In order to enhance the resistance to pests, transgenic maize (Zea mays L.) plants from elite inbred lines containing the gene encoding snowdrop lectin (Galanthus nivalis L. agglutinin; GNA) under control of a phloem-...In order to enhance the resistance to pests, transgenic maize (Zea mays L.) plants from elite inbred lines containing the gene encoding snowdrop lectin (Galanthus nivalis L. agglutinin; GNA) under control of a phloem-specific promoter were generated through the Agrobacterium tumefaciens-mediated also studied. Thirty-six independently derived plants were subjected to molecular analyses. The level of GNA expression at 0.13%-0.28% of total soluble protein was observed in different transgenic plants. The progeny of three GNA-expressing independent transformants that were derived separately from the elite inbred lines DH4866, DH9942, and 8902, were selected for examination of resistance to ACB. These plants synthesized GNA at levels above 0.24% total soluble protein and enhanced resistance to ACB was demonstrated by exposing the plants to insects under greenhouse conditions. Semi-artificial diet bioassays also showed the toxic effect of GNA on ACB. Field evaluation of the transgenic plants supported the results from the artificial trial. In the present study, we have obtained new insect-resistant maize material for further breeding work and have found that GNA-expressing plants not only gained significant resistance to homopterans, but also showed toxicity to ACB, which is a type of Lepidoptera.展开更多
文摘In order to enhance the resistance to pests, transgenic maize (Zea mays L.) plants from elite inbred lines containing the gene encoding snowdrop lectin (Galanthus nivalis L. agglutinin; GNA) under control of a phloem-specific promoter were generated through the Agrobacterium tumefaciens-mediated also studied. Thirty-six independently derived plants were subjected to molecular analyses. The level of GNA expression at 0.13%-0.28% of total soluble protein was observed in different transgenic plants. The progeny of three GNA-expressing independent transformants that were derived separately from the elite inbred lines DH4866, DH9942, and 8902, were selected for examination of resistance to ACB. These plants synthesized GNA at levels above 0.24% total soluble protein and enhanced resistance to ACB was demonstrated by exposing the plants to insects under greenhouse conditions. Semi-artificial diet bioassays also showed the toxic effect of GNA on ACB. Field evaluation of the transgenic plants supported the results from the artificial trial. In the present study, we have obtained new insect-resistant maize material for further breeding work and have found that GNA-expressing plants not only gained significant resistance to homopterans, but also showed toxicity to ACB, which is a type of Lepidoptera.