing of the anterior dorsal region of the shell. This identified no variation in residual strains at various levels of loading, and it is therefore proposed that load may be transferred via the organic matrix of mollusc shell structures. A Raman spectroscopic investigation, comparing whole and powdered shell with non-biogenic aragonite, has shown that residual strains are also present in this analagous material which is devoid of organic content. This indicates that the observed strain is not entirely due to the organic matrix. 展开更多
关键词 Ensis siliqua shell residual strain synchrostron X-ray diffraction
下载PDF
Paleotectonic residual strain energy in Southwest China
9
作者 An Ou 《Geodesy and Geodynamics》 2015年第1期25-33,共9页
Based on the orthotropic elastic theory of rock masses, the X-ray method was used to measure the distribution of macro-residual strain energy density along a depth profile,using core samples taken from 47 large-apertu... Based on the orthotropic elastic theory of rock masses, the X-ray method was used to measure the distribution of macro-residual strain energy density along a depth profile,using core samples taken from 47 large-aperture deep boreholes in four regions of Southwest China: the Longmenshan, Anninghe, Honghe, and Xianshuihe fault zones.Then, the vertical gradients of the macro-residual strain energy density and the macroresidual strain energy contained in high-energy cuboid block segments along each fault zone were determined. The results demonstrate that the macro-residual strain energy stored at shallow levels in the rock mass in these fault zones may be partly responsible for generating many large earthquakes and may explain why the large earthquakes in this region are typically shallow. 展开更多
关键词 Southwest China X-ray method Vertical energy gradient Fault zone energy Paleotectonics residual strain energy strain energy dens
下载PDF
Microstructure, Residual Strain and Stress Corrosion Cracking Behavior in 316L Heat-Affected Zone 被引量:3
10
作者 Hong-Liang Ming Zhi-Ming Zhang +4 位作者 Peng-Yuan Xiu Jian-Qiu Wang En-Hou Han Wei Ke Ming-Xing Su 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第9期848-858,共11页
Austenitic stainless steels are usually chosen to make many components of nuclear power plants (NPPs). However, their microstructure in the heat-affected zone (HAZ) will change during the welding process. Some fai... Austenitic stainless steels are usually chosen to make many components of nuclear power plants (NPPs). However, their microstructure in the heat-affected zone (HAZ) will change during the welding process. Some failures of the weld joints, mainly stress corrosion cracking (SCC), have been found to be located in the HAZ. In this research, the microstructure, micro-hardness, residual strain and SCC behavior at different locations of the 316L HAZ cut from a safeend dissimilar metal weld joint were studied. However, traditional optical microscope observation could not find any microstructural difference between the HAZ and the base metal, higher residual strain and micro-hardness, and higher fraction of random high-angle grain boundaries were found in the HAZ than in the base metal when studied by using electron back-scattering diffraction scanning and micro-hardness test. What's more, the residual strain, the microhardness and the fraction of random grain boundaries decreased, while the fraction of coincidence site lattice grain boundaries increased with increasing the distance from the fusion boundary in 316L HAZ. Creviced bent beam test was applied to evaluate the SCC susceptibility at different locations of 316L HAZ and base metal. It was found that the HAZ had higher SCC susceptibility than the base metal and SCC resistance increased when increasing the distance from the fusion boundary in 316L HAZ. 展开更多
关键词 Austenitic stainless steels Heat.affected zone MICROSTRUCTURE EBSD residual strain Stresscorrosion cracking
原文传递
Effect of residual structural strain caused by the addition of Co3O4 nanoparticles on the structural, hardness and magnetic properties of an Al/Co3O4 nanocomposite produced by powder metallurgy 被引量:2
11
作者 Seyed Rahim Kiahosseini Hossein Ahmadian 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第3期384-390,共7页
Al composites are of interest due to their appropriate ratio of strength to weight.In our research,an Al/Co3O4 nanocomposite was generated using a sintering technique.The powders of Al with various Co3O4 nanoparticle ... Al composites are of interest due to their appropriate ratio of strength to weight.In our research,an Al/Co3O4 nanocomposite was generated using a sintering technique.The powders of Al with various Co3O4 nanoparticle contents(0 wt%,0.5 wt%,1.0 wt%,1.5 wt%,2.0 wt%,and2.5 wt%)were first blended using planetary milling for 30 min,and compressed in a cylindrical steel mold with a diameter of 1 cm and a height of5 cm at a pressure of 80 MPa.The samples were evaluated with X-ray diffractometry(XRD),scanning electron microscopy(SEM),Vickers hardness,and a vibrating sample magnetometer(VSM).Although the crystallite size of the Al particles remained constant at 7–10 nm,the accumulation of nanoparticles in the Al particle interspace increased the structural tensile strain from 0.0045 to 0.0063,the hardness from HV 28 to HV 52 and the magnetic saturation from 0.044 to 0.404 emu/g with an increase in Co3O4 nanoparticle content from 0 wt%to 2.5 wt%. 展开更多
关键词 residual strain Vickers hardness vibrating sample magnetometer scanning electron microscopy
下载PDF
The Residual Strain Measurement of Thin Conductive Metal Wire after Electrical Failure with SEM Moir 被引量:1
12
作者 Yanjie Li Huimin Xie +4 位作者 Qinghua Wang Mengmeng Zhou Manqiong Xu Qiang Luo Changzhi Gu 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2016年第4期371-378,共8页
In this study, the residual strain of a thin conductive metal wire on a polymer substrate after electrical failure is measured with SEM moir′e. Focused ion beam(FIB) milling is applied to fabricate micron moir′e gra... In this study, the residual strain of a thin conductive metal wire on a polymer substrate after electrical failure is measured with SEM moir′e. Focused ion beam(FIB) milling is applied to fabricate micron moir′e gratings on the surfaces of constantan wires and the random phase shifting technique is used to process moir′e fringes. The virtual strain method is briefly introduced and used to calculate the real strain of specimens. In order to study the influence of a defect on the electrical failure of the constantan wire, experiments were conducted on two specimens, one with a crack, while the other one without any crack. By comparing the results, we found that the defect makes the critical beam current of electrical failure decrease. In addition, the specimens were subjected to compression after electrical failure, in agreement with the observed crack closure of the specimen. The successful results demonstrate that the moir′e method is effective to characterize the full-field deformation of constantan wires on the polymer membrane, and has a good potential for further application to the deformation measurement of thin films. 展开更多
关键词 SEM moir′e residual strain metal wire focused ion beam(FIB)
原文传递
Distribution of Inherent Strains and Residual Stressesin Medium Thickness Plate Weldment
13
作者 Peng HE and Jiuhai ZHANG National Key Laboratory of Advanced Welding Production Technology, HIT, Harbin 150001, China Toshio Terasaki and Testuya Akiyama Department of Materials Science and Engineering, Kyushu Institute of Technology, Japan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第2期252-256,共5页
A fundamental theory for the analysis of residual welding stresses and deformation based on the inherent strain distribution along the welded joint is introduced. Distribution of inherent strains and longitudinal resi... A fundamental theory for the analysis of residual welding stresses and deformation based on the inherent strain distribution along the welded joint is introduced. Distribution of inherent strains and longitudinal residual stresses in medium thickness plate weldment is calculated and analyzed. A new method of calculating inherent strains and longitudinal residual stresses is proposed. 展开更多
关键词 In Distribution of Inherent strains and residual Stressesin Medium Thickness Plate Weldment TA
下载PDF
Characteristics of dynamic strain and strength of frozen silt under long-term dynamic loading 被引量:1
14
作者 ShuPing Zhao Wei Ma +1 位作者 GuiDe Jiao XiaoXiao Chang 《Research in Cold and Arid Regions》 2011年第6期478-484,共7页
The dynamic swain and strength of frozen silt under long-term dynamic loading are studied based on creep tests. Three groups of tests are performed (Groups I, II, and III). The initial deviator stresses of Groups I an... The dynamic swain and strength of frozen silt under long-term dynamic loading are studied based on creep tests. Three groups of tests are performed (Groups I, II, and III). The initial deviator stresses of Groups I and II are same and the dynamic stress ampli- tude of Group II is twice as that of Group I. The minimum value of dynamic stress in Group IlI is near zero and its dynamic stress amplitude is larger than those of Groups I and II. In tests of all three groups there are similar change trends of accttmulative sWain, but with different values. The accumulative swain curves consist of three stages, namely, the initial stage, the steady stage, and the gradual flow stage. In the tests of Groups I and II, during the initial stage with vibration times less than 50 loops the strain ampli- tude decreased with the increase of vibration times and then basically remained constant, fluctuating in a very small range. For the tests of Group III, during the initial and steady stages the sWain amplitude decreased with the increase of vibration times, and then increased rapidly in the gradual flow stage. The dynamic strength of frozen silt decreases and trends to terminal dynamic strength as the vibration times of loading increase. 展开更多
关键词 frozen silt long-term dynamic loading accumulative strain strain amplitude residual strain dynamic strength
下载PDF
Experimental Study on the Mechanical Parameters Relating to the Impact Tendency of Coal Sample
15
作者 Diaka Cisse Hao Wang +1 位作者 Mingyang Wen Zhanghao Liu 《World Journal of Engineering and Technology》 2023年第3期569-585,共17页
Coal burst remains one of the gravest safety risks that will be encountered in mining in the future, because the stress conditions will become more complex as mining depths increase. Various influencing elements exist... Coal burst remains one of the gravest safety risks that will be encountered in mining in the future, because the stress conditions will become more complex as mining depths increase. Various influencing elements exist, and varied geological and mining circumstances might result in diverse coal burst phenomena. The impact propensity of coal has variations as a result of the distinct physical and mechanical qualities of each. To identify the impact propensity of coal and then understand the rules of coal burst occurrence, laboratory tests can be conducted to identify the physical and mechanical parameters affecting coal samples. The mechanical properties, energy absorption, and energy dissipation characteristics of coal samples were examined experimentally in this paper using coal samples that were taken from the mine. On the basis of the evaluation of the impact inclination parameters for four fundamental coal samples, novel impact inclination indicators and the relationship between the fractures in the coal sample and the impact inclination parameters were discussed. The following are the key conclusions: 1) On-site samples of No. 15 coal from the Qi yuan Coal Mine were taken (15 s) and processed in accordance with the guidelines for the coal specimen impact inclination test. The accuracy of the specimen was sufficient for the test. 2) Analysis is done on the mechanical relevance and calculation techniques of the four fundamental coal sample impact tendency characteristics, dynamic failure time (DT), elastic strain energy index (W<sub>ET</sub>), impact energy index (K<sub>E</sub>), as well as uniaxial compressive strength (R<sub>C</sub>). 3) Regarding the rock burst danger of rock samples, the potential use of the ratio of pre-peak and post- peak deformation modulus to Kλ and the residual elastic strain energy index C<sub>EF</sub> as the impact propensity indices of coal samples are discussed. It is possible to utilize two new impact propensity indices to evaluate the impact propensity of coal samples, according to test results that reveal a linear correlation between two new impact inclination indexes and four fundamental impact tendency indexes. 4) The statistical analysis of the crack ratio with the four impact propensity indicators after coal specimen failure, and the correlation among the crack ratio with the indicators, are both done. The findings indicate that the four impact propensity indicators have a linear relationship with the crack ratio of the coal sample surface cracks. 展开更多
关键词 Coal Burst Coal Impact Trend Parameter Elastic Modulus Index residual Elastic strain Energy Index
下载PDF
Experimental Study on the Mechanical Parameters Relating to the Impact Tendency of Coal Sample
16
作者 Diaka Cisse Hao Wang +1 位作者 Mingyang Wen Zhanghao Liu 《Open Journal of Orthopedics》 2023年第3期569-585,共17页
Coal burst remains one of the gravest safety risks that will be encountered in mining in the future, because the stress conditions will become more complex as mining depths increase. Various influencing elements exist... Coal burst remains one of the gravest safety risks that will be encountered in mining in the future, because the stress conditions will become more complex as mining depths increase. Various influencing elements exist, and varied geological and mining circumstances might result in diverse coal burst phenomena. The impact propensity of coal has variations as a result of the distinct physical and mechanical qualities of each. To identify the impact propensity of coal and then understand the rules of coal burst occurrence, laboratory tests can be conducted to identify the physical and mechanical parameters affecting coal samples. The mechanical properties, energy absorption, and energy dissipation characteristics of coal samples were examined experimentally in this paper using coal samples that were taken from the mine. On the basis of the evaluation of the impact inclination parameters for four fundamental coal samples, novel impact inclination indicators and the relationship between the fractures in the coal sample and the impact inclination parameters were discussed. The following are the key conclusions: 1) On-site samples of No. 15 coal from the Qi yuan Coal Mine were taken (15 s) and processed in accordance with the guidelines for the coal specimen impact inclination test. The accuracy of the specimen was sufficient for the test. 2) Analysis is done on the mechanical relevance and calculation techniques of the four fundamental coal sample impact tendency characteristics, dynamic failure time (DT), elastic strain energy index (W<sub>ET</sub>), impact energy index (K<sub>E</sub>), as well as uniaxial compressive strength (R<sub>C</sub>). 3) Regarding the rock burst danger of rock samples, the potential use of the ratio of pre-peak and post- peak deformation modulus to Kλ and the residual elastic strain energy index C<sub>EF</sub> as the impact propensity indices of coal samples are discussed. It is possible to utilize two new impact propensity indices to evaluate the impact propensity of coal samples, according to test results that reveal a linear correlation between two new impact inclination indexes and four fundamental impact tendency indexes. 4) The statistical analysis of the crack ratio with the four impact propensity indicators after coal specimen failure, and the correlation among the crack ratio with the indicators, are both done. The findings indicate that the four impact propensity indicators have a linear relationship with the crack ratio of the coal sample surface cracks. 展开更多
关键词 Coal Burst Coal Impact Trend Parameter Elastic Modulus Index residual Elastic strain Energy Index
下载PDF
Hole-drilling method using grating rosette and Moire interferometry 被引量:5
17
作者 Jubing Chen Yongsheng Peng Shexu Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第3期389-394,共6页
The hole-drilling method is one of the most wellknown methods for measuring residual stresses. To identify unknown plane stresses in a specimen, a circular hole is first drilled in the infinite plate under plane stres... The hole-drilling method is one of the most wellknown methods for measuring residual stresses. To identify unknown plane stresses in a specimen, a circular hole is first drilled in the infinite plate under plane stress, then the strains resulting from the hole drilling is measured. The strains may be acquired from interpreting the Moire signature around the hole. In crossed grating Moire interferometry, the horizontal and vertical displacement fields (u and v) can be obtained to determinate two strain fields and one shearing strain field. In this paper, by means of Moire interferometry and three directions grating (grating rosette) developed by the authors, three displacement fields (u, v and s) are obtained to acquire three strain fields. As a practical application, the hole-drilling method is adopted to measure the relief strains for aluminum and fiber reinforced composite. It is a step by step method; in each step a single laminate or equivalent depth is drilled to find some relationships between the drilling depth and the residual strains relieved in the fiber reinforced composite materials. 展开更多
关键词 Grating rosette Hole-drilling Moire interferometry residual strain
下载PDF
Prediction of Settlements of Soft Clay Subjected to Long-Term Dynamic Load 被引量:3
18
作者 周健 缪俊发 刘汉龙 《China Ocean Engineering》 SCIE EI 2000年第1期79-88,共10页
Presented is the numerical analysis of settlements of soft soil by a 2-D dynamic effective stress FEM method. The model based on the results of cyclic triaxial tests on the reconstituted soft Ariake clay is used to pr... Presented is the numerical analysis of settlements of soft soil by a 2-D dynamic effective stress FEM method. The model based on the results of cyclic triaxial tests on the reconstituted soft Ariake clay is used to predict the wave induced excess pore water pressure and residual strain of soft clay. The settlements of two types of breakwaters on the soft clay under ocean wave load, a low embankment subjected to traffic load and the tunnel surrounded by soft clay in Shanghai subjected to locomotive load are calculated as examples. 展开更多
关键词 dynamic load soft clay pore pressure residual strain SETTLEMENT dynamic load BREAKWATER
下载PDF
Evolution and Characterization of Damage of Concrete under Freeze-thaw Cycles 被引量:1
19
作者 王玲 CAO Yin +1 位作者 WANG Zhendi DU Peng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第4期710-714,共5页
To study the internal damage of concrete under freeze-thaw cycles, concrete strains were measured using embedded strain gauges. Residual strain and coefficients of freezing expansion (CFE) derived from strain-temper... To study the internal damage of concrete under freeze-thaw cycles, concrete strains were measured using embedded strain gauges. Residual strain and coefficients of freezing expansion (CFE) derived from strain-temperature curves were used to quantify the damage degree. The experimental results show that irreversible residual strain increases with the number of freeze-thaw cycles. After 50 cycles, residual strains of C20 and C35 concretes are 320με and 100με in water, and 120με and 60 με in saline solution, respectively. In lower temperature range (- 10 ℃ to - 25 ℃) CFE of C20 and C35 concretes decrease by 9.82 × 10-6/K and 8.44×10-6/K in water, and 9.38×10-6/K and 5.47×10-6/K in saline solution, respectively. Both residual strains and CFEs indicate that during the first 50 freeze-thaw cycles, the internal damage of concrete in saline solution is less than that of concrete in water. Thus residual strain and CFE can be used to measure the frost damage of concrete. 展开更多
关键词 freeze-thaw cycles saline solution strain residual strain coefficients of freezing expansion
下载PDF
Valence band variation in Si(110) nanowire induced by a covered insulator
20
作者 许洪华 刘晓彦 +5 位作者 何毓辉 樊春 杜刚 孙爱东 韩汝琦 康晋锋 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第1期398-402,共5页
In this work, we investigate strain effects induced by the deposition of gate dielectrics on the valence band structures in Si (110) nanowire via the simulation of strain distribution and the calculation of a genera... In this work, we investigate strain effects induced by the deposition of gate dielectrics on the valence band structures in Si (110) nanowire via the simulation of strain distribution and the calculation of a generalized 6 × 6k .p strained valence band. The nanowire is surrounded by the gate dielectric. Our simulation indicates that the strain of the amorphous SiO2 insulator is negligible without considering temperature factors. On the other hand, the thermal residual strain in a nanowire with amorphous SiO2 insulator which has negligible lattice misfit strain pushes the valence subbands upwards by chemical vapour deposition and downwards by thermal oxidation treatment. In contrast with the strain of the amorphous SiO2 insulator, the strain of the HfO2 gate insulator in Si (110) nanowire pushes the valence subbands upwards remarkably. The thermal residual strain by HfO2 insulator contributes to the up-shifting tendency. Our simulation results for valence band shifting and warping in Si nanowires can provide useful guidance for further nanowire device design. 展开更多
关键词 silicon nanowire valence band thermal residual strain
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部