In the present paper, one hundred cluster models NinBP (n = 1-6) have been designed and studied by density functional theory (DFT) to get an insight into the local structure, catalytic properties and sulfur resist...In the present paper, one hundred cluster models NinBP (n = 1-6) have been designed and studied by density functional theory (DFT) to get an insight into the local structure, catalytic properties and sulfur resistibility of amorphous alloy Ni-B-P. The configurations in triplet state are found more stable than those in the singlet state. It is found: that as the content of Ni in the clusters increases, the value of Fermi level in clusters fluctuated, which shows that the content of Ni can influence the Fermi level to a certain extent. Based on the Fermi level and DOS, we consider the activity of catalyst in hydrogenation reaction is the best in cluster Ni3BP. On the basis of the charge of clusters NinBP (n = 1 -6), we conclude the amorphous alloy Ni-B-P with high Ni content has better sulfur resistibility and the best hydrogenation activity, strong sulfur resistibility appears in clusters Ni3BP, and the amorphous alloy Ni60B20P20 with similar proportion is expected to prepare in the future.展开更多
Type 2 diabetes mellitus and Parkinson's disease are chronic diseases linked to a growing pandemic that affects older adults and causes significant socio-economic burden.Epidemiological data supporting a close rel...Type 2 diabetes mellitus and Parkinson's disease are chronic diseases linked to a growing pandemic that affects older adults and causes significant socio-economic burden.Epidemiological data supporting a close relationship between these two aging-related diseases have resulted in the investigation of shared pathophysiological molecular mechanisms.Impaired insulin signaling in the brain has gained increasing attention during the last decade and has been suggested to contribute to the development of Parkinson's disease through the dysregulation of several pathological processes.The contribution of type 2 diabetes mellitus and insulin resistance in neurodegeneration in Parkinson's disease,with emphasis on brain insulin resistance,is extensively discussed in this article and new therapeutic strategies targeting this pathological link are presented and reviewed.展开更多
Alzheimer's disease(AD),the most common form of neurodegeneration,is characterized by selective neuronal vulnerability and brain regionselective neuron demise.The entorhinal cortex and hippoc,ampal CA1 projection ...Alzheimer's disease(AD),the most common form of neurodegeneration,is characterized by selective neuronal vulnerability and brain regionselective neuron demise.The entorhinal cortex and hippoc,ampal CA1 projection neurons are at greater risk in AD whereas other regions display resistance to neurodegeneration.Interestingly,the cerebellum,a phylogenetically very old region,is affected only very late in the disease progression.展开更多
The interaction between metabolic dysfunction and inflammation is central to the development of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease.Obesity-related conditions like type 2 d...The interaction between metabolic dysfunction and inflammation is central to the development of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease.Obesity-related conditions like type 2 diabetes and non-alcoholic fatty liver disease exacerbate this relationship.Peripheral lipid accumulation,particularly in the liver,initiates a cascade of inflammatory processes that extend to the brain,influencing critical metabolic regulatory regions.Ceramide and palmitate,key lipid components,along with lipid transporters lipocalin-2 and apolipoprotein E,contribute to neuroinflammation by disrupting blood–brain barrier integrity and promoting gliosis.Peripheral insulin resistance further exacerbates brain insulin resistance and neuroinflammation.Preclinical interventions targeting peripheral lipid metabolism and insulin signaling pathways have shown promise in reducing neuroinflammation in animal models.However,translating these findings to clinical practice requires further investigation into human subjects.In conclusion,metabolic dysfunction,peripheral inflammation,and insulin resistance are integral to neuroinflammation and neurodegeneration.Understanding these complex mechanisms holds potential for identifying novel therapeutic targets and improving outcomes for neurodegenerative diseases.展开更多
The issue of plastic pollutants has become a growing concern.Both microplastics(MPs)(particle size<5 mm)and nanoplastics(NPs)(particle size<1μm)can cause DNA damage,cytotoxicity,and oxidative stress in various ...The issue of plastic pollutants has become a growing concern.Both microplastics(MPs)(particle size<5 mm)and nanoplastics(NPs)(particle size<1μm)can cause DNA damage,cytotoxicity,and oxidative stress in various organisms.The primary known impacts of microplastic/nanoplastic are observed in the liver and respiratory system,leading to hepatotoxicity and chronic obstructive pulmonary disease.Although research on the effects of MPs and NPs on diabetes is still in its early stages,there are potential concerns.This editorial highlights the risk to diabetics from co-exposure to contaminants and MPs/NPs,supported by evidence from animal studies and the various chemical compositions of MPs/NPs.展开更多
Alzheimer’s disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer’s disease.The pathogenesis of Alzheimer’s disease is mainly mediated by the pho...Alzheimer’s disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer’s disease.The pathogenesis of Alzheimer’s disease is mainly mediated by the phosphorylation and aggregation of tau protein.Among the multiple causes of tau hyperphosphorylation,brain insulin resistance has generated much attention,and inositols as insulin sensitizers,are currently considered candidates for drug development.The present narrative review revises the interactions between these three elements:Alzheimer’s disease-tau-inositols,which can eventually identify targets for new disease modifiers capable of bringing hope to the millions of people affected by this devastating disease.展开更多
Magnesium(Mg)alloys are widely used for temporary bone implants due to their favorable biodegradability,cytocompatibility,hemocompatibility,and close mechanical properties to bone.However,rapid degradation and inadequ...Magnesium(Mg)alloys are widely used for temporary bone implants due to their favorable biodegradability,cytocompatibility,hemocompatibility,and close mechanical properties to bone.However,rapid degradation and inadequate strength limit their applicability.To overcome this,the direct current magnetron sputtering technique is employed for surface coating in Mg-based alloys using various zirconium(Zr)content.This approach presents a promising strategy for simultaneously improving corrosion resistance,maintaining biocompatibility,and enhancing strength without compromising osseointegration.By leveraging Mg’s inherent biodegradability,it has the potential to minimize the need for secondary surgeries,thereby reducing costs and resources.This paper is a systematic study aimed at understanding the corrosion mechanisms of Mg–Zr coatings,denoted Mg-xZr(x=0–5 at.%).Zr-doped coatings exhibited columnar growth leading to denser and refined structures with increasing Zr content.XRD analysis confirmed the presence of the Mg(00.2)basal plane,shifting towards higher angles(1.15°)with 5 at.%Zr doping due to lattice parameter changes(i.e.,decrease and increase of“c”and“a”lattice parameters,respectively).Mg–Zr coatings exhibited“liquidphilic”behavior,while Young’s modulus retained a steady value around 80 GPa across all samples.However,the hardness has significantly improved across all samples’coating,reaching the highest value of(2.2±0.3)GPa for 5 at.%Zr.Electrochemical testing in simulated body fluid(SBF)at 37℃ revealed a significant enhancement in corrosion resistance for Mg–Zr coatings containing 1.0–3.4 at.%Zr.Compared with the 5 at.%Zr coating which exhibited a corrosion rate of 32 mm/year,these coatings displayed lower corrosion rates,ranging from 1 to 12 mm/year.This synergistic enhancement in mechanical properties and corrosion resistance,achieved with 2.0–3.4 at.%Zr,suggests potential ability for reducing stress shielding and controlled degradation performance,and consequently,promising functional biodegradable materials for temporary bone implants.展开更多
Esophageal cancer is an upper gastrointestinal malignancy with a bleak prognosis.It is still being explored in depth due to its complex molecular mechanisms of occurrence and development.Lipids play a crucial role in ...Esophageal cancer is an upper gastrointestinal malignancy with a bleak prognosis.It is still being explored in depth due to its complex molecular mechanisms of occurrence and development.Lipids play a crucial role in cells by participating in energy supply,biofilm formation,and signal transduction processes,and lipid metabolic reprogramming also constitutes a significant characteristic of malignant tumors.More and more studies have found esophageal cancer has obvious lipid metabolism abnormalities throughout its beginning,progress,and treatment resistance.The inhibition of tumor growth and the enhancement of antitumor therapy efficacy can be achieved through the regulation of lipid metabolism.Therefore,we reviewed and analyzed the research results and latest findings for lipid metabolism and associated analysis techniques in esophageal cancer,and comprehensively proved the value of lipid metabolic reprogramming in the evolution and treatment resistance of esophageal cancer,as well as its significance in exploring potential therapeutic targets and biomarkers.展开更多
Diabetes,commonly known for its metabolic effects,also critically affects the enteric nervous system(ENS),which is essential in regulating gastrointestinal(GI)motility,secretion,and absorption.The development of diabe...Diabetes,commonly known for its metabolic effects,also critically affects the enteric nervous system(ENS),which is essential in regulating gastrointestinal(GI)motility,secretion,and absorption.The development of diabetes-induced enteric neuropathy can lead to various GI dysfunctions,such as gastroparesis and irregular bowel habits,primarily due to disruptions in the function of neuronal and glial cells within the ENS,as well as oxidative stress and inflammation.This editorial explores the pathophysiological mechanisms underlying the development of enteric neuropathy in diabetic patients.Additionally,it discusses the latest advances in diagnostic approaches,emphasizing the need for early detection and intervention to mitigate GI complications in diabetic individuals.The editorial also reviews current and emerging therapeutic strategies,focusing on pharmacological treatments,dietary management,and potential neuromodulatory interventions.Ultimately,this editorial highlights the necessity of a multidisciplinary approach in managing enteric neuropathy in diabetes,aiming to enhance patient quality of life and address a frequently overlooked complication of this widespread disease.展开更多
A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainab...A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainable corrosion inhibitors are chosen to investigate the corrosion inhibition behavior of ionic liquid(ILs)during the LePEO process for LA91 magnesium-lithium(Mg-Li)alloy.Results show that the ionic liquid BmimBF_(4)participates in the LePEO coating formation process,causing an increment in coating thickness and surface roughness.The low conductivity of the ionic liquid is responsible for the voltage and breakdown voltage increases during the LePEO with IL process(LePEO-IL).After adding BmimBF_(4),corrosion current density decreases from 1.159×10^(−4)A·cm^(−2)to 8.143×10^(−6)A·cm^(−2).The impedance modulus increases to 1.048×10^(4)Ω·cm^(−2)and neutral salt spray remains intact for 24 h.The superior corrosion resistance of the LePEO coating assisted by ionic liquid could be mainly attributed to its compact and thick barrier layer and physical absorption of ionic liquid.The ionic liquid-assisted LePEO technique provides a promising approach to reducing energy consumption and improving film performance.展开更多
Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following ...Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines,we systematically searched and screened eligible systematic reviews reporting the effects of differing RT prescription variables on muscle mass(or its proxies),strength,and/or physical function in healthy adults aged>18 years.Results:We identified 44 systematic reviews that met our inclusion criteria.The methodological quality of these reviews was assessed using A Measurement Tool to Assess Systematic Reviews;standardized effectiveness statements were generated.We found that RT was consistently a potent stimulus for increasing skeletal muscle mass(4/4 reviews provide some or sufficient evidence),strength(4/6 reviews provided some or sufficient evidence),and physical function(1/1 review provided some evidence).RT load(6/8 reviews provided some or sufficient evidence),weekly frequency(2/4 reviews provided some or sufficient evidence),volume(3/7 reviews provided some or sufficient evidence),and exercise order(1/1 review provided some evidence)impacted RT-induced increases in muscular strength.We discovered that 2/3 reviews provided some or sufficient evidence that RT volume and contraction velocity influenced skeletal muscle mass,while 4/7 reviews provided insufficient evidence in favor of RT load impacting skeletal muscle mass.There was insufficient evidence to conclude that time of day,periodization,inter-set rest,set configuration,set end point,contraction velocity/time under tension,or exercise order(only pertaining to hypertrophy)influenced skeletal muscle adaptations.A paucity of data limited insights into the impact of RT prescription variables on physical function.Conclusion:Overall,RT increased muscle mass,strength,and physical function compared to no exercise.RT intensity(load)and weekly frequency impacted RT-induced increases in muscular strength but not muscle hypertrophy.RT volume(number of sets)influenced muscular strength and hypertrophy.展开更多
This editorial comments on an article published in a recent issue of World Journal of Gastroenterology,entitled“Association of low muscle strength with metabolic dysfunction-associated fatty liver disease:A nationwid...This editorial comments on an article published in a recent issue of World Journal of Gastroenterology,entitled“Association of low muscle strength with metabolic dysfunction-associated fatty liver disease:A nationwide study”.We focused on the association between muscle strength and the incidence of non-alcoholic fatty liver disease(NAFLD)and metabolic-associated fatty liver disease(MAFLD),as well as the mechanisms underlying the correlation and related clinical applications.NAFLD,which is now redefined as MAFLD,is one of the most common chronic liver diseases globally with an increasing prevalence and is characterized by malnutrition,which may contribute to decreased muscle strength.Reduction of muscle strength reportedly has a pathogenesis similar to that of NAFLD/MAFLD,including insulin resistance,inflammation,sedentary behavior,as well as insufficient vitamin D.Multiple studies have focused on the relationship between sarcopenia or muscle strength and NAFLD.However,studies investigating the relationship between muscle strength and MAFLD are limited.Owing to the shortage of specific medications for NAFLD/MAFLD treatment,early detection is essential.Furthermore,the relationship between muscle strength and NAFLD/MAFLD suggests that improvements in muscle strength may have an impact on disease prevention and may provide novel insights into treatments including dietary therapy,as well as tailored physical activity.展开更多
Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selectiv...Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent Li-CoO_(2)(LCO)cathodes to overcome the incomplete recovery and loss of lithium during the recycling process.The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO_(3)under a suitable temperature to control the reduced state of the cobalt oxide.The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium.The results showed that 99.10%of the whole lithium could be recovered as Li2CO_(3)with a purity of 99.55%.This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries.展开更多
BACKGROUND Colorectal cancer(CRC)is the third most common cancer and a significant cause of cancer-related mortality globally.Resistance to chemotherapy,especially during CRC treatment,leads to reduced effectiveness o...BACKGROUND Colorectal cancer(CRC)is the third most common cancer and a significant cause of cancer-related mortality globally.Resistance to chemotherapy,especially during CRC treatment,leads to reduced effectiveness of drugs and poor patient outcomes.Long noncoding RNAs(lncRNAs)have been implicated in various pathophysiological processes of tumor cells,including chemotherapy resistance,yet the roles of many lncRNAs in CRC remain unclear.AIM To identify and analyze the lncRNAs involved in oxaliplatin resistance in CRC and to understand the underlying molecular mechanisms influencing this resistance.METHODS Gene Expression Omnibus datasets GSE42387 and GSE30011 were reanalyzed to identify lncRNAs and mRNAs associated with oxaliplatin resistance.Various bioinformatics tools were employed to elucidate molecular mechanisms.The expression levels of lncRNAs and mRNAs were assessed via quantitative reverse transcription-polymerase chain reaction.Functional assays,including MTT,wound healing,and Transwell,were conducted to investigate the functional implications of lncRNA alterations.Interactions between lncRNAs and trans-cription factors were examined using RIP and luciferase reporter assays,while Western blotting was used to confirm downstream pathways.Additionally,a xenograft mouse model was utilized to study the in vivo effects of lncRNAs on chemotherapy resistance.RESULTS LncRNA prion protein testis specific(PRNT)was found to be upregulated in oxaliplatin-resistant CRC cell lines and negatively correlated with homeodomain interacting protein kinase 2(HIPK2)expression.PRNT was demonstrated to sponge transcription factor zinc finger protein 184(ZNF184),which in turn could regulate HIPK2 expression.Altered expression of PRNT influenced CRC cell sensitivity to oxaliplatin,with overexpression leading to decreased sensitivity and decreased expression reducing resistance.Both RIP and luciferase reporter assays indicated that ZNF184 and HIPK2 are targets of PRNT.The PRNT/ZNF184/HIPK2 axis was implicated in promoting CRC progression and oxaliplatin resistance both in vitro and in vivo.CONCLUSION The study concludes that PRNT is upregulated in oxaliplatin-resistant CRC cells and modulates the expression of HIPK2 by sponging ZNF184.This regulatory mechanism enhances CRC progression and resistance to oxaliplatin,positioning PRNT as a promising therapeutic target for CRC patients undergoing oxaliplatin-based chemotherapy.展开更多
Background:The benefits of exercise are well known;however,many of the underlying molecular mechanisms are not fully understood.Skeletal muscle secretes myokines,which mediate muscleorgan crosstalk.Myokines regulate s...Background:The benefits of exercise are well known;however,many of the underlying molecular mechanisms are not fully understood.Skeletal muscle secretes myokines,which mediate muscleorgan crosstalk.Myokines regulate satellite-cell proliferation and migration,inflammatory cascade,insulin secretion,angiogenesis,fatty oxidation,and cancer suppression.To date,the effects of different exercise modes(namely,aerobic and resistance exercise)on myokine response remain to be elucidated.This is crucial considering the clinical implementation of exercise to enhance general health and wellbeing and as a medical treatment.Methods:A systematic search was undertaken in PubMed,MEDLINE,CINAHL,Embase,SPORTDiscus,andWeb of Science in April 2023.Eligible studies examining the effects of a single bout of exercise on interleukin15(IL-15),irisin,secreted protein acidic and rich in cysteine(SPARC),oncostatinM(OSM),and decorin were included.A random-effects meta-analysis was also undertaken to quantify the magnitude of change.Results:Sixty-two studies were included(n=1193).Overall,exercise appeared to induce small to large increases in myokine expression,with effects observed immediately after to 60 min post-exercise,although these were mostly not statistically significant.Both aerobic and resistance exercise resulted in changes in myokine levels,without any significant difference between training modes,and with the magnitude of change differing across myokines.Myokine levels returned to baseline levels within 180 min to 24 h post-exercise.However,owing to potential sources of heterogeneity,most changes were not statistically significant,indicating that precise conclusions cannot be drawn.Conclusion:Knowledge is limited but expanding with respect to the impact of overall and specific effects of exercise on myokine expression at different time points in the systemic circulation.Further research is required to investigate the effects of different exercise modes at multiple time points on myokine response.展开更多
Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale ...Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale applications. Hydrogels are considered to be promising candidates;however, conventional hydrogel-based interfacial solar evaporators have difficulty in simultaneously meeting multiple requirements, including ahigh evaporation rate, salt resistance, and good mechanical properties. In this study, a Janus sponge-like hydrogel solar evaporator (CPAS) withexcellent comprehensive performance was successfully constructed. The introduction of biomass agar (AG) into the polyvinyl alcohol (PVA)hydrogel backbone reduced the enthalpy of water evaporation, optimized the pore structure, and improved the mechanical properties. Meanwhile, by introducing hydrophobic fumed nano-silica aerogel (SA) and a synergistic foaming-crosslinking process, the hydrogel spontaneouslyformed a Janus structure with a hydrophobic surface and hydrophilic bottom properties. Based on the reduction of the evaporation enthalpy andthe modulation of the pore structure, the CPAS evaporation rate reached 3.56 kg m^(-2) h^(-1) under one sun illumination. Most importantly, owingto the hydrophobic top surface and 3D-interconnected porous channels, the evaporator could work stably in high concentrations of salt-water(25 wt% NaCl), showing strong salt resistance. Efficient water evaporation, excellent salt resistance, scalable preparation processes, and low-costraw materials make CPAS extremely promising for practical applications.展开更多
BACKGROUND In recent years,the prevalence of obesity and metabolic syndrome in type 1 diabetes(T1DM)patients has gradually increased.Insulin resistance in T1DM deserves attention.It is necessary to clarify the relatio...BACKGROUND In recent years,the prevalence of obesity and metabolic syndrome in type 1 diabetes(T1DM)patients has gradually increased.Insulin resistance in T1DM deserves attention.It is necessary to clarify the relationship between body composition,metabolic syndrome and insulin resistance in T1DM to guide clinical treatment and intervention.AIM To assess body composition(BC)in T1DM patients and evaluate the relationship between BC,metabolic syndrome(MS),and insulin resistance in these indi-viduals.METHODS A total of 101 subjects with T1DM,aged 10 years or older,and with a disease duration of over 1 year were included.Bioelectrical impedance analysis using the Tsinghua-Tongfang BC Analyzer BCA-1B was employed to measure various BC parameters.Clinical and laboratory data were collected,and insulin resistance was calculated using the estimated glucose disposal rate(eGDR).RESULTS MS was diagnosed in 16/101 patients(15.84%),overweight in 16/101 patients(15.84%),obesity in 4/101(3.96%),hypertension in 34/101(33.66%%)and dyslip-idemia in 16/101 patients(15.84%).Visceral fat index(VFI)and trunk fat mass were significantly and negatively correlated with eGDR(both P<0.001).Female patients exhibited higher body fat percentage and visceral fat ratio compared to male patients.Binary logistic regression analysis revealed that significant factors for MS included eGDR[P=0.017,odds ratio(OR)=0.109],VFI(P=0.030,OR=3.529),and a family history of diabetes(P=0.004,OR=0.228).Significant factors for hypertension included eGDR(P<0.001,OR=0.488)and skeletal muscle mass(P=0.003,OR=1.111).Significant factors for dyslipidemia included trunk fat mass(P=0.033,OR=1.202)and eGDR(P=0.037,OR=0.708).CONCLUSION Visceral fat was found to be a superior predictor of MS compared to conventional measures such as body mass index and waist-to-hip ratio in Chinese individuals with T1DM.BC analysis,specifically identifying visceral fat(trunk fat),may play an important role in identifying the increased risk of MS in non-obese patients with T1DM.展开更多
BACKGROUND Difficulty in obtaining tetracycline,increased adverse reactions,and relatively complicated medication methods have limited the clinical application of the classic bismuth quadruple therapy.Therefore,the se...BACKGROUND Difficulty in obtaining tetracycline,increased adverse reactions,and relatively complicated medication methods have limited the clinical application of the classic bismuth quadruple therapy.Therefore,the search for new alternative drugs has become one of the research hotspots.In recent years,minocycline,as a semisynthetic tetracycline,has demonstrated good potential for eradicating Helicobacter pylori(H.pylori)infection,but the systematic evaluation of its role remains lacking.AIM To explore the efficacy,safety,and compliance of minocycline in eradicating H.pylori infection.METHODS We comprehensively retrieved the electronic databases of PubMed,Embase,Web of Science,China National Knowledge Infrastructure,SinoMed,and Wanfang database as of October 30,2023,and finally included 22 research reports on H.pylori eradication with minocycline-containing regimens as per the inclusion and exclusion criteria.The eradication rates of H.pylori were calculated using a fixed or a random effect model,and the heterogeneity and publication bias of the studies were measured.RESULTS The single-arm meta-analysis revealed that the minocycline-containing regimens achieved good overall H.pylori eradication rates,reaching 82.3%[95%confidence interval(CI):79.7%-85.1%]in the intention-to-treat analysis and 90.0%(95%CI:87.7%-92.4%)in the per-protocol analysis.The overall safety and compliance of the minocycline-containing regimens were good,demonstrating an overall incidence of adverse reactions of 36.5%(95%CI:31.5%-42.2%).Further by traditional meta-analysis,the results showed that the minocycline-containing regimens were not statistically different from other commonly used eradication regimens in eradication rate and incidence of adverse effects.Most of the adverse reactions were mild to moderate and well-tolerated,and dizziness was relatively prominent in the minocycline-containing regimens(16%).CONCLUSION The minocycline-containing regimens demonstrated good efficacy,safety,and compliance in H.pylori eradication.Minocycline has good potential to replace tetracycline for eradicating H.pylori infection.展开更多
Soil salinity seriously affects the utilization of farmland and threatens the crop production.Here,a selenium-nitrogen-co-doped carbon dots was developed,which increased rice seedling growth and alleviated its inhibit...Soil salinity seriously affects the utilization of farmland and threatens the crop production.Here,a selenium-nitrogen-co-doped carbon dots was developed,which increased rice seedling growth and alleviated its inhibition by salt stress by foliar spraying.The treatment activated Ca^(2+)and jasmonic acid signaling pathways and increased iron homeostasis,antioxidant defense,and cell wall development of rice seedlings.It could be used to increase crop resistance to environmental stress.展开更多
Owing to the advantages of simple structure,low power consumption and high-density integration,memristors or memristive devices are attracting increasing attention in the fields such as next generation non-volatile me...Owing to the advantages of simple structure,low power consumption and high-density integration,memristors or memristive devices are attracting increasing attention in the fields such as next generation non-volatile memories,neuromorphic computation and data encryption.However,the deposition of memristive films often requires expensive equipment,strict vacuum conditions,high energy consumption,and extended processing times.In contrast,electrochemical anodizing can produce metal oxide films quickly(e.g.10 s) under ambient conditions.By means of the anodizing technique,oxide films,oxide nanotubes,nanowires and nanodots can be fabricated to prepare memristors.Oxide film thickness,nanostructures,defect concentrations,etc,can be varied to regulate device performances by adjusting oxidation parameters such as voltage,current and time.Thus memristors fabricated by the anodic oxidation technique can achieve high device consistency,low variation,and ultrahigh yield rate.This article provides a comprehensive review of the research progress in the field of anodic oxidation assisted fabrication of memristors.Firstly,the principle of anodic oxidation is introduced;then,different types of memristors produced by anodic oxidation and their applications are presented;finally,features and challenges of anodic oxidation for memristor production are elaborated.展开更多
基金University of Science and Technology Liaoning Research Project (No. 2003001)
文摘In the present paper, one hundred cluster models NinBP (n = 1-6) have been designed and studied by density functional theory (DFT) to get an insight into the local structure, catalytic properties and sulfur resistibility of amorphous alloy Ni-B-P. The configurations in triplet state are found more stable than those in the singlet state. It is found: that as the content of Ni in the clusters increases, the value of Fermi level in clusters fluctuated, which shows that the content of Ni can influence the Fermi level to a certain extent. Based on the Fermi level and DOS, we consider the activity of catalyst in hydrogenation reaction is the best in cluster Ni3BP. On the basis of the charge of clusters NinBP (n = 1 -6), we conclude the amorphous alloy Ni-B-P with high Ni content has better sulfur resistibility and the best hydrogenation activity, strong sulfur resistibility appears in clusters Ni3BP, and the amorphous alloy Ni60B20P20 with similar proportion is expected to prepare in the future.
基金support from Region Stockholm,ALF-project(FoUI-960041)Open Access funding is provided by Karolinska Institute(both to IM)。
文摘Type 2 diabetes mellitus and Parkinson's disease are chronic diseases linked to a growing pandemic that affects older adults and causes significant socio-economic burden.Epidemiological data supporting a close relationship between these two aging-related diseases have resulted in the investigation of shared pathophysiological molecular mechanisms.Impaired insulin signaling in the brain has gained increasing attention during the last decade and has been suggested to contribute to the development of Parkinson's disease through the dysregulation of several pathological processes.The contribution of type 2 diabetes mellitus and insulin resistance in neurodegeneration in Parkinson's disease,with emphasis on brain insulin resistance,is extensively discussed in this article and new therapeutic strategies targeting this pathological link are presented and reviewed.
基金supported by a grant of the Deutsche Forschungsgemeinschaft(DFGCRC1177 and joint DFG/ANR grant)(to CB)a fellowship of the Deutscher Akademischer Austauschdienst(DAAD)(to TNMP)。
文摘Alzheimer's disease(AD),the most common form of neurodegeneration,is characterized by selective neuronal vulnerability and brain regionselective neuron demise.The entorhinal cortex and hippoc,ampal CA1 projection neurons are at greater risk in AD whereas other regions display resistance to neurodegeneration.Interestingly,the cerebellum,a phylogenetically very old region,is affected only very late in the disease progression.
基金supported by a Presidential Postdoctoral Fellowship (021229-00001) from Nanyang Technological University,Singapore (to JZ)a Lee Kong Chian School of Medicine Dean’s Postdoctoral Fellowship (021207-00001) from NTU Singaporea Mistletoe Research Fellowship (022522-00001) from the Momental Foundaton,USA (to CHL)
文摘The interaction between metabolic dysfunction and inflammation is central to the development of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease.Obesity-related conditions like type 2 diabetes and non-alcoholic fatty liver disease exacerbate this relationship.Peripheral lipid accumulation,particularly in the liver,initiates a cascade of inflammatory processes that extend to the brain,influencing critical metabolic regulatory regions.Ceramide and palmitate,key lipid components,along with lipid transporters lipocalin-2 and apolipoprotein E,contribute to neuroinflammation by disrupting blood–brain barrier integrity and promoting gliosis.Peripheral insulin resistance further exacerbates brain insulin resistance and neuroinflammation.Preclinical interventions targeting peripheral lipid metabolism and insulin signaling pathways have shown promise in reducing neuroinflammation in animal models.However,translating these findings to clinical practice requires further investigation into human subjects.In conclusion,metabolic dysfunction,peripheral inflammation,and insulin resistance are integral to neuroinflammation and neurodegeneration.Understanding these complex mechanisms holds potential for identifying novel therapeutic targets and improving outcomes for neurodegenerative diseases.
基金Supported by Research grant from Chang Gung Memorial Hospital,Linkou,Taiwan,No.CMRPG3N0622.
文摘The issue of plastic pollutants has become a growing concern.Both microplastics(MPs)(particle size<5 mm)and nanoplastics(NPs)(particle size<1μm)can cause DNA damage,cytotoxicity,and oxidative stress in various organisms.The primary known impacts of microplastic/nanoplastic are observed in the liver and respiratory system,leading to hepatotoxicity and chronic obstructive pulmonary disease.Although research on the effects of MPs and NPs on diabetes is still in its early stages,there are potential concerns.This editorial highlights the risk to diabetics from co-exposure to contaminants and MPs/NPs,supported by evidence from animal studies and the various chemical compositions of MPs/NPs.
基金supported by the European Regional Development Funds-European Union(ERDF-EU),FATZHEIMER project(EU-LAC HEALTH 2020,16/T010131 to FRdF),“Una manera de hacer Europa”Ministerio de Economía,Industria y Competitividad,Gobierno de Espa?a,Programa Estatal de Investigación,Desarrollo e Innovación Orientada a los Retos de la Sociedad(RTC2019-007329-1 to FRdF)+2 种基金Consejería de Economía,Conocimiento y Universidad,Junta de Andalucía,Plan Andaluz de Investigación,Desarrollo e Innovación(P18TP-5194 to FRdF)Instituto de Salud CarlosⅢ(DTS22/00021 to FRdF)DMV(FI20/00227)holds a“PFIS’’predoctoral contract from the National System of Health,EU-ERDF-Instituto de Salud CarlosⅢ。
文摘Alzheimer’s disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer’s disease.The pathogenesis of Alzheimer’s disease is mainly mediated by the phosphorylation and aggregation of tau protein.Among the multiple causes of tau hyperphosphorylation,brain insulin resistance has generated much attention,and inositols as insulin sensitizers,are currently considered candidates for drug development.The present narrative review revises the interactions between these three elements:Alzheimer’s disease-tau-inositols,which can eventually identify targets for new disease modifiers capable of bringing hope to the millions of people affected by this devastating disease.
基金support by the project n°7225-ILLIANCE High Performing EnergyPro-jeto apoiado pelo PRR-Plano de Recuperação e Resiliência e pelos Fundos Europeus Next Generation EU,no sequência do AVISO N.°02/C05-i01/2022,Componente 5-Capital-ização e Inovação Empresarial-Agendas Mobilizadores para a Inovação Empresarialsupport by national funds through FCT-Fundação para a Ciência e a Tecnologia,under the project UID/EMS/00285/2020,ARISE-LA/P/0112/2020.
文摘Magnesium(Mg)alloys are widely used for temporary bone implants due to their favorable biodegradability,cytocompatibility,hemocompatibility,and close mechanical properties to bone.However,rapid degradation and inadequate strength limit their applicability.To overcome this,the direct current magnetron sputtering technique is employed for surface coating in Mg-based alloys using various zirconium(Zr)content.This approach presents a promising strategy for simultaneously improving corrosion resistance,maintaining biocompatibility,and enhancing strength without compromising osseointegration.By leveraging Mg’s inherent biodegradability,it has the potential to minimize the need for secondary surgeries,thereby reducing costs and resources.This paper is a systematic study aimed at understanding the corrosion mechanisms of Mg–Zr coatings,denoted Mg-xZr(x=0–5 at.%).Zr-doped coatings exhibited columnar growth leading to denser and refined structures with increasing Zr content.XRD analysis confirmed the presence of the Mg(00.2)basal plane,shifting towards higher angles(1.15°)with 5 at.%Zr doping due to lattice parameter changes(i.e.,decrease and increase of“c”and“a”lattice parameters,respectively).Mg–Zr coatings exhibited“liquidphilic”behavior,while Young’s modulus retained a steady value around 80 GPa across all samples.However,the hardness has significantly improved across all samples’coating,reaching the highest value of(2.2±0.3)GPa for 5 at.%Zr.Electrochemical testing in simulated body fluid(SBF)at 37℃ revealed a significant enhancement in corrosion resistance for Mg–Zr coatings containing 1.0–3.4 at.%Zr.Compared with the 5 at.%Zr coating which exhibited a corrosion rate of 32 mm/year,these coatings displayed lower corrosion rates,ranging from 1 to 12 mm/year.This synergistic enhancement in mechanical properties and corrosion resistance,achieved with 2.0–3.4 at.%Zr,suggests potential ability for reducing stress shielding and controlled degradation performance,and consequently,promising functional biodegradable materials for temporary bone implants.
基金supported by the National Natural Science Foundation of China(Grant Nos.:22176195 and 82127801)National Key R&D Program of China(Grant No.:2022YFF0705003)+5 种基金the Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression(Grant No.:ZDSYS20220606100606014)the Guangdong Province Zhu Jiang Talents Plan,China(Grant No.:2021QN02Y028)the Natural Science Foundation of Guangdong Province,China(Grant No.:2021A1515010171)the Key Program of Fundamental Research in Shenzhen,China(Grant No.:JCYJ20210324115811031)the Sustainable Development Program of Shenzhen,China(Grant No.:KCXFZ202002011008124)the National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital&Shenzhen Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College,Shenzhen(Grant Nos.:SZ2020ZD002 and SZ2020QN005).
文摘Esophageal cancer is an upper gastrointestinal malignancy with a bleak prognosis.It is still being explored in depth due to its complex molecular mechanisms of occurrence and development.Lipids play a crucial role in cells by participating in energy supply,biofilm formation,and signal transduction processes,and lipid metabolic reprogramming also constitutes a significant characteristic of malignant tumors.More and more studies have found esophageal cancer has obvious lipid metabolism abnormalities throughout its beginning,progress,and treatment resistance.The inhibition of tumor growth and the enhancement of antitumor therapy efficacy can be achieved through the regulation of lipid metabolism.Therefore,we reviewed and analyzed the research results and latest findings for lipid metabolism and associated analysis techniques in esophageal cancer,and comprehensively proved the value of lipid metabolic reprogramming in the evolution and treatment resistance of esophageal cancer,as well as its significance in exploring potential therapeutic targets and biomarkers.
文摘Diabetes,commonly known for its metabolic effects,also critically affects the enteric nervous system(ENS),which is essential in regulating gastrointestinal(GI)motility,secretion,and absorption.The development of diabetes-induced enteric neuropathy can lead to various GI dysfunctions,such as gastroparesis and irregular bowel habits,primarily due to disruptions in the function of neuronal and glial cells within the ENS,as well as oxidative stress and inflammation.This editorial explores the pathophysiological mechanisms underlying the development of enteric neuropathy in diabetic patients.Additionally,it discusses the latest advances in diagnostic approaches,emphasizing the need for early detection and intervention to mitigate GI complications in diabetic individuals.The editorial also reviews current and emerging therapeutic strategies,focusing on pharmacological treatments,dietary management,and potential neuromodulatory interventions.Ultimately,this editorial highlights the necessity of a multidisciplinary approach in managing enteric neuropathy in diabetes,aiming to enhance patient quality of life and address a frequently overlooked complication of this widespread disease.
基金supported by the Natural Science Founda-tion of Beijing(Grant No.2182017,2202017).
文摘A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainable corrosion inhibitors are chosen to investigate the corrosion inhibition behavior of ionic liquid(ILs)during the LePEO process for LA91 magnesium-lithium(Mg-Li)alloy.Results show that the ionic liquid BmimBF_(4)participates in the LePEO coating formation process,causing an increment in coating thickness and surface roughness.The low conductivity of the ionic liquid is responsible for the voltage and breakdown voltage increases during the LePEO with IL process(LePEO-IL).After adding BmimBF_(4),corrosion current density decreases from 1.159×10^(−4)A·cm^(−2)to 8.143×10^(−6)A·cm^(−2).The impedance modulus increases to 1.048×10^(4)Ω·cm^(−2)and neutral salt spray remains intact for 24 h.The superior corrosion resistance of the LePEO coating assisted by ionic liquid could be mainly attributed to its compact and thick barrier layer and physical absorption of ionic liquid.The ionic liquid-assisted LePEO technique provides a promising approach to reducing energy consumption and improving film performance.
基金suppoited by an Alexander Graliam Bell Canada Graduate Scholarship-Doctoralsupported by an Ontario Graduate Scholarshipsupported by the Canada Research Chairs programme。
文摘Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines,we systematically searched and screened eligible systematic reviews reporting the effects of differing RT prescription variables on muscle mass(or its proxies),strength,and/or physical function in healthy adults aged>18 years.Results:We identified 44 systematic reviews that met our inclusion criteria.The methodological quality of these reviews was assessed using A Measurement Tool to Assess Systematic Reviews;standardized effectiveness statements were generated.We found that RT was consistently a potent stimulus for increasing skeletal muscle mass(4/4 reviews provide some or sufficient evidence),strength(4/6 reviews provided some or sufficient evidence),and physical function(1/1 review provided some evidence).RT load(6/8 reviews provided some or sufficient evidence),weekly frequency(2/4 reviews provided some or sufficient evidence),volume(3/7 reviews provided some or sufficient evidence),and exercise order(1/1 review provided some evidence)impacted RT-induced increases in muscular strength.We discovered that 2/3 reviews provided some or sufficient evidence that RT volume and contraction velocity influenced skeletal muscle mass,while 4/7 reviews provided insufficient evidence in favor of RT load impacting skeletal muscle mass.There was insufficient evidence to conclude that time of day,periodization,inter-set rest,set configuration,set end point,contraction velocity/time under tension,or exercise order(only pertaining to hypertrophy)influenced skeletal muscle adaptations.A paucity of data limited insights into the impact of RT prescription variables on physical function.Conclusion:Overall,RT increased muscle mass,strength,and physical function compared to no exercise.RT intensity(load)and weekly frequency impacted RT-induced increases in muscular strength but not muscle hypertrophy.RT volume(number of sets)influenced muscular strength and hypertrophy.
基金Supported by National Natural Science Foundation of China,No.82000625the Doctoral Scientific Research Foundation of Liaoning Province,No.2020-BS-109.
文摘This editorial comments on an article published in a recent issue of World Journal of Gastroenterology,entitled“Association of low muscle strength with metabolic dysfunction-associated fatty liver disease:A nationwide study”.We focused on the association between muscle strength and the incidence of non-alcoholic fatty liver disease(NAFLD)and metabolic-associated fatty liver disease(MAFLD),as well as the mechanisms underlying the correlation and related clinical applications.NAFLD,which is now redefined as MAFLD,is one of the most common chronic liver diseases globally with an increasing prevalence and is characterized by malnutrition,which may contribute to decreased muscle strength.Reduction of muscle strength reportedly has a pathogenesis similar to that of NAFLD/MAFLD,including insulin resistance,inflammation,sedentary behavior,as well as insufficient vitamin D.Multiple studies have focused on the relationship between sarcopenia or muscle strength and NAFLD.However,studies investigating the relationship between muscle strength and MAFLD are limited.Owing to the shortage of specific medications for NAFLD/MAFLD treatment,early detection is essential.Furthermore,the relationship between muscle strength and NAFLD/MAFLD suggests that improvements in muscle strength may have an impact on disease prevention and may provide novel insights into treatments including dietary therapy,as well as tailored physical activity.
基金the Science and Technology Key Project of Anhui Province,China(No.2022e03020004).
文摘Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent Li-CoO_(2)(LCO)cathodes to overcome the incomplete recovery and loss of lithium during the recycling process.The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO_(3)under a suitable temperature to control the reduced state of the cobalt oxide.The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium.The results showed that 99.10%of the whole lithium could be recovered as Li2CO_(3)with a purity of 99.55%.This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries.
基金Supported by Hebei Provincial Health Commission Youth Science and Technology Project,No.20210027.
文摘BACKGROUND Colorectal cancer(CRC)is the third most common cancer and a significant cause of cancer-related mortality globally.Resistance to chemotherapy,especially during CRC treatment,leads to reduced effectiveness of drugs and poor patient outcomes.Long noncoding RNAs(lncRNAs)have been implicated in various pathophysiological processes of tumor cells,including chemotherapy resistance,yet the roles of many lncRNAs in CRC remain unclear.AIM To identify and analyze the lncRNAs involved in oxaliplatin resistance in CRC and to understand the underlying molecular mechanisms influencing this resistance.METHODS Gene Expression Omnibus datasets GSE42387 and GSE30011 were reanalyzed to identify lncRNAs and mRNAs associated with oxaliplatin resistance.Various bioinformatics tools were employed to elucidate molecular mechanisms.The expression levels of lncRNAs and mRNAs were assessed via quantitative reverse transcription-polymerase chain reaction.Functional assays,including MTT,wound healing,and Transwell,were conducted to investigate the functional implications of lncRNA alterations.Interactions between lncRNAs and trans-cription factors were examined using RIP and luciferase reporter assays,while Western blotting was used to confirm downstream pathways.Additionally,a xenograft mouse model was utilized to study the in vivo effects of lncRNAs on chemotherapy resistance.RESULTS LncRNA prion protein testis specific(PRNT)was found to be upregulated in oxaliplatin-resistant CRC cell lines and negatively correlated with homeodomain interacting protein kinase 2(HIPK2)expression.PRNT was demonstrated to sponge transcription factor zinc finger protein 184(ZNF184),which in turn could regulate HIPK2 expression.Altered expression of PRNT influenced CRC cell sensitivity to oxaliplatin,with overexpression leading to decreased sensitivity and decreased expression reducing resistance.Both RIP and luciferase reporter assays indicated that ZNF184 and HIPK2 are targets of PRNT.The PRNT/ZNF184/HIPK2 axis was implicated in promoting CRC progression and oxaliplatin resistance both in vitro and in vivo.CONCLUSION The study concludes that PRNT is upregulated in oxaliplatin-resistant CRC cells and modulates the expression of HIPK2 by sponging ZNF184.This regulatory mechanism enhances CRC progression and resistance to oxaliplatin,positioning PRNT as a promising therapeutic target for CRC patients undergoing oxaliplatin-based chemotherapy.
文摘Background:The benefits of exercise are well known;however,many of the underlying molecular mechanisms are not fully understood.Skeletal muscle secretes myokines,which mediate muscleorgan crosstalk.Myokines regulate satellite-cell proliferation and migration,inflammatory cascade,insulin secretion,angiogenesis,fatty oxidation,and cancer suppression.To date,the effects of different exercise modes(namely,aerobic and resistance exercise)on myokine response remain to be elucidated.This is crucial considering the clinical implementation of exercise to enhance general health and wellbeing and as a medical treatment.Methods:A systematic search was undertaken in PubMed,MEDLINE,CINAHL,Embase,SPORTDiscus,andWeb of Science in April 2023.Eligible studies examining the effects of a single bout of exercise on interleukin15(IL-15),irisin,secreted protein acidic and rich in cysteine(SPARC),oncostatinM(OSM),and decorin were included.A random-effects meta-analysis was also undertaken to quantify the magnitude of change.Results:Sixty-two studies were included(n=1193).Overall,exercise appeared to induce small to large increases in myokine expression,with effects observed immediately after to 60 min post-exercise,although these were mostly not statistically significant.Both aerobic and resistance exercise resulted in changes in myokine levels,without any significant difference between training modes,and with the magnitude of change differing across myokines.Myokine levels returned to baseline levels within 180 min to 24 h post-exercise.However,owing to potential sources of heterogeneity,most changes were not statistically significant,indicating that precise conclusions cannot be drawn.Conclusion:Knowledge is limited but expanding with respect to the impact of overall and specific effects of exercise on myokine expression at different time points in the systemic circulation.Further research is required to investigate the effects of different exercise modes at multiple time points on myokine response.
基金supported by the National Natural Science Foundation of China(22278110)China Postdoctoral Science Foundation(2022M720984)+1 种基金the Natural Science Foundation of Hebei Province of China(B2021202012)Tianjin Technical Innovation Guidance Special Project(20YDTPJC00630).
文摘Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale applications. Hydrogels are considered to be promising candidates;however, conventional hydrogel-based interfacial solar evaporators have difficulty in simultaneously meeting multiple requirements, including ahigh evaporation rate, salt resistance, and good mechanical properties. In this study, a Janus sponge-like hydrogel solar evaporator (CPAS) withexcellent comprehensive performance was successfully constructed. The introduction of biomass agar (AG) into the polyvinyl alcohol (PVA)hydrogel backbone reduced the enthalpy of water evaporation, optimized the pore structure, and improved the mechanical properties. Meanwhile, by introducing hydrophobic fumed nano-silica aerogel (SA) and a synergistic foaming-crosslinking process, the hydrogel spontaneouslyformed a Janus structure with a hydrophobic surface and hydrophilic bottom properties. Based on the reduction of the evaporation enthalpy andthe modulation of the pore structure, the CPAS evaporation rate reached 3.56 kg m^(-2) h^(-1) under one sun illumination. Most importantly, owingto the hydrophobic top surface and 3D-interconnected porous channels, the evaporator could work stably in high concentrations of salt-water(25 wt% NaCl), showing strong salt resistance. Efficient water evaporation, excellent salt resistance, scalable preparation processes, and low-costraw materials make CPAS extremely promising for practical applications.
基金Supported by the“SDF-sweet doctor cultivation”Project of Sinocare Diabetes Foundation,No.2022SD11 and No.2021SD09.
文摘BACKGROUND In recent years,the prevalence of obesity and metabolic syndrome in type 1 diabetes(T1DM)patients has gradually increased.Insulin resistance in T1DM deserves attention.It is necessary to clarify the relationship between body composition,metabolic syndrome and insulin resistance in T1DM to guide clinical treatment and intervention.AIM To assess body composition(BC)in T1DM patients and evaluate the relationship between BC,metabolic syndrome(MS),and insulin resistance in these indi-viduals.METHODS A total of 101 subjects with T1DM,aged 10 years or older,and with a disease duration of over 1 year were included.Bioelectrical impedance analysis using the Tsinghua-Tongfang BC Analyzer BCA-1B was employed to measure various BC parameters.Clinical and laboratory data were collected,and insulin resistance was calculated using the estimated glucose disposal rate(eGDR).RESULTS MS was diagnosed in 16/101 patients(15.84%),overweight in 16/101 patients(15.84%),obesity in 4/101(3.96%),hypertension in 34/101(33.66%%)and dyslip-idemia in 16/101 patients(15.84%).Visceral fat index(VFI)and trunk fat mass were significantly and negatively correlated with eGDR(both P<0.001).Female patients exhibited higher body fat percentage and visceral fat ratio compared to male patients.Binary logistic regression analysis revealed that significant factors for MS included eGDR[P=0.017,odds ratio(OR)=0.109],VFI(P=0.030,OR=3.529),and a family history of diabetes(P=0.004,OR=0.228).Significant factors for hypertension included eGDR(P<0.001,OR=0.488)and skeletal muscle mass(P=0.003,OR=1.111).Significant factors for dyslipidemia included trunk fat mass(P=0.033,OR=1.202)and eGDR(P=0.037,OR=0.708).CONCLUSION Visceral fat was found to be a superior predictor of MS compared to conventional measures such as body mass index and waist-to-hip ratio in Chinese individuals with T1DM.BC analysis,specifically identifying visceral fat(trunk fat),may play an important role in identifying the increased risk of MS in non-obese patients with T1DM.
基金Supported by National Natural Science Foundation of China,No.82170562Beijing Natural Science Foundation,No.7232199+2 种基金Capital’s Funds for Health Improvement and Research,No.2022-2-4093Youth Incubation Fund of Peking University Third Hospital,No.BYSYFY2021003Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases in Beijing,No.BZ0371.
文摘BACKGROUND Difficulty in obtaining tetracycline,increased adverse reactions,and relatively complicated medication methods have limited the clinical application of the classic bismuth quadruple therapy.Therefore,the search for new alternative drugs has become one of the research hotspots.In recent years,minocycline,as a semisynthetic tetracycline,has demonstrated good potential for eradicating Helicobacter pylori(H.pylori)infection,but the systematic evaluation of its role remains lacking.AIM To explore the efficacy,safety,and compliance of minocycline in eradicating H.pylori infection.METHODS We comprehensively retrieved the electronic databases of PubMed,Embase,Web of Science,China National Knowledge Infrastructure,SinoMed,and Wanfang database as of October 30,2023,and finally included 22 research reports on H.pylori eradication with minocycline-containing regimens as per the inclusion and exclusion criteria.The eradication rates of H.pylori were calculated using a fixed or a random effect model,and the heterogeneity and publication bias of the studies were measured.RESULTS The single-arm meta-analysis revealed that the minocycline-containing regimens achieved good overall H.pylori eradication rates,reaching 82.3%[95%confidence interval(CI):79.7%-85.1%]in the intention-to-treat analysis and 90.0%(95%CI:87.7%-92.4%)in the per-protocol analysis.The overall safety and compliance of the minocycline-containing regimens were good,demonstrating an overall incidence of adverse reactions of 36.5%(95%CI:31.5%-42.2%).Further by traditional meta-analysis,the results showed that the minocycline-containing regimens were not statistically different from other commonly used eradication regimens in eradication rate and incidence of adverse effects.Most of the adverse reactions were mild to moderate and well-tolerated,and dizziness was relatively prominent in the minocycline-containing regimens(16%).CONCLUSION The minocycline-containing regimens demonstrated good efficacy,safety,and compliance in H.pylori eradication.Minocycline has good potential to replace tetracycline for eradicating H.pylori infection.
基金financially supported by the National Natural Science Foundation of China (42207032,52070064)the Key Project of National Natural Science Foundation of China (42330705)+2 种基金Key R&D Project of Hebei Province (21373601D)Advanced Talents Incubation Program of the Hebei University (521100222012)economic support from Collaborative Innovation Center for Baiyangdian Basin Ecological Protection and Beijing-Tianjin-Hebei Sustainable Development and Institute of Life Sciences and Green Development of Hebei University。
文摘Soil salinity seriously affects the utilization of farmland and threatens the crop production.Here,a selenium-nitrogen-co-doped carbon dots was developed,which increased rice seedling growth and alleviated its inhibition by salt stress by foliar spraying.The treatment activated Ca^(2+)and jasmonic acid signaling pathways and increased iron homeostasis,antioxidant defense,and cell wall development of rice seedlings.It could be used to increase crop resistance to environmental stress.
基金supported by the National Key Research and Development Program of China (Grant No.2018YFE0203802)Natural Science Foundation of Hubei Province, China (Grant No.2022CFA031)Dongguan Innovative Research Team Program (2020607101007)。
文摘Owing to the advantages of simple structure,low power consumption and high-density integration,memristors or memristive devices are attracting increasing attention in the fields such as next generation non-volatile memories,neuromorphic computation and data encryption.However,the deposition of memristive films often requires expensive equipment,strict vacuum conditions,high energy consumption,and extended processing times.In contrast,electrochemical anodizing can produce metal oxide films quickly(e.g.10 s) under ambient conditions.By means of the anodizing technique,oxide films,oxide nanotubes,nanowires and nanodots can be fabricated to prepare memristors.Oxide film thickness,nanostructures,defect concentrations,etc,can be varied to regulate device performances by adjusting oxidation parameters such as voltage,current and time.Thus memristors fabricated by the anodic oxidation technique can achieve high device consistency,low variation,and ultrahigh yield rate.This article provides a comprehensive review of the research progress in the field of anodic oxidation assisted fabrication of memristors.Firstly,the principle of anodic oxidation is introduced;then,different types of memristors produced by anodic oxidation and their applications are presented;finally,features and challenges of anodic oxidation for memristor production are elaborated.