A physically accurate and computationally effective pure finite element method (FEM) was developed to simulate the isothermal resin infusing process. The FEM was based on conservation of resin muss at and instant of...A physically accurate and computationally effective pure finite element method (FEM) was developed to simulate the isothermal resin infusing process. The FEM was based on conservation of resin muss at and instant of time and was objective of resin film infusion (RFI) fiber impregnation and mold filling . The developed computer code was able to simulate the resin infusing visually. A numerical example presented here demonstrated that compared with traditional finite element/ control-volume (FE/CV), and FEM was physically accurate and computationally efficient.展开更多
βray online monitoring technique for resin content measurement has been developed, which is characterized by simple operation, short measuring time, and high measuring accuracy. It has been used to measure the resin ...βray online monitoring technique for resin content measurement has been developed, which is characterized by simple operation, short measuring time, and high measuring accuracy. It has been used to measure the resin content of pregreg tapes during manufacturing of them. This paper gives the measuring results. Meanwhile, the effects of the deviation of the βray monitoring system itself and the variation of the release paper on the measuring accuracy have been analyzed and discussed.展开更多
This study proposes a facile, but precise method to back-calculate the effective modulus of nanocomposite interleaving plies. Adaptation of a conventional dry-reinforcement resin film infusion (RFI) approach allows in...This study proposes a facile, but precise method to back-calculate the effective modulus of nanocomposite interleaving plies. Adaptation of a conventional dry-reinforcement resin film infusion (RFI) approach allows interleaving neat epoxy layers (NE) with the epoxy-infused nanofibrous plies (XE) of constant thickness. The final cured nanocomposite laminate thus has the form (NE/XE)n, where “n” denotes the number of the repeats and enables clear distinction of the nanocomposite interlayers through the thickness. Mechanical testing of neat epoxy and laminated nanocomposite specimens can be coupled with the classical lamination theory for back-calculating in-plane elastic modulus of the individual epoxy-infused nanofibrous plies (EXE). Finite element analysis (FEA) and testing the laminated nanocomposite subject to flexural loading (3-point bending) are proposed to validate the analytically back-calculated EXE. It is shown that the FEA prediction incorporating EXE and testing for flexural modulus of (NE/XE)20 laminated nanocomposites correlate well and the results are within 5%. This finding suggests that the back-calculation scheme reported herein would be attractive for accurately determining the properties of an individual nanocomposite building block layer. The proposed framework is beneficial for modelling laminated structural composites incorporating XE-like nanocomposite interlayers.展开更多
基金Funded bythe National Natural Science Foundation of China(No50573060)
文摘A physically accurate and computationally effective pure finite element method (FEM) was developed to simulate the isothermal resin infusing process. The FEM was based on conservation of resin muss at and instant of time and was objective of resin film infusion (RFI) fiber impregnation and mold filling . The developed computer code was able to simulate the resin infusing visually. A numerical example presented here demonstrated that compared with traditional finite element/ control-volume (FE/CV), and FEM was physically accurate and computationally efficient.
文摘βray online monitoring technique for resin content measurement has been developed, which is characterized by simple operation, short measuring time, and high measuring accuracy. It has been used to measure the resin content of pregreg tapes during manufacturing of them. This paper gives the measuring results. Meanwhile, the effects of the deviation of the βray monitoring system itself and the variation of the release paper on the measuring accuracy have been analyzed and discussed.
文摘This study proposes a facile, but precise method to back-calculate the effective modulus of nanocomposite interleaving plies. Adaptation of a conventional dry-reinforcement resin film infusion (RFI) approach allows interleaving neat epoxy layers (NE) with the epoxy-infused nanofibrous plies (XE) of constant thickness. The final cured nanocomposite laminate thus has the form (NE/XE)n, where “n” denotes the number of the repeats and enables clear distinction of the nanocomposite interlayers through the thickness. Mechanical testing of neat epoxy and laminated nanocomposite specimens can be coupled with the classical lamination theory for back-calculating in-plane elastic modulus of the individual epoxy-infused nanofibrous plies (EXE). Finite element analysis (FEA) and testing the laminated nanocomposite subject to flexural loading (3-point bending) are proposed to validate the analytically back-calculated EXE. It is shown that the FEA prediction incorporating EXE and testing for flexural modulus of (NE/XE)20 laminated nanocomposites correlate well and the results are within 5%. This finding suggests that the back-calculation scheme reported herein would be attractive for accurately determining the properties of an individual nanocomposite building block layer. The proposed framework is beneficial for modelling laminated structural composites incorporating XE-like nanocomposite interlayers.
文摘为了提高丙烯酸树脂的耐水性、附着力以及耐溶剂性,以桐油酸和环氧树脂E-44为原料制备环氧酯,采用溶液聚合和自乳化工艺合成了环氧酯改性水性丙烯酸树脂,并引入氰特CY325氨基树脂制备双组分环氧酯改性水性丙烯酸树脂漆膜。利用FT-IR、1 H NMR、粒径测试等对环氧酯单体、环氧酯改性水性丙烯酸树脂的结构和性能进行表征和分析,并测试了单组分和双组分环氧酯改性水性丙烯酸树脂漆膜的硬度、光泽、吸水率、水接触角、耐溶剂性等性能。结果表明:当环氧酯用量为35%时,单/双组分漆膜综合性能达到最佳,双组分漆膜光泽(60°)达102.3,耐溶剂擦拭次数为500次,耐水性可达480 h,附着力为0级,铅笔硬度为4H,耐冲击性为50 cm。