Salmonella enterica has been documented as one of the leading causes of salmonellosis throughout the world and is most commonly associated with the consumption of contaminated food products. Thus, this research was ai...Salmonella enterica has been documented as one of the leading causes of salmonellosis throughout the world and is most commonly associated with the consumption of contaminated food products. Thus, this research was aimed at studying the antimicrobial susceptibility pattern and detection of quinolone resistance in Salmonella spp isolated from food of animal origin. Thirty-six Salmonella isolates comprising 8 from poultry and 28 from seafood(clams) were identified, serotyped and characterized for their antimicrobial susceptibility against 10 different antibiotics. Plasmid DNA was isolated from all the isolates by alkaline lysis, quinolone resistant non-typhoidal S. Weltevreden were examined for mutation in the DNA gyrase coding gene. Among the 36 Salmonella isolates, 20 were S. weltevreden(8 from poultry and 12 from seafood) and 16 were S. Typhimurium(from seafood). All the isolates showed multiple resistance to nalidixic acid, tetracycline, co-trimoxazole and nitrofurantoin, but, interestingly, the isolates were 100% susceptible to ampicillin, chloramphenicol and gentamicin. Resistant isolates from the study carried the genes responsible for resistance to respective antibiotics. The strain S130 isolated in the study showed single point mutation,Asp87Gly, at position 87 in quinolone resistance determining region. It revealed mutation in quinolone resistance determining region as a cause for quinolone resistance in non-typhoidal Salmonellae. The occurrence of genes accountable for plasmid mediated resistance to quinolones(viz., qnrA, qnrB and qnrS) in plasmid of non-typhoidal Salmonellae isolates provides evidence for plasmid mediated quinolone resistance.展开更多
Treatment of hospital acquired urinary tract infections (UTIs) caused by extended-spectrum beta-Lactamases producing Klebsiella pneumonae is a major problem. This organism expresses a high level of resistance to many ...Treatment of hospital acquired urinary tract infections (UTIs) caused by extended-spectrum beta-Lactamases producing Klebsiella pneumonae is a major problem. This organism expresses a high level of resistance to many groups of antibiotics. Fosfomycin is an agent which is recommended for treatment of UTIs caused by ESBLs producers. The aim of this study is to determine the sensitivity pattern of ESBLs producing urinary K. pneumonae to antimicrobial agents including fosfomycin in patients of MUHs and determine the prevalence of fosfomycin resistance mediated by plasmid mediated fosfomycin modifying enzymes fosA, fosB and fosA3. Methods: Klebsiella pneumonae urinary isolates were collected from patients with hospital acquired UTIs in Mansoura University Hospitals (MUHs). The susceptibility pattern was determined by Kirby Baur method. Isolates resistant to extended spectrum cephalosporins were tested for ESBLs production by double disc diffusion method. Fosfomycin resistance was determined by broth dilution method. Isolates resistant to fosfomycin were tested for fosA, fosB and fosA3 by PCR. Results: A total of 128 ESBLs producing K. pneumonae isolates were collected. The highest sensitivity was to imipenem (94.5%). The lowest was to trimethoprime-sulphamethoxazole (21.8%). Co-resistance of ESBLs isolates with fosfomycin was 23.2%. Eighteen fosfomycin resistant isolates (18/30) were positive to fosA. Conclusion: ESBLs producing urinary Klebsiella pneumonae express moderate sensitivity to fosfomycin. Resistance is mainly mediated by plasmid mediated fosfomycin modifying enzymes fosA.展开更多
文摘Salmonella enterica has been documented as one of the leading causes of salmonellosis throughout the world and is most commonly associated with the consumption of contaminated food products. Thus, this research was aimed at studying the antimicrobial susceptibility pattern and detection of quinolone resistance in Salmonella spp isolated from food of animal origin. Thirty-six Salmonella isolates comprising 8 from poultry and 28 from seafood(clams) were identified, serotyped and characterized for their antimicrobial susceptibility against 10 different antibiotics. Plasmid DNA was isolated from all the isolates by alkaline lysis, quinolone resistant non-typhoidal S. Weltevreden were examined for mutation in the DNA gyrase coding gene. Among the 36 Salmonella isolates, 20 were S. weltevreden(8 from poultry and 12 from seafood) and 16 were S. Typhimurium(from seafood). All the isolates showed multiple resistance to nalidixic acid, tetracycline, co-trimoxazole and nitrofurantoin, but, interestingly, the isolates were 100% susceptible to ampicillin, chloramphenicol and gentamicin. Resistant isolates from the study carried the genes responsible for resistance to respective antibiotics. The strain S130 isolated in the study showed single point mutation,Asp87Gly, at position 87 in quinolone resistance determining region. It revealed mutation in quinolone resistance determining region as a cause for quinolone resistance in non-typhoidal Salmonellae. The occurrence of genes accountable for plasmid mediated resistance to quinolones(viz., qnrA, qnrB and qnrS) in plasmid of non-typhoidal Salmonellae isolates provides evidence for plasmid mediated quinolone resistance.
文摘Treatment of hospital acquired urinary tract infections (UTIs) caused by extended-spectrum beta-Lactamases producing Klebsiella pneumonae is a major problem. This organism expresses a high level of resistance to many groups of antibiotics. Fosfomycin is an agent which is recommended for treatment of UTIs caused by ESBLs producers. The aim of this study is to determine the sensitivity pattern of ESBLs producing urinary K. pneumonae to antimicrobial agents including fosfomycin in patients of MUHs and determine the prevalence of fosfomycin resistance mediated by plasmid mediated fosfomycin modifying enzymes fosA, fosB and fosA3. Methods: Klebsiella pneumonae urinary isolates were collected from patients with hospital acquired UTIs in Mansoura University Hospitals (MUHs). The susceptibility pattern was determined by Kirby Baur method. Isolates resistant to extended spectrum cephalosporins were tested for ESBLs production by double disc diffusion method. Fosfomycin resistance was determined by broth dilution method. Isolates resistant to fosfomycin were tested for fosA, fosB and fosA3 by PCR. Results: A total of 128 ESBLs producing K. pneumonae isolates were collected. The highest sensitivity was to imipenem (94.5%). The lowest was to trimethoprime-sulphamethoxazole (21.8%). Co-resistance of ESBLs isolates with fosfomycin was 23.2%. Eighteen fosfomycin resistant isolates (18/30) were positive to fosA. Conclusion: ESBLs producing urinary Klebsiella pneumonae express moderate sensitivity to fosfomycin. Resistance is mainly mediated by plasmid mediated fosfomycin modifying enzymes fosA.