In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powder...In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powders were fabricated to improve the wear and corrosion behavior of 1Cr18Ni9Ti steel blades in high speed mixers.Microstructure evolution,phases,element distribution,microhardness,wear and corrosion behavior of the laser alloyed layers were investigated.Results indicated that high Mn steel matrix composites with undissolved W_(2)C,WC and other in-situ formed carbides were formed by LSA with Mn+W_(2)C and Mn+NiWC while SiC totally dissolved into the high Mn matrix when adding Mn+SiC.Ni as the binding phase in Ni-WC powder decreased the crack sensitivity of the alloyed layer as compared with the addition of W_(2)C powder.An improvement in average microhardness was achieved in the matrix in specimen A,B and C,with the value of 615,602 and 277 HV_(0.5),while that of the substrate was 212 HV_(0.5).The increase of microhardness,wear and corrosion resistance is highly corelated to microstructure,formed phases,type and content of carbides,micro-hardness and toughness of the alloyed layers.展开更多
BACKGROUND Colorectal cancer(CRC)is the third most common cancer and a significant cause of cancer-related mortality globally.Resistance to chemotherapy,especially during CRC treatment,leads to reduced effectiveness o...BACKGROUND Colorectal cancer(CRC)is the third most common cancer and a significant cause of cancer-related mortality globally.Resistance to chemotherapy,especially during CRC treatment,leads to reduced effectiveness of drugs and poor patient outcomes.Long noncoding RNAs(lncRNAs)have been implicated in various pathophysiological processes of tumor cells,including chemotherapy resistance,yet the roles of many lncRNAs in CRC remain unclear.AIM To identify and analyze the lncRNAs involved in oxaliplatin resistance in CRC and to understand the underlying molecular mechanisms influencing this resistance.METHODS Gene Expression Omnibus datasets GSE42387 and GSE30011 were reanalyzed to identify lncRNAs and mRNAs associated with oxaliplatin resistance.Various bioinformatics tools were employed to elucidate molecular mechanisms.The expression levels of lncRNAs and mRNAs were assessed via quantitative reverse transcription-polymerase chain reaction.Functional assays,including MTT,wound healing,and Transwell,were conducted to investigate the functional implications of lncRNA alterations.Interactions between lncRNAs and trans-cription factors were examined using RIP and luciferase reporter assays,while Western blotting was used to confirm downstream pathways.Additionally,a xenograft mouse model was utilized to study the in vivo effects of lncRNAs on chemotherapy resistance.RESULTS LncRNA prion protein testis specific(PRNT)was found to be upregulated in oxaliplatin-resistant CRC cell lines and negatively correlated with homeodomain interacting protein kinase 2(HIPK2)expression.PRNT was demonstrated to sponge transcription factor zinc finger protein 184(ZNF184),which in turn could regulate HIPK2 expression.Altered expression of PRNT influenced CRC cell sensitivity to oxaliplatin,with overexpression leading to decreased sensitivity and decreased expression reducing resistance.Both RIP and luciferase reporter assays indicated that ZNF184 and HIPK2 are targets of PRNT.The PRNT/ZNF184/HIPK2 axis was implicated in promoting CRC progression and oxaliplatin resistance both in vitro and in vivo.CONCLUSION The study concludes that PRNT is upregulated in oxaliplatin-resistant CRC cells and modulates the expression of HIPK2 by sponging ZNF184.This regulatory mechanism enhances CRC progression and resistance to oxaliplatin,positioning PRNT as a promising therapeutic target for CRC patients undergoing oxaliplatin-based chemotherapy.展开更多
Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples...Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples were built with the relativity density reaching 99.9%.High temperature oxidation was performed on the L-PBF samples in circulating air via various heating temperatures and holding durations.The oxidation and diffusion at the elevated temperature generated a gradient structure composed of an oxide layer at the surface,a transition layer in the middle and the matrix.The oxide layer consisted of rare earth(RE)oxides,and became dense and thick with increasing the holding duration.The matrix was composed ofα-Mg,RE oxides and Mg_(24)RE_(5) precipitates.The precipitates almost disappeared in the transition layer.Enhanced passivation effect was observed in the samples treated by a suitable high temperature oxidation.The original L-PBF samples lost 40%weight after 3-day immersion in Hank’s solution,and broke into fragments after 7-day immersion.The casted and solution treated samples lost roughly half of the weight after 28-day immersion.The high temperature oxidation samples,which were heated at 525℃ for 8 h,kept the structural integrity,and lost only 6.88%weight after 28-day immersion.The substantially improved corrosion resistance was contributed to the gradient structure at the surface.On one hand,the outmost dense layer of RE oxides isolated the corrosive medium;on the other hand,the transition layer considerably inhibited the corrosion owing to the lack of precipitates.Overall,high temperature oxidation provides an efficient,economic and safe approach to inhibit the corrosion of WE43 L-PBF samples,and has promising prospects for future clinical applications.展开更多
Hexagonal boron nitride(h-BN)ceramics have become exceptional materials for heat-resistant components in hypersonic vehicles,owing to their superior thermal stability and excellent dielectric properties.However,their ...Hexagonal boron nitride(h-BN)ceramics have become exceptional materials for heat-resistant components in hypersonic vehicles,owing to their superior thermal stability and excellent dielectric properties.However,their densification during sintering still poses challenges for researchers,and their mechanical properties are rather unsatisfactory.In this study,SrAl_(2)Si_(2)O_(8)(SAS),with low melting point and high strength,was introduced into the h-BN ceramics to facilitate the sintering and reinforce the strength and toughness.Then,BN-SAS ceramic composites were fabricated via hot press sintering using h-BN,SrCO_(3),Al_(2)O_(3),and SiO_(2) as raw materials,and effects of sintering pressure on their microstructure,mechanical property,and thermal property were investigated.The thermal shock resistance of BN-SAS ceramic composites was evaluated.Results show that phases of as-preparedBN-SAS ceramic composites are h-BN and h-SrAl_(2)Si_(2)O_(8).With the increase of sintering pressure,the composites’densities increase,and the mechanical properties shew a rising trend followed by a slight decline.At a sintering pressure of 20 MPa,their bending strength and fracture toughness are(138±4)MPa and(1.84±0.05)MPa·m^(1/2),respectively.Composites sintered at 10 MPa exhibit a low coefficient of thermal expansion,with an average of 2.96×10^(-6) K^(-1) in the temperature range from 200 to 1200℃.The BN-SAS ceramic composites prepared at 20 MPa display higher thermal conductivity from 12.42 to 28.42 W·m^(-1)·K^(-1) within the temperature range from room temperature to 1000℃.Notably,BN-SAS composites exhibit remarkable thermal shock resistance,with residual bending strength peaking and subsequently declining sharply under a thermal shock temperature difference ranging from 600 to 1400℃.The maximum residual bending strength is recorded at a temperature difference of 800℃,with a residual strength retention rate of 101%.As the thermal shock temperature difference increase,the degree of oxidation on the ceramic surface and cracks due to thermal stress are also increased gradually.展开更多
The self-made MnFeO_(x) catalysts doped with cerium and samarium were prepared by impregnation method for low-temperature selective catalytic reduction(SCR)by NH3.In this work,the surface properties of the series of M...The self-made MnFeO_(x) catalysts doped with cerium and samarium were prepared by impregnation method for low-temperature selective catalytic reduction(SCR)by NH3.In this work,the surface properties of the series of MnFe-based catalysts were studied.The results indicate Sm-modified catalyst have superior low-temperature SCR activity;NO_(x) conversion maintained at nearby to 100%at 90℃ to 240℃.In addition,The N_(2) selectivity of Sm doping remains above 80%in the range of 60℃ to 150℃.In SO_(2) poisoning test,the NO_(x) conversion can be remained>90%after 10 h of reaction.The XPS,NH_(3)-TPD and H_(2)-TPR results show the catalyst with Sm doping enhances the acid sites and oxidation catalytic sites of mixed oxides serves for improving oxygen vacancies and transfer electrons.In situ diffuse reflaxions infrared Fourier transformations spectroscopy(DRIFTS)results show that NO_(x) is more easily adsorbed on the surface after Sm doping,which provided favorable conditions for the NH_(3)-SCR reaction to proceed.The reaction at the catalyst surface will follow the L-H reaction mechanism by transient reaction test.展开更多
The use of fillers to enhance the corrosion protection of epoxy resins has been widely applied.In this work,cerium dioxide(CeO_(2))and benzotriazole(BTA)were introduced into an epoxy resin to enhance the corrosion res...The use of fillers to enhance the corrosion protection of epoxy resins has been widely applied.In this work,cerium dioxide(CeO_(2))and benzotriazole(BTA)were introduced into an epoxy resin to enhance the corrosion resistance of Q235 carbon steel.Scanning electron microscopy results indicated that the CeO_(2) grains were rod-like and ellipsoidal in shape,and the distribution pattern of BTA was analyzed by energy dispersive spectroscope.The dynamic potential polarization curve proved the excellent corrosion resistance of the composite epoxy resin with CeO_(2) and BTA co-addition,and electrochemical impedance spectroscopy test analysis indicated the significantly enhanced long-term corrosion protection performance of the composite coating.And the optimal protective performance was provided by the coating containing 0.3%(mass)CeO_(2) and 20%(mass)BTA,which was attributed to the barrier performance of CeO_(2) particles and the chemical barrier effect of BTA.The formation of corrosion products was analyzed using X-ray diffraction.In addition,the corrosion resistance mechanism of the coating was also discussed in detail.展开更多
AIM:To analyze the spectrum of isolated pathogens and antibiotic resistance for ocular infections within 5y at two tertiary hospitals in east China.METHODS:Ocular specimen data were collected from January 2019 to Octo...AIM:To analyze the spectrum of isolated pathogens and antibiotic resistance for ocular infections within 5y at two tertiary hospitals in east China.METHODS:Ocular specimen data were collected from January 2019 to October 2023.The pathogen spectrum and positive culture rate for different infection location,such as keratitis,endophthalmitis,and periocular infections,along with antibiotic resistance were analyzed.RESULTS:We included 2727 specimens,including 827(30.33%)positive cultures.A total of 871 strains were isolated,530(60.85%)bacterial and 341(39.15%)fungal strains were isolated.Gram-positive cocci(GPC)were the most common ocular pathogens.The most common bacterial isolates were Staphylococcus epidermidis(25.03%),Staphylococcus aureus(7.46%),Streptococcus pneumoniae(4.59%),Corynebacterium macginleyi(3.44%),and Pseudomonas aeruginosa(3.33%).The most common fungal genera were Fusarium spp.(12.74%),Aspergillus spp.(6.54%),and Scedosporium spp.(5.74%).Staphylococcus epidermidis strains showed more than 50%resistance to fluoroquinolones.Streptococcus pneumoniae and Corynebacterium macginleyi showed more than 90%resistance to erythromycin.The percentage of bacteria showing multidrug resistance(MDR)significantly decreased(χ^(2)=17.44,P=0.002).CONCLUSION:GPC are the most common ocular pathogens.Corynebacterium macginleyi,as the fourth common bacterium,may currently be the local microbiological feature of east China.Fusarium spp.is the most common fungus.More than 50%of the GPC are resistant to fluoroquinolones,penicillins,and macrolides.However,the proportion of MDR strains has been reduced over time.展开更多
Oil transport is greatly affected by heterogeneous pore–throat structures present in shale.It is therefore very important to accurately characterize pore–throat structures.Additionally,it remains unclear how pore–t...Oil transport is greatly affected by heterogeneous pore–throat structures present in shale.It is therefore very important to accurately characterize pore–throat structures.Additionally,it remains unclear how pore–throat structures affect oil transport capacity.In this paper,using finite element(FE)simulation and mathematical modeling,we calculated the hydrodynamic resistance for four pore–throat structure.In addition,the influence of pore throat structure on shale oil permeability is analyzed.According to the results,the hydrodynamic resistance of different pore throat structures can vary by 300%.The contribution of additional resistance caused by streamline bending is also in excess of 40%,even without slip length.Fur-thermore,Pore–throat structures can affect apparent permeability by more than 60%on the REV scale,and this influence increases with heterogeneity of pore size distribution,organic matter content,and organic matter number.Clearly,modeling shale oil flow requires consideration of porous–throat structure and additional resistance,otherwise oil recovery and flow capacity may be overestimated.展开更多
The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investiga...The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investigate its effect on the evolution of the microstructure,magnetic properties and corrosion resistance of NdFeB magnets.Microstructural analysis illustrated that minor In addition generated more grain boundary phases and an abundant amorphous phase at the triple-junction grain boundary.While the addition of In failed to enhance the magnetic isolation effect between adjacent matrix grains,its incorporation fortuitously elevated the electrochemical potential of the In-containing magnets.Besides,during corrosion,an In-rich precipitate phase formed,hindering the ingress of the corrosive medium into the magnet.Consequently,this significantly bolstered the corrosion resistance of the sintered NdFeB magnets.The phase formation,magnetic properties and corrosion resistance of In-doped NdFeB magnets are detailed in this work,which provides new prospects for the preparation of high-performance sintered NdFeB magnets.展开更多
To enhance the long-term corrosion resistance of the plasma electrolytic oxidation(PEO)coating on the magnesium(Mg)alloy,an inorganic salt combined with corrosion inhibitors was used for posttreatment of the coating.I...To enhance the long-term corrosion resistance of the plasma electrolytic oxidation(PEO)coating on the magnesium(Mg)alloy,an inorganic salt combined with corrosion inhibitors was used for posttreatment of the coating.In this study,the corrosion performance of PEO-coated AM50 Mg was significantly improved by loading sodium lauryl sulfonate(SDS)and sodium dodecyl benzene sulf-onate into Ba(NO_(3))_(2) post-sealing solutions.Scanning electron microscopy,X-ray photoelectron spectroscopy,X-ray diffraction,Fourier transform infrared spectrometer,and ultraviolet-visible analyses showed that the inhibitors enhanced the incorporation of BaO_(2) into PEO coatings.Electrochemical impedance showed that post-sealing in Ba(NO_(3))_(2)/SDS treatment enhanced corrosion resistance by three orders of magnitude.The total impedance value remained at 926Ω·cm^(2)after immersing in a 0.5wt%NaCl solution for 768 h.A salt spray test for 40 days did not show any obvious region of corrosion,proving excellent post-sealing by Ba(NO_(3))_(2)/SDS treatment.The corrosion resistance of the coating was enhanced through the synergistic effect of BaO2 pore sealing and SDS adsorption.展开更多
Magnesium alloys,known for their exceptional lightweight properties,have presented challenges in various applications due to their limited corrosion resistance.In this study,the corrosion resistance of Mg_(97)Zn_(1)Y_...Magnesium alloys,known for their exceptional lightweight properties,have presented challenges in various applications due to their limited corrosion resistance.In this study,the corrosion resistance of Mg_(97)Zn_(1)Y_(2)magnesium alloys was enhanced by incorporating Zr elements into the Mg_(97)Zn_(1)Y_(2)matrix,which is distinguished by long periodic stacking ordered(LPSO)phases.Results show that Mg_(97)Zn_(1)Y_(2)-xwt.%Zr(x=0,0.1,0.3,0.6)alloys containing Zr exhibit reduced hydrogen evolution rates and decreased corrosion levels compared with that without Zr,when immersed in a 3.5wt.%NaCl solution.Addition of 0.3wt.%Zr results in the most significant improvement,with a corrosion rate as low as 2.261 mL·cm^(-2),representing an 86%reduction from 16.438 mL·cm^(-2)of the base alloy.Furthermore,alloys with Zr additions demonstrate a more positive corrosion potential and lower corrosion current density than does the matrix alloy(64.92μA·cm^(-2)).The lowest corrosion current density,21.61μA·cm^(-2),occurs with the addition of 0.3wt.%Zr.The introduction of Zr induces a change in the microstructure of the LPSO phases,increasing the charge transfer resistance within the alloy and thus effectively improving its corrosion resistance.展开更多
Objective Retinoblastoma(RB)is a prevalent type of eye cancer in youngsters.Prospero homeobox 1(Prox1)is a homeobox transcriptional repressor and downstream target of the proneural gene that is relevant in lymphatic,h...Objective Retinoblastoma(RB)is a prevalent type of eye cancer in youngsters.Prospero homeobox 1(Prox1)is a homeobox transcriptional repressor and downstream target of the proneural gene that is relevant in lymphatic,hepatocyte,pancreatic,heart,lens,retinal,and cancer cells.The goal of this study was to investigate the role of Prox1 in RB cell proliferation and drug resistance,as well as to explore the underlying Notch1 mechanism.Methods Human RB cell lines(SO-RB50 and Y79)and a primary human retinal microvascular endothelial cell line(ACBRI-181)were used in this study.The expression of Prox1 and Notch1 mRNA and protein in RB cells was detected using quantitative real time-polymerase chain reaction(RT-qPCR)and Western blotting.Cell proliferation was assessed after Prox1 overexpression using the Cell Counting Kit-8 and the MTS assay.Drug-resistant cell lines(SO-RB50/vincristine)were generated and treated with Prox1 to investigate the role of Prox1 in drug resistance.We employed pcDNA-Notch1 to overexpress Notch1 to confirm the role of Notch1 in the protective function of Prox1.Finally,a xenograft model was constructed to assess the effect of Prox1 on RB in vivo.Results Prox1 was significantly downregulated in RB cells.Overexpression of Prox1 effectively decreased RB cell growth while increasing the sensitivity of drug-resistant cells to vincristine.Notch1 was involved in Prox1’s regulatory effects.Notch1 was identified as a target gene of Prox1,which was found to be upregulated in RB cells and repressed by increased Prox1 expression.When pcDNA-Notch1 was transfected,the effect of Prox1 overexpression on RB was removed.Furthermore,by downregulating Notch1,Prox1 overexpression slowed tumor development and increased vincristine sensitivity in vivo.Conclusion These data show that Prox1 decreased RB cell proliferation and drug resistance by targeting Notch1,implying that Prox1 could be a potential therapeutic target for RB.展开更多
A series of AlCoCrFe_(1−x)NiMo_(x)high-entropy alloys(HEAs)were fabricated and characterized by XRD,SEM,EDS mapping,compression test,hardness and electrochemistry measurements.The research results indicate that after ...A series of AlCoCrFe_(1−x)NiMo_(x)high-entropy alloys(HEAs)were fabricated and characterized by XRD,SEM,EDS mapping,compression test,hardness and electrochemistry measurements.The research results indicate that after Mo completely replaces Fe,the compressive strength of the alloys can reach 3181 MPa because the addition of Mo can formσphase beneficial to the grain refinement,thereby improving the strength of the alloys.However,the addition of Mo has a detrimental effect on corrosion resistance as a result of formation of galvanic cell between the substrate andσphases.Although most of AlCoCrFe_(1−x)NiMo_(x)have lower corrosion current densities than pristine alloy,a partial Mo substitution(x=0.25)widens the passivation region of HEAs.The inconsistency of mechanical properties with corrosion resistance is ascribed to different roles of Mo in phase formation and protection of passive film.展开更多
With the growing demand for weight reduction,the application of joint lightweight structural materials is increasing.Magnesium alloys feature low density,high specific strength and good formability,offering significan...With the growing demand for weight reduction,the application of joint lightweight structural materials is increasing.Magnesium alloys feature low density,high specific strength and good formability,offering significant advantages for fuel efficiency and load capacity.Combined with Ti,a dissimilar Ti/Mg composite material provides great flexibility combining the properties of each material.However,because of the great differences in chemical and electrochemical properties between Mg and Ti,it is imperative to address the galvanic corrosion problem of such dissimilar Ti/Mg components.This work presents an investigation of the PEO processing of sintered Ti/Mg0.6Ca couples,aiming to improve the corrosion resistance of such dissimilar alloy combinations using a phosphate-aluminate electrolyte.The results show that uniform and continuous coatings can be formed on the dissimilar Ti/Mg0.6Ca couple.The coating mainly contains MgO and MgAl_(2)O_(4)on the Mg0.6Ca side,and Al_(2)TiO_(5)is the dominant phase on the Ti side.The work also took advantage of synchrotron X-ray computed tomography(CT)scanning to achieve 3D reconstruction of the coating morphology,which can be a fast method to assess the porosity and compactness of the coating and further predict the coating corrosion resistance.The coating effectively improved the corrosion resistance of the dissimilar Ti/Mg0.6Ca couple.展开更多
The contents of waste glass powder(WGP)(0%,10%,15%,20%,25%)and water-binder ratio(W/C)(0.24,0.26,0.28)were used as influencing factors,and the quality loss rate(Δm)and compressive strength loss rate(Δfc)were used as...The contents of waste glass powder(WGP)(0%,10%,15%,20%,25%)and water-binder ratio(W/C)(0.24,0.26,0.28)were used as influencing factors,and the quality loss rate(Δm)and compressive strength loss rate(Δfc)were used as characterization parameters.The Ca/Si ratio and main element contents of C-S-H gels with different WGP content were investigated by energy dispersive spectrometry(EDS).The pore structure evolution characteristics of WGP composite cementing materials were investigated by low field nuclear magnetic resonance(NMR).UsingΔfc as the index of frost resistance degradation and Weibull function,the frost resistance degradation of glass doped pervious concrete(WGP-PC)was modeled.The results show that,with WGP,for the same number of cycles,Δm andΔfc decrease and increase with the increase of WGP.Under the same WGP content,Δm andΔfc decrease first and then increase with the increase of W/C.After 100 freeze-thaw cycles,the samples with WGP content of 20%and W/C of 0.26 have the best freeze-resistance.Microscopic tests show that with the increase of WGP content,the Ca/Si ratio of C-S-H gel decreases at first and then increases with the increase of WGP content.The extreme value of Ca/Si is 2.36 when WGP is added by 20%.The pore volume of hardened paste with 20%WGP content decreased by 18.6%compared with that of cement system without WGP.The overall compactness of the specimen was improved.On the basis of the test data,a life prediction model was established according to Weibull function.The experiment showed thatΔfc could be used as a durability degradation index,and the slope of the reliability curve became gentle after WGP was added,which reduced the damage degradation rate of PC.W/C was 0.26.It's about 5000 hours.展开更多
The composite pile consisting of core-pile and surrounding cement-enhanced soil is a promising pile foundation in recent years.However,how and to what extent the cement-enhanced soil influences the ultimate lateral re...The composite pile consisting of core-pile and surrounding cement-enhanced soil is a promising pile foundation in recent years.However,how and to what extent the cement-enhanced soil influences the ultimate lateral resistance has not been fully investigated.In this paper,the ultimate lateral resistance of the composite pile was studied by finite element limit analysis(FELA)and theoretical upper-bound analysis.The results of FELA and theoretical analysis revealed three failure modes of laterally loaded composite piles.The effects of the enhanced soil thickness,strength,and pile-enhanced soil interface characteristics on the ultimate lateral resistance were studied.The results show that increasing the enhanced soil thickness leads to a significant improvement on ultimate lateral resistance factor(N P),and there is a critical thickness beyond which the thickness no longer affects the N P.Increasing the enhanced soil strength induced 6.2%-232.6%increase of N P.However,no noticeable impact was detected when the enhanced soil strength was eight times higher than that of the natural soil.The maximum increment of N P is only 30.5%caused by the increase of interface adhesion factor(a).An empirical model was developed to calculate the N P of the composite pile,and the results show excellent agreement with the analytical results.展开更多
In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were system...In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were systematically studied.The results show that the coatings prepared from the phosphate electrolytes have a higher thickness and better corrosion resistance properties compared to the other electrolytes.The coatings prepared from low concentration phosphate-aluminate mixed electrolytes have slightly thinner thickness,a similar coating structure and an order of magnitude lower value of electrochemical impedance compared with phosphate electrolyte coatings.The Coatings prepared from low concentration aluminate electrolytes have the lowest thickness and the worst corrosion resistance properties which gets close to corrosion behavior of the bare AM50 under the same test conditions.Considering application,coatings prepared from single low concentration phosphate electrolytes and low concentration phosphate-aluminate electrolytes have greater potential than single low concentration aluminate coatings.However,reducing the electrolyte concentrations of coating forming ions too much has negative influence on the coating growth rate.展开更多
The high-temperature oxidation resistance of the nickel superalloy prepared by the laser powder bed fusion(LPBF)has been significantly increased as a result of in-situ formation of a thermal barrier layer(α-Al_(2)O_(...The high-temperature oxidation resistance of the nickel superalloy prepared by the laser powder bed fusion(LPBF)has been significantly increased as a result of in-situ formation of a thermal barrier layer(α-Al_(2)O_(3)+CaMoO4)during oxidative annealing of surface layers modified by electric spark treatment(EST).The reactive EST of the LPBF-built items based on nickel EP741NP alloy was carried out with low-melting Al−12%Si,Al−6%Ca−0.6%Si and Al−7%Ca−1%Mn electrodes.It was found that under EST done by Al−7%Ca−1%Mn electrode an intermetallic(β-NiAl+γ'-Ni3Al)15μm-thick layer reinforced by spherical oxide(CaMe)O nanoparticles was formed.Formation of that structure increases the wear resistance of LPBF nickel superalloy by 4.5 times.Further oxidative annealing at 1000°C leads to a formation of continuous two-layered coating with an inner layer ofα-Al_(2)O_(3) and an outer layer of CaMoO4,which together act as an effective barrier preventing the diffusion of oxygen into the bulk of the superalloy.展开更多
Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this s...Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this study,to improve the resistance to intergranular damage of F/M steel,a thermomechanical process(TMP)was employed to achieve a grain boundary engineering(GBE)microstructure in F/M steel P92.The TMP,including cold-rolling thickness reduction of 6%,9%,and 12%,followed by austenitization at 1323 K for 40 min and tempering at 1053 K for 45 min,was applied to the as-received(AR)P92 steel.The prior austenite grain(PAG)size,prior austenite grain boundary character distribution(GBCD),and connectivity of prior austenite grain boundaries(PAGBs)were investigated.Compared to the AR specimen,the PAG size did not change significantly.The fraction of coincident site lattice boundaries(CSLBs,3≤Σ≤29)and Σ3^(n) boundaries along PAGBs decreased with increasing reduction ratio because the recrystallization fraction increased with increasing reduction ratio.The PAGB connectivity of the 6%deformed specimen slightly deteriorated compared with that of the AR specimen.Moreover,potentiodynamic polarization studies revealed that the intergranular damage resistance of the studied steel could be improved by increasing the fraction of CSLBs along the PAGBs,indicating that the TMP,which involves low deformation,could enhance the intergranular damage resistance.展开更多
Background:Polymethoxylatedflavones(PMFs)are compounds present in citrus peels and other Rutaceae plants,which exhibit diverse biological activities,including robust antitumor and antioxidant effects.However,the mechan...Background:Polymethoxylatedflavones(PMFs)are compounds present in citrus peels and other Rutaceae plants,which exhibit diverse biological activities,including robust antitumor and antioxidant effects.However,the mechanism of PMFs in reversing drug resistance to colon cancer remains unknown.In the present study,we aimed to investigate the potential connection between the aerobic glycolysis-ROS-autophagy signaling axis and the reversal of PTX resistance in colon cancer by PMFs.Methods:MTT Cell viability assay and colony formation assay were used to investigate the effect of PMFs combined with PTX in reversing HCT8/T cell resistance ex vivo;the mRNA and protein levels of the target were detected by SDS-PAGE(sodium dodecyl sulfate-polyacrylamide gel electrophoresis),quantitative real-timefluorescence polymerase chain reaction(qRT-PCR)and Western blot protein immunoblotting(WB);An HCT8/T cell xenograft model was established to investigate the MDR reversal activity of PMFs in vivo;The extracellular acidification rate(ECAR)and the oxygen consumption rate(OCR)were detected to assess the cellular oxygen consumption rate and glycolytic process.Results:HCT8/T cells demonstrated significant resistance to PTX,up-regulating the expression levels of ABCB1 mRNA,P-gp,LC3-I,and LC3-II protein,and increasing intracellular reactive oxygen species(ROS)content.PMFs mainly contain two active ingredients,nobiletin,and tangeretin,which were able to reverse drug resistance in HCT8/T cells in a concentration-dependent manner.PMFs exhibited high tolerance in the HCT8/T nude mouse model while increasing the sensitivity of PTX-resistant cells and suppressing tumor growth significantly.PMFs combined with PTX reduced extracellular acidification rate(ECAR)and oxygen consumption rate(OCR)in HCT8/T cells.Additionally,PMFs reduced intracellular ROS content,down-regulated the expression levels of autophagy-related proteins LC3-I,LC3-II,Beclin1,and ATG7,and significantly reduced the number of autophagosomes in HCT8/T cells.Conclusions:The present study demonstrated that PMFs could potentially reverse PTX resistance in colon cancer by regulating the aerobic glycolysis-ROS-autophagy signaling axis,which indicated that PMFs would be potential potentiators for future chemotherapeutic agents in colon cancer.展开更多
文摘In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powders were fabricated to improve the wear and corrosion behavior of 1Cr18Ni9Ti steel blades in high speed mixers.Microstructure evolution,phases,element distribution,microhardness,wear and corrosion behavior of the laser alloyed layers were investigated.Results indicated that high Mn steel matrix composites with undissolved W_(2)C,WC and other in-situ formed carbides were formed by LSA with Mn+W_(2)C and Mn+NiWC while SiC totally dissolved into the high Mn matrix when adding Mn+SiC.Ni as the binding phase in Ni-WC powder decreased the crack sensitivity of the alloyed layer as compared with the addition of W_(2)C powder.An improvement in average microhardness was achieved in the matrix in specimen A,B and C,with the value of 615,602 and 277 HV_(0.5),while that of the substrate was 212 HV_(0.5).The increase of microhardness,wear and corrosion resistance is highly corelated to microstructure,formed phases,type and content of carbides,micro-hardness and toughness of the alloyed layers.
基金Supported by Hebei Provincial Health Commission Youth Science and Technology Project,No.20210027.
文摘BACKGROUND Colorectal cancer(CRC)is the third most common cancer and a significant cause of cancer-related mortality globally.Resistance to chemotherapy,especially during CRC treatment,leads to reduced effectiveness of drugs and poor patient outcomes.Long noncoding RNAs(lncRNAs)have been implicated in various pathophysiological processes of tumor cells,including chemotherapy resistance,yet the roles of many lncRNAs in CRC remain unclear.AIM To identify and analyze the lncRNAs involved in oxaliplatin resistance in CRC and to understand the underlying molecular mechanisms influencing this resistance.METHODS Gene Expression Omnibus datasets GSE42387 and GSE30011 were reanalyzed to identify lncRNAs and mRNAs associated with oxaliplatin resistance.Various bioinformatics tools were employed to elucidate molecular mechanisms.The expression levels of lncRNAs and mRNAs were assessed via quantitative reverse transcription-polymerase chain reaction.Functional assays,including MTT,wound healing,and Transwell,were conducted to investigate the functional implications of lncRNA alterations.Interactions between lncRNAs and trans-cription factors were examined using RIP and luciferase reporter assays,while Western blotting was used to confirm downstream pathways.Additionally,a xenograft mouse model was utilized to study the in vivo effects of lncRNAs on chemotherapy resistance.RESULTS LncRNA prion protein testis specific(PRNT)was found to be upregulated in oxaliplatin-resistant CRC cell lines and negatively correlated with homeodomain interacting protein kinase 2(HIPK2)expression.PRNT was demonstrated to sponge transcription factor zinc finger protein 184(ZNF184),which in turn could regulate HIPK2 expression.Altered expression of PRNT influenced CRC cell sensitivity to oxaliplatin,with overexpression leading to decreased sensitivity and decreased expression reducing resistance.Both RIP and luciferase reporter assays indicated that ZNF184 and HIPK2 are targets of PRNT.The PRNT/ZNF184/HIPK2 axis was implicated in promoting CRC progression and oxaliplatin resistance both in vitro and in vivo.CONCLUSION The study concludes that PRNT is upregulated in oxaliplatin-resistant CRC cells and modulates the expression of HIPK2 by sponging ZNF184.This regulatory mechanism enhances CRC progression and resistance to oxaliplatin,positioning PRNT as a promising therapeutic target for CRC patients undergoing oxaliplatin-based chemotherapy.
基金funded by the National Key Research and Development Program of China (2018YFE0104200)National Natural Science Foundation of China (51875310, 52175274, 82172065)Tsinghua Precision Medicine Foundation
文摘Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples were built with the relativity density reaching 99.9%.High temperature oxidation was performed on the L-PBF samples in circulating air via various heating temperatures and holding durations.The oxidation and diffusion at the elevated temperature generated a gradient structure composed of an oxide layer at the surface,a transition layer in the middle and the matrix.The oxide layer consisted of rare earth(RE)oxides,and became dense and thick with increasing the holding duration.The matrix was composed ofα-Mg,RE oxides and Mg_(24)RE_(5) precipitates.The precipitates almost disappeared in the transition layer.Enhanced passivation effect was observed in the samples treated by a suitable high temperature oxidation.The original L-PBF samples lost 40%weight after 3-day immersion in Hank’s solution,and broke into fragments after 7-day immersion.The casted and solution treated samples lost roughly half of the weight after 28-day immersion.The high temperature oxidation samples,which were heated at 525℃ for 8 h,kept the structural integrity,and lost only 6.88%weight after 28-day immersion.The substantially improved corrosion resistance was contributed to the gradient structure at the surface.On one hand,the outmost dense layer of RE oxides isolated the corrosive medium;on the other hand,the transition layer considerably inhibited the corrosion owing to the lack of precipitates.Overall,high temperature oxidation provides an efficient,economic and safe approach to inhibit the corrosion of WE43 L-PBF samples,and has promising prospects for future clinical applications.
基金National Natural Science Foundation of China (52072088, 52072089)Natural Science Foundation of Heilongjiang Province (LH2023E061)+1 种基金Scientific and Technological Innovation Leading Talent of Harbin Manufacturing (2022CXRCCG001)Fundamental Research Funds for the Central Universities (3072023CFJ1003)。
文摘Hexagonal boron nitride(h-BN)ceramics have become exceptional materials for heat-resistant components in hypersonic vehicles,owing to their superior thermal stability and excellent dielectric properties.However,their densification during sintering still poses challenges for researchers,and their mechanical properties are rather unsatisfactory.In this study,SrAl_(2)Si_(2)O_(8)(SAS),with low melting point and high strength,was introduced into the h-BN ceramics to facilitate the sintering and reinforce the strength and toughness.Then,BN-SAS ceramic composites were fabricated via hot press sintering using h-BN,SrCO_(3),Al_(2)O_(3),and SiO_(2) as raw materials,and effects of sintering pressure on their microstructure,mechanical property,and thermal property were investigated.The thermal shock resistance of BN-SAS ceramic composites was evaluated.Results show that phases of as-preparedBN-SAS ceramic composites are h-BN and h-SrAl_(2)Si_(2)O_(8).With the increase of sintering pressure,the composites’densities increase,and the mechanical properties shew a rising trend followed by a slight decline.At a sintering pressure of 20 MPa,their bending strength and fracture toughness are(138±4)MPa and(1.84±0.05)MPa·m^(1/2),respectively.Composites sintered at 10 MPa exhibit a low coefficient of thermal expansion,with an average of 2.96×10^(-6) K^(-1) in the temperature range from 200 to 1200℃.The BN-SAS ceramic composites prepared at 20 MPa display higher thermal conductivity from 12.42 to 28.42 W·m^(-1)·K^(-1) within the temperature range from room temperature to 1000℃.Notably,BN-SAS composites exhibit remarkable thermal shock resistance,with residual bending strength peaking and subsequently declining sharply under a thermal shock temperature difference ranging from 600 to 1400℃.The maximum residual bending strength is recorded at a temperature difference of 800℃,with a residual strength retention rate of 101%.As the thermal shock temperature difference increase,the degree of oxidation on the ceramic surface and cracks due to thermal stress are also increased gradually.
基金supported by the Fundamental Research Funds for the Central Universities(222201817001)Shanghai Sailing Program(21YF140800).
文摘The self-made MnFeO_(x) catalysts doped with cerium and samarium were prepared by impregnation method for low-temperature selective catalytic reduction(SCR)by NH3.In this work,the surface properties of the series of MnFe-based catalysts were studied.The results indicate Sm-modified catalyst have superior low-temperature SCR activity;NO_(x) conversion maintained at nearby to 100%at 90℃ to 240℃.In addition,The N_(2) selectivity of Sm doping remains above 80%in the range of 60℃ to 150℃.In SO_(2) poisoning test,the NO_(x) conversion can be remained>90%after 10 h of reaction.The XPS,NH_(3)-TPD and H_(2)-TPR results show the catalyst with Sm doping enhances the acid sites and oxidation catalytic sites of mixed oxides serves for improving oxygen vacancies and transfer electrons.In situ diffuse reflaxions infrared Fourier transformations spectroscopy(DRIFTS)results show that NO_(x) is more easily adsorbed on the surface after Sm doping,which provided favorable conditions for the NH_(3)-SCR reaction to proceed.The reaction at the catalyst surface will follow the L-H reaction mechanism by transient reaction test.
基金financially supported by the National Natural Science Foundation of China(22178242)the Shanxi Provincial Key Research and Development Project(202102040201009).
文摘The use of fillers to enhance the corrosion protection of epoxy resins has been widely applied.In this work,cerium dioxide(CeO_(2))and benzotriazole(BTA)were introduced into an epoxy resin to enhance the corrosion resistance of Q235 carbon steel.Scanning electron microscopy results indicated that the CeO_(2) grains were rod-like and ellipsoidal in shape,and the distribution pattern of BTA was analyzed by energy dispersive spectroscope.The dynamic potential polarization curve proved the excellent corrosion resistance of the composite epoxy resin with CeO_(2) and BTA co-addition,and electrochemical impedance spectroscopy test analysis indicated the significantly enhanced long-term corrosion protection performance of the composite coating.And the optimal protective performance was provided by the coating containing 0.3%(mass)CeO_(2) and 20%(mass)BTA,which was attributed to the barrier performance of CeO_(2) particles and the chemical barrier effect of BTA.The formation of corrosion products was analyzed using X-ray diffraction.In addition,the corrosion resistance mechanism of the coating was also discussed in detail.
基金Supported by National Natural Science Foundation of China(No.82101101).
文摘AIM:To analyze the spectrum of isolated pathogens and antibiotic resistance for ocular infections within 5y at two tertiary hospitals in east China.METHODS:Ocular specimen data were collected from January 2019 to October 2023.The pathogen spectrum and positive culture rate for different infection location,such as keratitis,endophthalmitis,and periocular infections,along with antibiotic resistance were analyzed.RESULTS:We included 2727 specimens,including 827(30.33%)positive cultures.A total of 871 strains were isolated,530(60.85%)bacterial and 341(39.15%)fungal strains were isolated.Gram-positive cocci(GPC)were the most common ocular pathogens.The most common bacterial isolates were Staphylococcus epidermidis(25.03%),Staphylococcus aureus(7.46%),Streptococcus pneumoniae(4.59%),Corynebacterium macginleyi(3.44%),and Pseudomonas aeruginosa(3.33%).The most common fungal genera were Fusarium spp.(12.74%),Aspergillus spp.(6.54%),and Scedosporium spp.(5.74%).Staphylococcus epidermidis strains showed more than 50%resistance to fluoroquinolones.Streptococcus pneumoniae and Corynebacterium macginleyi showed more than 90%resistance to erythromycin.The percentage of bacteria showing multidrug resistance(MDR)significantly decreased(χ^(2)=17.44,P=0.002).CONCLUSION:GPC are the most common ocular pathogens.Corynebacterium macginleyi,as the fourth common bacterium,may currently be the local microbiological feature of east China.Fusarium spp.is the most common fungus.More than 50%of the GPC are resistant to fluoroquinolones,penicillins,and macrolides.However,the proportion of MDR strains has been reduced over time.
基金supported by the National Natural Science Foundation of China(52274056,U22B2075).
文摘Oil transport is greatly affected by heterogeneous pore–throat structures present in shale.It is therefore very important to accurately characterize pore–throat structures.Additionally,it remains unclear how pore–throat structures affect oil transport capacity.In this paper,using finite element(FE)simulation and mathematical modeling,we calculated the hydrodynamic resistance for four pore–throat structure.In addition,the influence of pore throat structure on shale oil permeability is analyzed.According to the results,the hydrodynamic resistance of different pore throat structures can vary by 300%.The contribution of additional resistance caused by streamline bending is also in excess of 40%,even without slip length.Fur-thermore,Pore–throat structures can affect apparent permeability by more than 60%on the REV scale,and this influence increases with heterogeneity of pore size distribution,organic matter content,and organic matter number.Clearly,modeling shale oil flow requires consideration of porous–throat structure and additional resistance,otherwise oil recovery and flow capacity may be overestimated.
基金funded by Ningbo Key R&D Plan and“Unveiling and Leading”(Grant No.2023Z093)Ningbo Science and Technology Innovation 2025 Major Special Project(Grant No.2022Z106)Hezhou City Central Leading Local Science and Technology Development Special Fund Project(Grant No.HK ZY2022002).
文摘The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investigate its effect on the evolution of the microstructure,magnetic properties and corrosion resistance of NdFeB magnets.Microstructural analysis illustrated that minor In addition generated more grain boundary phases and an abundant amorphous phase at the triple-junction grain boundary.While the addition of In failed to enhance the magnetic isolation effect between adjacent matrix grains,its incorporation fortuitously elevated the electrochemical potential of the In-containing magnets.Besides,during corrosion,an In-rich precipitate phase formed,hindering the ingress of the corrosive medium into the magnet.Consequently,this significantly bolstered the corrosion resistance of the sintered NdFeB magnets.The phase formation,magnetic properties and corrosion resistance of In-doped NdFeB magnets are detailed in this work,which provides new prospects for the preparation of high-performance sintered NdFeB magnets.
基金financial support by the National Natural Science Foundation of China(No.52071067)Shenyang Young and Middle-aged Science and Technology Innovation Talent Support Program,China(No.RC231178)+1 种基金Natural Science Foundation of Liaoning Province,China(No.2022-YGJC-16)the Fundamental Research Funds for the Central Universities,China(No.N2302019).
文摘To enhance the long-term corrosion resistance of the plasma electrolytic oxidation(PEO)coating on the magnesium(Mg)alloy,an inorganic salt combined with corrosion inhibitors was used for posttreatment of the coating.In this study,the corrosion performance of PEO-coated AM50 Mg was significantly improved by loading sodium lauryl sulfonate(SDS)and sodium dodecyl benzene sulf-onate into Ba(NO_(3))_(2) post-sealing solutions.Scanning electron microscopy,X-ray photoelectron spectroscopy,X-ray diffraction,Fourier transform infrared spectrometer,and ultraviolet-visible analyses showed that the inhibitors enhanced the incorporation of BaO_(2) into PEO coatings.Electrochemical impedance showed that post-sealing in Ba(NO_(3))_(2)/SDS treatment enhanced corrosion resistance by three orders of magnitude.The total impedance value remained at 926Ω·cm^(2)after immersing in a 0.5wt%NaCl solution for 768 h.A salt spray test for 40 days did not show any obvious region of corrosion,proving excellent post-sealing by Ba(NO_(3))_(2)/SDS treatment.The corrosion resistance of the coating was enhanced through the synergistic effect of BaO2 pore sealing and SDS adsorption.
基金financially supported by the National Natural Science Foundation of China(51665012)the Jiangxi Province Science Foundation for Outstanding Scholarship(20171BCB23061).
文摘Magnesium alloys,known for their exceptional lightweight properties,have presented challenges in various applications due to their limited corrosion resistance.In this study,the corrosion resistance of Mg_(97)Zn_(1)Y_(2)magnesium alloys was enhanced by incorporating Zr elements into the Mg_(97)Zn_(1)Y_(2)matrix,which is distinguished by long periodic stacking ordered(LPSO)phases.Results show that Mg_(97)Zn_(1)Y_(2)-xwt.%Zr(x=0,0.1,0.3,0.6)alloys containing Zr exhibit reduced hydrogen evolution rates and decreased corrosion levels compared with that without Zr,when immersed in a 3.5wt.%NaCl solution.Addition of 0.3wt.%Zr results in the most significant improvement,with a corrosion rate as low as 2.261 mL·cm^(-2),representing an 86%reduction from 16.438 mL·cm^(-2)of the base alloy.Furthermore,alloys with Zr additions demonstrate a more positive corrosion potential and lower corrosion current density than does the matrix alloy(64.92μA·cm^(-2)).The lowest corrosion current density,21.61μA·cm^(-2),occurs with the addition of 0.3wt.%Zr.The introduction of Zr induces a change in the microstructure of the LPSO phases,increasing the charge transfer resistance within the alloy and thus effectively improving its corrosion resistance.
文摘Objective Retinoblastoma(RB)is a prevalent type of eye cancer in youngsters.Prospero homeobox 1(Prox1)is a homeobox transcriptional repressor and downstream target of the proneural gene that is relevant in lymphatic,hepatocyte,pancreatic,heart,lens,retinal,and cancer cells.The goal of this study was to investigate the role of Prox1 in RB cell proliferation and drug resistance,as well as to explore the underlying Notch1 mechanism.Methods Human RB cell lines(SO-RB50 and Y79)and a primary human retinal microvascular endothelial cell line(ACBRI-181)were used in this study.The expression of Prox1 and Notch1 mRNA and protein in RB cells was detected using quantitative real time-polymerase chain reaction(RT-qPCR)and Western blotting.Cell proliferation was assessed after Prox1 overexpression using the Cell Counting Kit-8 and the MTS assay.Drug-resistant cell lines(SO-RB50/vincristine)were generated and treated with Prox1 to investigate the role of Prox1 in drug resistance.We employed pcDNA-Notch1 to overexpress Notch1 to confirm the role of Notch1 in the protective function of Prox1.Finally,a xenograft model was constructed to assess the effect of Prox1 on RB in vivo.Results Prox1 was significantly downregulated in RB cells.Overexpression of Prox1 effectively decreased RB cell growth while increasing the sensitivity of drug-resistant cells to vincristine.Notch1 was involved in Prox1’s regulatory effects.Notch1 was identified as a target gene of Prox1,which was found to be upregulated in RB cells and repressed by increased Prox1 expression.When pcDNA-Notch1 was transfected,the effect of Prox1 overexpression on RB was removed.Furthermore,by downregulating Notch1,Prox1 overexpression slowed tumor development and increased vincristine sensitivity in vivo.Conclusion These data show that Prox1 decreased RB cell proliferation and drug resistance by targeting Notch1,implying that Prox1 could be a potential therapeutic target for RB.
基金supported by Suqian Sci&Tech Program Foundation,China(No.K202130)the National Natural Science Foundation of China(No.52071176)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China.
文摘A series of AlCoCrFe_(1−x)NiMo_(x)high-entropy alloys(HEAs)were fabricated and characterized by XRD,SEM,EDS mapping,compression test,hardness and electrochemistry measurements.The research results indicate that after Mo completely replaces Fe,the compressive strength of the alloys can reach 3181 MPa because the addition of Mo can formσphase beneficial to the grain refinement,thereby improving the strength of the alloys.However,the addition of Mo has a detrimental effect on corrosion resistance as a result of formation of galvanic cell between the substrate andσphases.Although most of AlCoCrFe_(1−x)NiMo_(x)have lower corrosion current densities than pristine alloy,a partial Mo substitution(x=0.25)widens the passivation region of HEAs.The inconsistency of mechanical properties with corrosion resistance is ascribed to different roles of Mo in phase formation and protection of passive film.
基金We also thank DESY(Hamburg,Germany)for granting beamtime to the proposal I-20221296 and support of the PETRAⅢP05 end-station.
文摘With the growing demand for weight reduction,the application of joint lightweight structural materials is increasing.Magnesium alloys feature low density,high specific strength and good formability,offering significant advantages for fuel efficiency and load capacity.Combined with Ti,a dissimilar Ti/Mg composite material provides great flexibility combining the properties of each material.However,because of the great differences in chemical and electrochemical properties between Mg and Ti,it is imperative to address the galvanic corrosion problem of such dissimilar Ti/Mg components.This work presents an investigation of the PEO processing of sintered Ti/Mg0.6Ca couples,aiming to improve the corrosion resistance of such dissimilar alloy combinations using a phosphate-aluminate electrolyte.The results show that uniform and continuous coatings can be formed on the dissimilar Ti/Mg0.6Ca couple.The coating mainly contains MgO and MgAl_(2)O_(4)on the Mg0.6Ca side,and Al_(2)TiO_(5)is the dominant phase on the Ti side.The work also took advantage of synchrotron X-ray computed tomography(CT)scanning to achieve 3D reconstruction of the coating morphology,which can be a fast method to assess the porosity and compactness of the coating and further predict the coating corrosion resistance.The coating effectively improved the corrosion resistance of the dissimilar Ti/Mg0.6Ca couple.
基金Funded by the National Natural Science Foundation of China(No.52468037)the Foster Foundation of ISMI,Gansu Province(No.GII2022-P03)the Gansu Provincial Department of Education(No.2024QB-028)。
文摘The contents of waste glass powder(WGP)(0%,10%,15%,20%,25%)and water-binder ratio(W/C)(0.24,0.26,0.28)were used as influencing factors,and the quality loss rate(Δm)and compressive strength loss rate(Δfc)were used as characterization parameters.The Ca/Si ratio and main element contents of C-S-H gels with different WGP content were investigated by energy dispersive spectrometry(EDS).The pore structure evolution characteristics of WGP composite cementing materials were investigated by low field nuclear magnetic resonance(NMR).UsingΔfc as the index of frost resistance degradation and Weibull function,the frost resistance degradation of glass doped pervious concrete(WGP-PC)was modeled.The results show that,with WGP,for the same number of cycles,Δm andΔfc decrease and increase with the increase of WGP.Under the same WGP content,Δm andΔfc decrease first and then increase with the increase of W/C.After 100 freeze-thaw cycles,the samples with WGP content of 20%and W/C of 0.26 have the best freeze-resistance.Microscopic tests show that with the increase of WGP content,the Ca/Si ratio of C-S-H gel decreases at first and then increases with the increase of WGP content.The extreme value of Ca/Si is 2.36 when WGP is added by 20%.The pore volume of hardened paste with 20%WGP content decreased by 18.6%compared with that of cement system without WGP.The overall compactness of the specimen was improved.On the basis of the test data,a life prediction model was established according to Weibull function.The experiment showed thatΔfc could be used as a durability degradation index,and the slope of the reliability curve became gentle after WGP was added,which reduced the damage degradation rate of PC.W/C was 0.26.It's about 5000 hours.
基金The work was supported by the National Natural Science Foundation of China(Grant No.51978540).
文摘The composite pile consisting of core-pile and surrounding cement-enhanced soil is a promising pile foundation in recent years.However,how and to what extent the cement-enhanced soil influences the ultimate lateral resistance has not been fully investigated.In this paper,the ultimate lateral resistance of the composite pile was studied by finite element limit analysis(FELA)and theoretical upper-bound analysis.The results of FELA and theoretical analysis revealed three failure modes of laterally loaded composite piles.The effects of the enhanced soil thickness,strength,and pile-enhanced soil interface characteristics on the ultimate lateral resistance were studied.The results show that increasing the enhanced soil thickness leads to a significant improvement on ultimate lateral resistance factor(N P),and there is a critical thickness beyond which the thickness no longer affects the N P.Increasing the enhanced soil strength induced 6.2%-232.6%increase of N P.However,no noticeable impact was detected when the enhanced soil strength was eight times higher than that of the natural soil.The maximum increment of N P is only 30.5%caused by the increase of interface adhesion factor(a).An empirical model was developed to calculate the N P of the composite pile,and the results show excellent agreement with the analytical results.
基金China Scholarship Council for the award of fellowship and funding(No.202006370022).
文摘In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were systematically studied.The results show that the coatings prepared from the phosphate electrolytes have a higher thickness and better corrosion resistance properties compared to the other electrolytes.The coatings prepared from low concentration phosphate-aluminate mixed electrolytes have slightly thinner thickness,a similar coating structure and an order of magnitude lower value of electrochemical impedance compared with phosphate electrolyte coatings.The Coatings prepared from low concentration aluminate electrolytes have the lowest thickness and the worst corrosion resistance properties which gets close to corrosion behavior of the bare AM50 under the same test conditions.Considering application,coatings prepared from single low concentration phosphate electrolytes and low concentration phosphate-aluminate electrolytes have greater potential than single low concentration aluminate coatings.However,reducing the electrolyte concentrations of coating forming ions too much has negative influence on the coating growth rate.
基金supported by the Ministry of Science and Higher Education of the Russian Federation under State Research Assignment(No.0718-2020-0034)Development Program of MISIS(No.K7-2023-009)within the Framework Strategic Academic Leadership Program"Priority-2030".
文摘The high-temperature oxidation resistance of the nickel superalloy prepared by the laser powder bed fusion(LPBF)has been significantly increased as a result of in-situ formation of a thermal barrier layer(α-Al_(2)O_(3)+CaMoO4)during oxidative annealing of surface layers modified by electric spark treatment(EST).The reactive EST of the LPBF-built items based on nickel EP741NP alloy was carried out with low-melting Al−12%Si,Al−6%Ca−0.6%Si and Al−7%Ca−1%Mn electrodes.It was found that under EST done by Al−7%Ca−1%Mn electrode an intermetallic(β-NiAl+γ'-Ni3Al)15μm-thick layer reinforced by spherical oxide(CaMe)O nanoparticles was formed.Formation of that structure increases the wear resistance of LPBF nickel superalloy by 4.5 times.Further oxidative annealing at 1000°C leads to a formation of continuous two-layered coating with an inner layer ofα-Al_(2)O_(3) and an outer layer of CaMoO4,which together act as an effective barrier preventing the diffusion of oxygen into the bulk of the superalloy.
基金supported by the National Natural Science Foundation of China(Nos.12175231 and 11805131),Anhui Natural Science Foundation of China(No.2108085J05)Projects of International Cooperation and Exchanges NSFC(No.51111140389)the Collaborative Innovation Program of the Hefei Science Center,CAS(Nos.2021HSC-CIP020 and 2022HSCCIP009).
文摘Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this study,to improve the resistance to intergranular damage of F/M steel,a thermomechanical process(TMP)was employed to achieve a grain boundary engineering(GBE)microstructure in F/M steel P92.The TMP,including cold-rolling thickness reduction of 6%,9%,and 12%,followed by austenitization at 1323 K for 40 min and tempering at 1053 K for 45 min,was applied to the as-received(AR)P92 steel.The prior austenite grain(PAG)size,prior austenite grain boundary character distribution(GBCD),and connectivity of prior austenite grain boundaries(PAGBs)were investigated.Compared to the AR specimen,the PAG size did not change significantly.The fraction of coincident site lattice boundaries(CSLBs,3≤Σ≤29)and Σ3^(n) boundaries along PAGBs decreased with increasing reduction ratio because the recrystallization fraction increased with increasing reduction ratio.The PAGB connectivity of the 6%deformed specimen slightly deteriorated compared with that of the AR specimen.Moreover,potentiodynamic polarization studies revealed that the intergranular damage resistance of the studied steel could be improved by increasing the fraction of CSLBs along the PAGBs,indicating that the TMP,which involves low deformation,could enhance the intergranular damage resistance.
基金supported by National Natural Science Foundation of China(82104446)Guangdong Basic and Applied Basic Research Foundation(2023A1515011961)+3 种基金Guangdong Province Characteristic Innovation Project of Universities(2022KTSCX100)Guangzhou University(College)-(High Level University/Deng feng Hospital)Basic and Applied Basic Research Project(2023A03J0397)Guangdong Medical Science and Technology Research Foundation(A2023460)Plan on Enhancing Scientific Research in GMU(2024SRP117).
文摘Background:Polymethoxylatedflavones(PMFs)are compounds present in citrus peels and other Rutaceae plants,which exhibit diverse biological activities,including robust antitumor and antioxidant effects.However,the mechanism of PMFs in reversing drug resistance to colon cancer remains unknown.In the present study,we aimed to investigate the potential connection between the aerobic glycolysis-ROS-autophagy signaling axis and the reversal of PTX resistance in colon cancer by PMFs.Methods:MTT Cell viability assay and colony formation assay were used to investigate the effect of PMFs combined with PTX in reversing HCT8/T cell resistance ex vivo;the mRNA and protein levels of the target were detected by SDS-PAGE(sodium dodecyl sulfate-polyacrylamide gel electrophoresis),quantitative real-timefluorescence polymerase chain reaction(qRT-PCR)and Western blot protein immunoblotting(WB);An HCT8/T cell xenograft model was established to investigate the MDR reversal activity of PMFs in vivo;The extracellular acidification rate(ECAR)and the oxygen consumption rate(OCR)were detected to assess the cellular oxygen consumption rate and glycolytic process.Results:HCT8/T cells demonstrated significant resistance to PTX,up-regulating the expression levels of ABCB1 mRNA,P-gp,LC3-I,and LC3-II protein,and increasing intracellular reactive oxygen species(ROS)content.PMFs mainly contain two active ingredients,nobiletin,and tangeretin,which were able to reverse drug resistance in HCT8/T cells in a concentration-dependent manner.PMFs exhibited high tolerance in the HCT8/T nude mouse model while increasing the sensitivity of PTX-resistant cells and suppressing tumor growth significantly.PMFs combined with PTX reduced extracellular acidification rate(ECAR)and oxygen consumption rate(OCR)in HCT8/T cells.Additionally,PMFs reduced intracellular ROS content,down-regulated the expression levels of autophagy-related proteins LC3-I,LC3-II,Beclin1,and ATG7,and significantly reduced the number of autophagosomes in HCT8/T cells.Conclusions:The present study demonstrated that PMFs could potentially reverse PTX resistance in colon cancer by regulating the aerobic glycolysis-ROS-autophagy signaling axis,which indicated that PMFs would be potential potentiators for future chemotherapeutic agents in colon cancer.