期刊文献+
共找到12,547篇文章
< 1 2 250 >
每页显示 20 50 100
Mobile genetic elements facilitate the transmission of antibiotic resistance genes in multidrug-resistant Enterobacteriaceae from duck farms
1
作者 Xin’er Zheng Dingting Xu +5 位作者 Jinchang Yan Min Qian Peng Wang Davood Zaeim Jianzhong Han Daofeng Qu 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期729-735,共7页
Multidrug-resistant(MDR)Enterobacteriaceae critically threaten duck farming and public health.The phenotypes,genotypes,and associated mobile genetic elements(MGEs)of MDR Enterobacteriaceae isolated from 6 duck farms i... Multidrug-resistant(MDR)Enterobacteriaceae critically threaten duck farming and public health.The phenotypes,genotypes,and associated mobile genetic elements(MGEs)of MDR Enterobacteriaceae isolated from 6 duck farms in Zhejiang Province,China,were investigated.A total of 215 isolates were identified as Escherichia coli(64.65%),Klebsiella pneumoniae(12.09%),Proteus mirabilis(10.23%),Salmonella(8.84%),and Enterobacter cloacae(4.19%).Meanwhile,all isolates were resistant to at least two antibiotics.Most isolates carried tet(A)(85.12%),blaTEM(78.60%)and sul1(67.44%)resistance genes.Gene co-occurrence analysis showed that the resistance genes were associated with IS26 and integrons.A conjugative IncFII plasmid pSDM004 containing all the above MGEs was detected in Proteus mirabilis isolate SDM004.This isolate was resistant to 18 antibiotics and carried the blaNDM-5 gene.MGEs,especially plasmids,are the primary antibiotic resistance gene transmission route in duck farms.These findings provide a theoretical basis for the rational use of antibiotics in farms which are substantial for evaluating public health and food safety. 展开更多
关键词 Duck farm Mobile genetic element Antibiotic resistance gene PLASMID Food safety
下载PDF
Performance Parameters:Demobilization Antibiotic Resistant Bacteria(ARB)and Carrying Genes(ARG)in Wastewater Disinfection
2
作者 Solange Kazue Utimura Denise Crocce Romano Espinosa +2 位作者 Marcio Luís Busi da Silva Elisabete de Santis Braga Pedro Jose Alvarez 《Journal of Environmental Science and Engineering(B)》 2024年第1期1-8,共8页
The UV irradiation is used for removing Antibiotic Resistant Bacteria(ARB)and Antibiotic Resistance Genes(ARG)from wastewater treatment.Bacteriophages are viruses that infect within bacteria,are recognized for bacteri... The UV irradiation is used for removing Antibiotic Resistant Bacteria(ARB)and Antibiotic Resistance Genes(ARG)from wastewater treatment.Bacteriophages are viruses that infect within bacteria,are recognized for bacterial control.The influence of some parameters in quantification and performance influencing of pathogen demobilization could be considered in disinfection of wastewater.The comparison of Polyvalent phage(NE1)versus Coliphage(NE4)in suppressing a bacterium Escherichia coli(NDM-1:b-lactam-resistant)with UV irradiation was observed the efficacy in reduction of cells in the disinfection and parameter process.The results with the effect of UV-C irradiation on NDM-1 infected with 1%of NE4 showed a decrease of cells from 8×10^(6)to 2×10^(5)in 60 min with UV-C dose.The NDM1(E.coli)was infected with 1%of NE4(Polyvalent Phage)under magnetic stirring for 1 h,the cells count was 8×10^(6).After 1 h in UV-C e×posure,the cells number reached 3×10^(5).The NDM1 that was e×posed in 1 h of UV-C irradiation and then was infected with 1%of NE4.Cells counting were done 24 h after this procedure.These cells were e×posed in UV-C and showed a reduction in the number of cells from 1×10^(8)to 4×10^(5)after 60 min.The results indicate that bacteriophages can mitigate bacteria species,and combined the conventional water disinfection technologies that can support the microbial safety control strategies. 展开更多
关键词 Antibiotic resistant Bacteria(ARB) Antibiotic resistance genes(ARG) wastewater treatment DISINFECTION Escherichia coli(E.coli).
下载PDF
Mutation Characteristics of inhA and katG Genes in Isoniazid-Resistant Mycobacterium Tuberculosis Patients in Xinjiang
3
作者 Shu-Tao Li Wen-Long Guan He Yang 《Journal of Clinical and Nursing Research》 2024年第1期140-145,共6页
Objective:To analyze the mutation characteristics of inhA and katG genes in isoniazid-resistant Mycobacterium tuberculosis in Xinjiang.Methods:The katG and inhA in 148 strains of isoniazid-resistant Mycobacterium tube... Objective:To analyze the mutation characteristics of inhA and katG genes in isoniazid-resistant Mycobacterium tuberculosis in Xinjiang.Methods:The katG and inhA in 148 strains of isoniazid-resistant Mycobacterium tuberculosis were amplified through fluorescence quantitative PCR,and the amplified products were sequenced and compared.Results:The inhA gene mutation rate of 148 strains of isoniazid-resistant mycobacterium tuberculosis was 13.51%(20/148),among which the inhA gene mutation rate among patients of Han,Uygur,and Kazakh ethnicity were 15.87%,13.21%,and 17.65%,respectively.There was no significant difference in the inhA mutation rate among nationalities(c^(2)=2.897,P>0.05).The mutation rate of the katG gene was 84.46%(125/148),among which the mutation rates of patients of Han,Uyghur,and Kazak ethnicities were 82.54%,84.91%,and 76.47%,respectively.The Hui and other ethnic groups were all affected by the katG gene mutation.There was no significant difference in the mutation rate of the katG gene among different ethnicities(c^(2)=3.772,P>0.05).The mutation rates of the inhA gene in southern Xinjiang,northern Xinjiang,and other provinces were 18.60%,9.28%,and 37.50%,respectively.The mutation rates of the inhA gene in different regions were statistically different(c^(2)=6.381,P<0.05).There was no significant difference in the inhA mutation rate between patients from southern and northern Xinjiang(c^(2)=2.214,P>0.05)and between southern Xinjiang and other provinces(c^(2)=1.424,P>0.05).However,the mutation rate of the inhA gene in patients from other provinces was higher than that in northern Xinjiang(c^(2)=5.539,P<0.05).The mutation rates of the katG gene in southern Xinjiang,northern Xinjiang,and other provinces were 81.40%,87.63%,and 62.50%,respectively.There was no significant difference in the mutation rates of the katG gene among different regions(c^(2)=3.989,P>0.05).Conclusion:katG gene mutation was predominant in isoniazid-resistant tuberculosis patients in Xinjiang Uygur Autonomous Region,and inhA and katG gene mutation were no different among different ethnic groups. 展开更多
关键词 Mycobacterium tuberculosis Drug resistance ISONIAZID gene mutation
下载PDF
Core and variable antimicrobial resistance genes in the gut microbiomes of Chinese and European pigs
4
作者 Cui-Hong Tong Zhi-Peng Huo +4 位作者 Lu Diao Dan-Yu Xiao Ruo-Nan Zhao Zhen-Ling Zeng Wen-Guang Xiong 《Zoological Research》 SCIE CSCD 2024年第1期189-200,共12页
Monitoring the prevalence of antimicrobial resistance genes(ARGs)is vital for addressing the global crisis of antibiotic-resistant bacterial infections.Despite its importance,the characterization of ARGs and microbiom... Monitoring the prevalence of antimicrobial resistance genes(ARGs)is vital for addressing the global crisis of antibiotic-resistant bacterial infections.Despite its importance,the characterization of ARGs and microbiome structures,as well as the identification of indicators for routine ARG monitoring in pig farms,are still lacking,particularly concerning variations in antimicrobial exposure in different countries or regions.Here,metagenomics and random forest machine learning were used to elucidate the ARG profiles,microbiome structures,and ARG contamination indicators in pig manure under different antimicrobial pressures between China and Europe.Results showed that Chinese pigs exposed to high-level antimicrobials exhibited higher total and plasmid-mediated ARG abundances compared to those in European pigs(P<0.05).ANT(6)-Ib,APH(3')-IIIa,and tet(40)were identified as shared core ARGs between the two pig populations.Furthermore,the core ARGs identified in pig populations were correlated with those found in human populations within the same geographical regions.Lactobacillus and Prevotella were identified as the dominant genera in the core microbiomes of Chinese and European pigs,respectively.Forty ARG markers and 43 biomarkers were able to differentiate between the Chinese and European pig manure samples with accuracies of 100%and 98.7%,respectively.Indicators for assessing ARG contamination in Chinese and European pigs also achieved high accuracy(r=0.72-0.88).Escherichia flexneri in both Chinese and European pig populations carried between 21 and 37 ARGs.The results of this study emphasize the importance of global collaboration in reducing antimicrobial resistance risk and provide validated indicators for evaluating the risk of ARG contamination in pig farms. 展开更多
关键词 METAGENOMIC Pig manure Antimicrobial pressure Antimicrobial resistance genes MICROBIOME
下载PDF
Turnip mosaic virus pathogenesis and host resistance mechanisms in Brassica
5
作者 Guanwei Wu Xinxin Fang +2 位作者 Tianqi Yu Jianping Chen Fei Yan 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第4期947-960,共14页
Turnip mosaic virus(TuMV)is a devastating potyvirus pathogen that infects a wide variety of both cultivated and wild Brassicaceae plants.We urgently need more information and understanding of TuMV pathogenesis and the... Turnip mosaic virus(TuMV)is a devastating potyvirus pathogen that infects a wide variety of both cultivated and wild Brassicaceae plants.We urgently need more information and understanding of TuMV pathogenesis and the host responses involved in disease development in cruciferous crops.TuMV displays great versatility in viral pathogenesis,especially in its replication and intercellular movement.Moreover,in the coevolutionary arms races between TuMV and its hosts,the virus has evolved to co-opt host factors to facilitate its infection and counter host defense responses.This review mainly focuses on recent advances in understanding the viral factors that contribute to the TuMV infection cycle and the host resistance mechanism in Brassica.Finally,we propose some future research directions on TuMV pathogenesis and control strategies to design durable TuMV-resistant Brassica crops. 展开更多
关键词 Turnip mosaic virus BRASSICA resistance genes Host factors Infection biology
下载PDF
Fate and Behavior of Tetracycline Resistance Genes in Activated Carbon Adsorption
6
作者 Sri Anggreini Alma Rizky Aurellya +1 位作者 Wenqing Li Fusheng Li 《Journal of Water Resource and Protection》 CAS 2024年第1期1-16,共16页
The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using... The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using eight types of AC (four coal-based and four wood-based). AC showed the capability to admit tetG and the average reduction of tetG for coal-based and wood-based ACs at the AC dose of 1 g·L<sup>-1</sup> was 3.12 log and 3.65 log, respectively. The uptake kinetic analysis showed that the uptake of the gene followed the pseudo-second-order kinetics reaction, and the uptake rate constant for the coal-based and wood-based ACs was in the range of 5.97 × 10<sup>-12</sup> - 4.64 × 10<sup>-9</sup> and 7.02 × 10<sup>-11</sup> - 1.59 × 10<sup>-8</sup> copies·mg<sup>-1</sup>·min<sup>-1</sup>, respectively. The uptake capacity analysis by fitting the obtained experiment data with the Freundlich isotherm model indicated that the uptake constant (K<sub>F</sub>) values were 1.71 × 10<sup>3</sup> - 8.00 × 10<sup>9</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for coal-based ACs and 7.00 × 10<sup>8</sup> - 3.00 × 10<sup>10</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for wood-based ones. In addition, the correlation analysis between K<sub>F</sub> values and pore volume as well as pore surface at different pore size regions of ACs showed that relatively higher positive correlation was found for pores of 50 - 100 Å, suggesting ACs with more pores in this size region can uptake more tetG. The findings of this study are valuable as reference for optimizing the adsorption process regarding antibiotic resistance-related concerns in drinking water treatment. 展开更多
关键词 Antibiotic resistance genes ADSORPTION Activated Carbon Drinking Water Treatment
下载PDF
Dissemination of Resistance Integrons and Genes Coding for Blse and Cabapenemases in the Urban Drainage Network in Cote d’Ivoire
7
作者 Coulibaly Kalpy Julien Diaby Aboubakar Sidik +8 位作者 Vakou N’dri Sabine M’bengue Gbonon Valérie Carole Claon Jean Stephane Yao Kouamé Eric Gnali Gbohounou Fabrice Yéo Yéfougnini Bagré Issa Djaman Allico Joseph Dosso Mireille 《Advances in Microbiology》 CAS 2024年第5期268-286,共19页
Antibiotic resistance has become a major threat to human health worldwide. Environment, particularly the water environment, has long been overlooked as a player in the antibiotic resistance cycle, although its role re... Antibiotic resistance has become a major threat to human health worldwide. Environment, particularly the water environment, has long been overlooked as a player in the antibiotic resistance cycle, although its role remains unclear. These can provide an ideal setting for the acquisition and dissemination of antibiotic resistance, as they are frequently affected by anthropogenic activities. The objective of this study was to establish a diffusion map of resistance integrons used as genetic markers of resistance associated with antibiotic resistance conferring genes (ARGs). Total DNA extracts from non-cultivable bacterial communities were used for the analyses. These communities were obtained from wastewater samples from 14 sites upstream and downstream of drainage channels or effluents in the cities of Abidjan, Bouaké, and Yamoussoukro. The results obtained correspond to the number of positives among the treated samples (n = 39). Among the genetic markers of dissemination, class 1 integrons were the most evident in 94.8% of samples in Abidjan (93.3%), Bouaké (100%) and Yamoussoukro (91.6%). Class 2 integrons and class 3 integrons were found respectively in 41% and 51% of all samples. Genes coding for β-lactamases and blaTEM was identified in almost all samples at a rate of 97.4%. A co-presence of the three genes blaTEM, blaSHV and blaCTX-M is also remarkable in the sites of the city of Yamoussoukro. Among the genes coding for carbapenemases, only blaKPC 17.94%, blaNDM 30.76% and blaOXA48 38.46% were detected in the samples. 展开更多
关键词 Antibiotic resistance WASTEWATER resistance Integrons (RIs) resistance genes
下载PDF
Trifunctional Cu-Mesh/Cu_(2)O@FeO Nanoarrays for Highly Efficient Degradation of Antibiotic, Inactivation of Antibiotic-Resistant Bacteria, and Damage of Antibiotics Resistance Genes
8
作者 Long Zhao Wei Zhou +6 位作者 Ming Wen Qingsheng Wu Weiying Li Yongqing Fu Quanjing Zhu Sheng Chen and Jiaqi Ran 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期349-359,共11页
Trifunctional Cu-mesh/Cu_(2)O@FeO nanoarrays heterostructure is designed and fabricated by integrating CuCu_(2)O@FeO nanoarrays onto Cu-mesh(CM)via an in situ growth and phase transformation process.It is successfully... Trifunctional Cu-mesh/Cu_(2)O@FeO nanoarrays heterostructure is designed and fabricated by integrating CuCu_(2)O@FeO nanoarrays onto Cu-mesh(CM)via an in situ growth and phase transformation process.It is successfully applied to efficiently mitigate the antibiotic pollution,including degradation of antibiotics,inactivation of antibiotic-resistant bacteria(ARB),and damage of antibiotics resistance genes(ARGs).Under visible-light irradiation,CM/CuCu_(2)O@FeO nanoarrays exhibit a superior degradation efficiency on antibiotics(e.g.,up to 99%in 25 min for tetracycline hydrochloride,TC),due to the generated reactive oxygen species(ROS),especially the dominant·O^(2−).It can fully inactivate E.coli(HB101)with initial number of~108 CFU mL^(−1) in 10 min,which is mainly attributed to the synergistic effects of 1D nanostructure,dissolved metal ions,and generated ROS.Meanwhile,it is able to damage ARGs after 180 min of photodegradation,including tetA(vs TC)of 3.3 log 10,aphA(vs kanamycin sulfate,KAN)of 3.4 log 10,and tnpA(vs ampicillin,AMP)of 4.4 log 10,respectively.This work explores a green way for treating antibiotic pollution under visible light. 展开更多
关键词 antibiotic antibiotic resistance genes antibiotic-resistant bacteria Cu-Mesh/Cu_(2)O@FeO nanoarrays photocatalytic degradation
下载PDF
Detections of mefA, ermB, and mphA Macrolides Resistant Genes in Bacteria Isolated from Covid-19 Patients from Selected Health Facilities in Ibadan, Nigeria
9
作者 Florence Bamigbola Toyosi Raheem +1 位作者 Muinat Fowora Felicia Adesina 《Advances in Microbiology》 CAS 2023年第2期106-117,共12页
Background: COVID-19 is a disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Epidemiological data indicated that bacterial complications in COVID-19 would decrease clearance rate of the in... Background: COVID-19 is a disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Epidemiological data indicated that bacterial complications in COVID-19 would decrease clearance rate of the infecting agent and increase mortality rate. Macrolides such as Azithromycin are usually administered to COVID-19 patients as palliative treatments. Currently, a considerable number of bacterial strains have developed resistance to various antibiotics, especially macrolides. Resistance is reported to be due to possession of mefA, ermB, and mphA genes by Gram positive and Gram negative bacteria. Therefore, this study determined antibiotic resistance patterns and identify mefA, ermB and mphA macrolide-resistant genes in bacterial pathogens isolated from COVID-19 cases in Ibadan, Nigeria. Methods: 400 Nasopharyngeal samples were collected from symptomatic cases before antibiotic medication;structured questionnaires were administered to collect socio-demographic data of participants. Samples were cultured on Blood, Chocolate, MacConkey and Mannitol salt agar at 37°C for 48 hrs. Bacterial identification was performed using VITEK 2.0 ID cards and API 20E for Gram positive and negative bacteria respectively. Antibiotic Susceptibility Testing was performed using Kirby Bauer disc diffusion methods and VITEK 2.0 AST card kits. DNA of multidrug resistant bacterial isolates was extracted;resistant genes were determined using a polymerase chain reaction with specific primers. Amplified genes were detected using agarose gel electrophoresis. Results: 240 (60%) had bacterial growth and 97 (22.2%) yielded no growth. From the 240 bacterial isolates, 38 (15.83%) were multi-drug resistant including resistance to macrolides (Azithromycin) 20 (52.63%) of which were positive for either mefA or ermB, and none (0.0%) possess mphA gene;14 (36.8%) isolates had mefA gene, 10 (26.3%) isolates carried ermB gene. Conclusion: Multi-drug bacterial resistance including macrolides and quinolones was detected. Only mefA and ermB genes were detected in the bacterial isolates, especially in Gram positive organisms. The detection of mefA and ermB genes in the MDR bacterial isolates raised concern on the use of azithromycin as palliative treatment for COVID-19 symptomatic patients. 展开更多
关键词 SARS-CoV-2 Bacterial Co-Infection API 20E VITEK 2.0 and resistant genes
下载PDF
Analysis of The Correlation Between inhA Gene Mutation and Resistance to Protionamide in Drug-Resistant Mycobacterium Tuberculosis
10
作者 Xulin Huang Tian Zheng Shutao Li 《Journal of Clinical and Nursing Research》 2024年第4期132-136,共5页
Objective: To investigate the characteristics of katG and inhA gene mutations in multidrug-resistant tuberculosis (MDR-TB), pre-extensively drug-resistant tuberculosis (preXDR-TB), and their correlation with resistanc... Objective: To investigate the characteristics of katG and inhA gene mutations in multidrug-resistant tuberculosis (MDR-TB), pre-extensively drug-resistant tuberculosis (preXDR-TB), and their correlation with resistance to protionamide (Pto). Methods: A total of 229 patients with MDR-TB and pre-XDR-TB diagnosed in the Eighth Affiliated Hospital of Xinjiang Medical University from January 2020 to February 2024 were selected to analyze the characteristics of katG and inhA mutations in MTB clinical isolates and their correlation with Pto resistance. Results: The mutation rate of katG (with or without inhA mutation) was 85.2%. The mutation rates in MDR-TB and pre-XDR-TB were 87.4% (125/143) and 81.4% (70/86), respectively. The mutation rate of inhA (including katG mutation) was 14.8% (34/229), which was 12.6% (18/143) and 18.6% (16/86) in MDR-TB and pre-XDR-MTB, respectively. There was no difference in mutation (P > 0.05). Conclusion: The total resistance rate to Pto in 229 strains was 8.7% (20/229), which was 8.4% (12/143) and 9.3% (8/86) in MDR-TB and pre-XDR-TB, respectively. Among the inhA mutant strains, 13 were resistant to the Pto phenotype, and the resistance rate was 65% (13/20). In MDR-TB and pre-XDR-TB strains resistant to Pto, inhA gene mutations occurred in 66.7% (6/9) and 63.6% (7/11), respectively. The resistance rates of MDR-MTB and pre-XDR-TB strains without inhA gene mutation to Pto were 2.4% (3/125) and 5.7% (4/70), respectively. 展开更多
关键词 TUBERCULOSIS Anti-multiple drug resistance Prothionamide gene MUTATIONS
下载PDF
Fine mapping and transcriptome sequencing reveal candidate genes conferring all-stage resistance to stripe rust on chromosome arm 1AL in Chinese wheat landrace AS1676 被引量:3
11
作者 Xiu Yang Yunfeng Jiang +18 位作者 Xianghai Yu Haipeng Zhang Yuqi Wang Fangnian Guan Li Long Hao Li Wei Li Qiantao Jiang Jirui Wang Yuming Wei Jian Ma Houyang Kang Pengfei Qi Qiang Xu Meng Deng Yazhou Zhang Youliang Zheng Yonghong Zhou Guoyue Chen 《The Crop Journal》 SCIE CSCD 2023年第5期1501-1511,共11页
Stripe rust, caused by Puccinia striiformis f. sp. tritici(Pst), threatens wheat production worldwide, and resistant varieties tend to become susceptible after a period of cultivation owing to the variation of pathoge... Stripe rust, caused by Puccinia striiformis f. sp. tritici(Pst), threatens wheat production worldwide, and resistant varieties tend to become susceptible after a period of cultivation owing to the variation of pathogen races. In this study, a new resistance gene against Pst race CYR34 was identified and predicted using the descendants of a cross between AS1676, a highly resistant Chinese landrace, and Avocet S, a susceptible cultivar. From a heterozygous plant from a F7recombinant inbred line(RIL) population lacking the Yr18 gene, a near-isogenic line(NIL) population was developed to map the resistance gene. An allstage resistance gene, YrAS1676, was identified on chromosome arm 1AL via bulked-segregant exomecapture sequencing. By analyzing a large NIL population consisting of 6537 plants, the gene was further mapped to the marker interval between KA1A_485.36 and KA1A_490.13, spanning 485.36–490.13 Mb on1AL. A total of 66 annotated genes have been reported in this region. To characterize and predict the candidate gene(s), an RNA-seq was performed using NIL-R and NIL-S seedlings 3 days after CYR34 inoculation. Compared to NIL-S plants, NIL-R plants showed stronger immune reaction and higher expression levels of genes encoding pathogenesis-associated proteins. These differences may help to explain why NIL-R plants were more resistant to Pst race CYR34 than NIL-S plants. By combining fine-mapping and transcriptome sequencing, a calcium-dependent protein kinase gene was finally predicted as the potential candidate gene of YrAS1676. This gene contained a single-nucleotide polymorphism. The candidate gene was more highly expressed in NIL-R than in NIL-S plants. In field experiments with Pst challenge,the YrAS1676 genotype showed mitigation of disease damage and yield loss without adverse effects on tested agronomic traits. These results suggest that YrAS1676 has potential use in wheat stripe rust resistance breeding. 展开更多
关键词 Stripe rust All-stage resistance(ASR) BSE-Seq Transcriptome analyses Candidate genes
下载PDF
Molecular Mapping of Two Novel Stripe Rust Resistant Genes YrTp1 and YrTp2 in A-3 Derived from Triticum aestivum × Thinopyrum ponticum 被引量:4
12
作者 YIN Xue-gui SHANG Xun-wu +4 位作者 PANG Bin-shuang SONG Jian-rong CAO Shi-qin LI Jin-chang ZHANG Xue-yong 《Agricultural Sciences in China》 CAS CSCD 2006年第7期483-490,共8页
Loss of variety resistance to stripe rust (Puccinia striiformis Westend f. sp.tritici) is an important factor causing massive periodical epidemic of rust in wheat production. Creation and development of new races of... Loss of variety resistance to stripe rust (Puccinia striiformis Westend f. sp.tritici) is an important factor causing massive periodical epidemic of rust in wheat production. Creation and development of new races of rust pathogen have led to serious crisis of resistance loss in widely planted varieties. This has quickened the search for new resistance resources. Molecular marker could facilitate the identification of the location of novel genes. A line A-3 with high resistance (immune) to currently epidemic yellow rust races (CY29, 31, 32) was screened out in offspring of Triticum aestivura x Thinopyrum ponticum. Segregation in F2 and BC1 populations indicated that the resistance was controlled by two independent genes: one dominant and one recessive. SSR markers were employed to map the two resistant genes in the F2 and BC1 populations. A marker WMC477-167bp located on 2BS was linked to the dominant gene with genetic distance of 0.4 cM. Another marker WMC364-2os bp located on 7BS was linked to the recessive-resistant gene with genetic distance of 5.8 cM. The two genes identified in this paper might be two novel stripe rust resistant genes, which were temporarily designated as YrTpl and YrTp2, respectively. The tightly linking markers facilitate transfer of the two resistant genes into the new varieties to control epidemic of yellow rust. 展开更多
关键词 WHEAT Thinopyrum ponticum stripe rust resistant gene SSR MAPPING
下载PDF
Studies of Transgenic Hybrid Poplar 741 Carrying Two Insect-resistant Genes 被引量:61
13
作者 田颖川 郑均宝 +3 位作者 虞红梅 梁海永 李常青 王进茂 《Acta Botanica Sinica》 CSCD 2000年第3期263-268,共6页
Partially modified Bt Cry1Ac gene and the arrowhead proteinase inhibitor (API) gene were used to construct a plant transformation vector pBtiA and this construct was transferred into the genome of the hybrid popla... Partially modified Bt Cry1Ac gene and the arrowhead proteinase inhibitor (API) gene were used to construct a plant transformation vector pBtiA and this construct was transferred into the genome of the hybrid poplar 741 [ Populus alba L.×( P. davidiana Dode+ P. simonii Carr.)× P. tomentosa Carr.] by Agrobacterium _ mediated transformation. Ten kanamycin resistant plants have been regenerated. Upon insect bioassay using Clostera anachoreta (Fabricius), three of the examined plants were demonstrated to be highly resistant to the testing insects. The mortality of insect larvae on one plant was higher than 90% in 6 days after infestation and the growth of the survival larvae were seriously inhibited. Results of PCR and Southern blot analysis indicated that both Bt Cry1Ac gene and API gene were integrated as a single copy into the genomes of these three plants when Cry1Ac gene fragment was used as the probe. Protein dot blot immunoassay and ELISA analysis revealed that at least the Cry1Ac protein was produced in these three transgenic plants and the expression levels were estimated to be approximately 0.015% of the leaf total soluble protein. This is the first report on insect resistant transgenic hybrid poplar 741 that expresses two insecticidal protein genes. 展开更多
关键词 poplar 741 divalent insect resistant genes TRANSFORMATION
下载PDF
Characterization of wheat monogenic lines with known Sr genes and wheat cultivars for resistance to three new races of Puccinia graminis f. sp. tritici in China 被引量:2
14
作者 WU Xian-xin ZANG Chao-qun +4 位作者 ZHANG Ya-zhao XU Yi-wei WANG Shu LI Tian-ya GAO Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第6期1740-1749,共10页
Wheat stem rust, caused by Puccinia graminis f. sp. tritici(Pgt), is a potentially devastating fungal disease of wheat worldwide. The present study was to evaluate the resistance of 42 wheat monogenic lines with known... Wheat stem rust, caused by Puccinia graminis f. sp. tritici(Pgt), is a potentially devastating fungal disease of wheat worldwide. The present study was to evaluate the resistance of 42 wheat monogenic lines with known stem rust resistance(Sr) genes and 69 wheat cultivars to three new Pgt races(34C0MRGQM, 34C3MKGQM, and 34C6MTGSM)identified from aeciospores at the seedling and adult-plant stages. The phenotyping results revealed that monogenic lines harboring resistance genes Sr9e, Sr17, Sr21, Sr22, Sr26, Sr30, Sr31, Sr33, Sr35, Sr36, Sr37, Sr38, Sr47, SrTmp,and SrTt3 were effectively resistant to all three Pgt races at the seedling and adult-plant stages. In contrast, monogenic lines containing Sr5, Sr6, Sr7b, Sr9a, Sr9d, Sr9f, Sr9g, Sr9b, Sr16, Sr24, Sr28, and Sr39 were highly susceptible to these races at both seedling and adult-plant stages. The other lines with Sr8a, Sr10, Sr11, Sr13, Sr14, Sr15, Sr18, Sr20,Sr19, Sr23, Sr25, Sr27, Sr29, Sr32, and Sr34, displayed variable levels of resistance to one or two of the tested races.Seedling infection types(ITs) and adult-plant infection responses(IRs) indicated that 41(59.4%) of the wheat cultivars showed high resistance to all the three races. Molecular marker analysis showed that four wheat culitvars likely carried Sr2, 20 wheat culitvars likely carried Sr31, 9 wheat culitvars likely carried Sr38, and none of the cultivars carried Sr24,Sr25, and Sr26. Our results provide a scientific basis for rational utilization of the tested Sr genes and wheat cultivars against these novel Pgt races. 展开更多
关键词 wheat stem rust Puccinia graminis f.sp.tritici wheat cultivars resistance genes
下载PDF
Meta-QTL analysis for mining of candidate genes and constitutive gene network development for fungal disease resistance in maize(Zea mays L.)
15
作者 Mamta Gupta Mukesh Choudhary +3 位作者 Alla Singh Seema Sheoran Deepak Singla Sujay Rakshit 《The Crop Journal》 SCIE CSCD 2023年第2期511-522,共12页
The development of resistant maize cultivars is the most effective and sustainable approach to combat fungal diseases.Over the last three decades,many quantitative trait loci(QTL)mapping studies reported numerous QTL ... The development of resistant maize cultivars is the most effective and sustainable approach to combat fungal diseases.Over the last three decades,many quantitative trait loci(QTL)mapping studies reported numerous QTL for fungal disease resistance(FDR)in maize.However,different genetic backgrounds of germplasm and differing QTL analysis algorithms limit the use of identified QTL for comparative studies.The meta-QTL(MQTL)analysis is the meta-analysis of multiple QTL experiments,which entails broader allelic coverage and helps in the combined analysis of diverse QTL mapping studies revealing common genomic regions for target traits.In the present study,128(33.59%)out of 381 reported QTL(from 82 studies)for FDR could be projected on the maize genome through MQTL analysis.It revealed 38 MQTL for FDR(12 diseases)on all chromosomes except chromosome 10.Five MQTL namely 1_4,2_4,3_2,3_4,and 5_4 were linked with multiple FDR.Total of 1910 candidate genes were identified for all the MQTL regions,with protein kinase gene families,TFs,pathogenesis-related,and disease-responsive proteins directly or indirectly associated with FDR.The comparison of physical positions of marker-traits association(MTAs)from genome-wide association studies with genes underlying MQTL interval verified the presence of QTL/candidate genes for particular diseases.The linked markers to MQTL and putative candidate genes underlying identified MQTL can be further validated in the germplasm through marker screening and expression studies.The study also attempted to unravel the underlying mechanism for FDR resistance by analyzing the constitutive gene network,which will be a useful resource to understand the molecular mechanism of defense-response of a particular disease and multiple FDR in maize. 展开更多
关键词 Meta-QTL Maize genome Fungal disease resistance Candidate gene Constitutive genes gene network
下载PDF
Identification and expression analysis of sugar transporter family genes reveal the role of ZmSTP2 and ZmSTP20 in maize disease resistance
16
作者 MA Yu-xin ZHOU Zhi-jun +6 位作者 CAO Hong-zhe ZHOU Fan SI He-long ZANG Jin-ping XING Ji-hong ZHANG Kang DONG Jin-gao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第11期3458-3473,共16页
Sugar is an indispensable source of energy for plant growth and development, and it requires the participation of sugar transporter proteins(STPs) for crossing the hydrophobic barrier in plants. Here, we systematicall... Sugar is an indispensable source of energy for plant growth and development, and it requires the participation of sugar transporter proteins(STPs) for crossing the hydrophobic barrier in plants. Here, we systematically identified the genes encoding sugar transporters in the genome of maize(Zea mays L.), analyzed their expression patterns under different conditions, and determined their functions in disease resistance. The results showed that the mazie sugar transporter family contained 24 members, all of which were predicted to be distributed on the cell membrane and had a highly conserved transmembrane transport domain. The tissue-specific expression of the maize sugar transporter genes was analyzed, and the expression level of these genes was found to be significantly different in different tissues. The analysis of biotic and abiotic stress data showed that the expression levels of the sugar transporter genes changed significantly under different stress factors. The expression levels of Zm STP2 and Zm STP20 continued to increase following Fusarium graminearum infection. By performing disease resistance analysis of zmstp2 and zmstp20 mutants, we found that after inoculation with Cochliobolus carbonum, Setosphaeria turcica, Cochliobolus heterostrophus, and F. graminearum, the lesion area of the mutants was significantly higher than that of the wild-type B73 plant. In this study, the genes encoding sugar transporters in maize were systematically identified and analyzed at the whole genome level. The expression patterns of the sugar transporter-encoding genes in different tissues of maize and under biotic and abiotic stresses were revealed, which laid an important theoretical foundation for further elucidation of their functions. 展开更多
关键词 MAIZE sugar transporter gene expression disease resistance
下载PDF
High-resolution genetic mapping and identification of candidate genes for the wheat stem rust resistance gene Sr8155B1
17
作者 Jian Wang Hongyu Li +13 位作者 Tao Shen Shikai Lyu Shams ur Rehman Hongna Li Guiping Wang Binyang Xu Qing Wang Wanyi Hu Kairong Li Shengsheng Bai Jian Ma Haitao Yu Matthew N.Rouse Shisheng Chen 《The Crop Journal》 SCIE CSCD 2023年第6期1852-1861,共10页
Stem rust,caused by Puccinia graminis f.sp.tritici(Pgt),threatens global wheat production.Development of cultivars with increased resistance to stem rust by identification,mapping,and deployment of resistance genes is... Stem rust,caused by Puccinia graminis f.sp.tritici(Pgt),threatens global wheat production.Development of cultivars with increased resistance to stem rust by identification,mapping,and deployment of resistance genes is the best strategy for controlling the disease.In this study,we performed fine mapping and characterization of the all-stage stem rust resistance(Sr)gene Sr8155B1 from the durum wheat line 8155-B1.In seedling tests of biparental populations,Sr8155B1 was effective against six Chinese Pgt races tested.In a segregating population of 5060 gametes,Sr8155B1 was mapped to a 0.06-cM region flanked by markers Pku2772 and Pku43365,corresponding to 1.5-and 2.7-Mb regions in the Svevo and Chinese Spring reference genomes.Both regions include several typical nucleotide-binding leucine-rich repeat(NLR)and protein kinase genes that represent candidate genes.Among them,three NLR genes and three receptor-like protein kinases were highly polymorphic between the parental lines and their transcripts were upregulated in the homozygous resistant line TdR2 relative to its susceptible sister line TdS4.Four markers(Pku2772,Pku43365,Pku2950,and Pku3721)developed in this study,together with seedling resistance responses,correctly predicted Sr8155B1 absence or presence in 78 tetraploid wheat genotypes tested.The presence of Sr8155B1 in tetraploid wheat accessions CItr 14916,PI 197492,and PI 197493 was confirmed by mapping in three F_(2)populations.The genetic map and linked markers developed in this study may accelerate the deployment of Sr8155B1-mediated resistance in wheat breeding programs. 展开更多
关键词 Durum wheat Stem rust resistance gene Sr8155B1 CC-NBS-LRR
下载PDF
Identification of Quinolones/Fluoroquinolones Resistance Genes from Staphylococci Strains Isolated at the University Hospital of Brazzaville, Republic of the Congo
18
作者 Léa Gwladys Gangoue Faust René Okamba Ondzia +5 位作者 Stech Anomene Eckzechel Nzaou Fils Landry Mpele Tarcisse Baloki Ngoulou Fabien Rock Niama Rachel Moyen Etienne Nguimbi 《Journal of Biosciences and Medicines》 CAS 2023年第2期30-52,共23页
Staphylococci strains, like the majority of bacterial strains, have developed the resistance to several antibiotics, including Quinolones and Fluoroquin-olones In the Republic of the Congo, cases of resistance leading... Staphylococci strains, like the majority of bacterial strains, have developed the resistance to several antibiotics, including Quinolones and Fluoroquin-olones In the Republic of the Congo, cases of resistance leading to treat-ment failures have been observed during the treatment of staphylococcal infections with antibiotics in hospitals. The objective of this study was to identify the Quinolone/Fluoroquinolone resistance genes from staphylo-cocci strains isolated in hospitals. A total of 51 strains of Staphylococci were isolated, including 16 (31.37%) community strains, and 35 (68.62%) clinical strains. 46 strains of Staphylococcus aureus (S. aureus) and 5 SCNs were identified. A total of 34 DNA fragments from different strains resistant to Quinolones/Fluoroquinolones, including 21 (61.67%) DNA fragments from clinical S. aureus and 13 (38.23%) from community SCN strains were analyzed by the molecular method (genotypic detection) by PCR. The genotypic results made it possible to identify the gyrA, grLA and norA genes and to show that these genes are involved in the resistance of the strains to the various antibiotics used. The grLA gene was the most identified gene with a frequency of 75%. The gyrA and grLA genes have been identified in Staphylococcus aureus and Coagulase Negative Staphy-lococci. The norA gene, on the other hand, has only been identified in Staphylococcus aureus. Two mechanisms are essentially involved in the resistance of Staphylococci to quinolones/Fluoroquinolones, the mecha-nism of resistance by efflux, which takes place thanks to a transmembrane protein coded by the norA gene and by point mutations (substitution and deletion of acids or nucleotides) observed within the protein and nucleic sequences of the chromosomal gyrA and grLA genes. 展开更多
关键词 genes resistance Quinolones/Fluoroquinolones STAPHYLOCOCCI
下载PDF
Preliminary Study on the Treatment Efficiency of Pasteurized Lime Thermal Alkaline Hydrolysis for Excess Activated Sludge and Reduction of Tetracycline Resistance Genes
19
作者 Maoxia Chen Qixuan Zhou +3 位作者 Jiayue Zhang Jiaoyang Li Wei Zhang Huan Liu 《Journal of Renewable Materials》 EI 2023年第10期3711-3723,共13页
Thermal alkaline hydrolysis is a common pretreatment method for the utilization of excess activated sludge(EAS).Owing to strict environment laws and need for better energy utilization,new methods were developed in thi... Thermal alkaline hydrolysis is a common pretreatment method for the utilization of excess activated sludge(EAS).Owing to strict environment laws and need for better energy utilization,new methods were developed in this study to improve the efficiency of pretreatment method.Direct thermal hydrolysis(TH),pasteurized thermal hydrolysis(PTH),and alkaline pasteurized thermal hydrolysis(PTH+CaO and PTH+NaOH)methods were used to treat EAS.Each method was compared and analyzed in terms of dissolution in ammonium nitrogen(NH_(4)^(+)-N)and soluble COD(SCOD)in EAS.Furthermore,the removal of tetracycline resistance genes(TRGs)and class 1 transposon gene intI1 from EAS was investigated.The NH_(4)^(+)-N and SCOD concentrations in EAS treated by PTH were 1.24 and 2.58 times higher than those of TH.However,the removal efficiency of total TRGs and intI1 between the groups was comparable.The SCOD concentration of the PTH+NaOH group was 4.37 times higher than that of the PTH group,and the removal efficiency of total TRGs was increased by 9.52%compared with that by PTH.The NH_(4)^(+)-N and SCOD concentrations of the PTH+CaO group could reach 85.04%and 92.14%of the PTH+NaOH group,but the removal efficiency of total TRGs by PTH+CaO was 19.78%lower than that by PTH+NaOH.Thus,to reduce the financial cost in actual operation,lime(CaO)can be used instead of a strong alkali(NaOH),and pasteurized steam at 70℃ instead of conventional high-temperature heating to treat EAS.This study provides a reference for the development of alkaline hydrolysis under moderate temperatures along with the removal of TRGs in EAS. 展开更多
关键词 Excess activated sludge tetracycline resistance genes thermal alkaline hydrolysis LIME pasteurized thermal hydrolysis
下载PDF
Molecular Screening of Rice Cultivated in Benin for the Identification of Xanthomonas oryzae Pv. oryzae and Bacterial Leaf Blight Resistance Genes
20
作者 Chimène Nadège Mahoussi Nanoukon Koffi David Montcho Hambada +8 位作者 Antoine Abel Missihoun Kéllya Laurinzo Déguénon Bignon Meyrix Pamela Franzel Loumédjinon Bana Wêtè Déré Félicité Bio Emilienne Zinsou Réel Gael Fael Houngbélagnon Amed Sèmèvo Havivi Lamine Baba-Moussa Lambert Gustave Djédatin 《Advances in Bioscience and Biotechnology》 2023年第12期514-533,共20页
One of the most devastating diseases of rice worldwide is bacterial blight (BLB) caused by Xanthomonas oryzae pv. Oryzae (Xoo). In Benin, Xoo was first described in 2013 on wild rice Oryzae longistaminata. So far, no ... One of the most devastating diseases of rice worldwide is bacterial blight (BLB) caused by Xanthomonas oryzae pv. Oryzae (Xoo). In Benin, Xoo was first described in 2013 on wild rice Oryzae longistaminata. So far, no study has been done on Beninese Xoo strains. We do not know whether the pathogen has already passed into the rice varieties grown, or if they are exposed to other bacteria. Whereas the use of resistant varieties, carrying resistance genes, is the only highly effective and environmentally friendly way to control this disease, no information is available on these Xoo resistance genes in rice varieties grown in Benin apart from the one we recently. This study aims to identify Beninese Xoo strains, causing BLB and screen rice varieties grown in Benin for the main resistance genes. Diseased rice leaves showing typical symptoms of fire blight collected from different rice fields in the three phytogeographic areas of Benin were analyzed by PCR for Xoo-specific sequence identification. Furthermore, seventy-five collected rice accessions were screened to identify xa5, Xa7, xa13, and Xa21 resistance genes to Xoo. The results reveal that Xanthomonas oryzae was identified in two fields in Banikouara and one in Malanville. On the other hand, Sphingomonas sp. has been identified in several other rice fields in Benin. Forty-seven of seventy-five rice accessions examined (62.66%) carried Xoo resistance genes with 3 (4%) and 40 (53.33%) of xa5 and Xa21 respectively. None of the accessions had either Xa7 or xa13 resistance genes. Three accessions possess both xa5 and Xa21 genes. Isogenic lines IRBB60 and IRBB21, supposed to be a positive control, presented a Xoo sensitivity allele. These results indicate that Xoo has moved from the wild rice variety to the cultivated variety in northern Benin and varietal improvement programs must be implemented with varieties having several resistance genes for the efficient response against a possible BLB pandemic in Benin. 展开更多
关键词 Bacterial Blight Xanthomonas oryzae Pv. oryzae Molecular Characterization resistance genes
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部