Alternative Ag and Si02 multilayers are prepared by using radio frequency magnetron sputtering. The Ag particles are found to diffuse toward and mostly accumulate near the surface of the Ag-SiO2 composite film via a r...Alternative Ag and Si02 multilayers are prepared by using radio frequency magnetron sputtering. The Ag particles are found to diffuse toward and mostly accumulate near the surface of the Ag-SiO2 composite film via a rapid thermal treatment. Different shapes of the Ag particles are obtained by changing the thickness of each Ag and SiO2 layer. The response absorption property of the Ag composite film is also investigated. We relate the resonance absorption to the surface level and the Fermi level. To induce the obvious resonance absorption in an Ag composite film, it is necessary to maintain special shapes with sharp edges and wide terraces and to maintain the particle sizes ranging from 0 nm to展开更多
A new concept of energy resonance absorption for photocurrent quenching was proposed using a system of quantum dots(QDs) and the matched dye. The QDs were used as the photocurrent producer, and the dye had an absorpti...A new concept of energy resonance absorption for photocurrent quenching was proposed using a system of quantum dots(QDs) and the matched dye. The QDs were used as the photocurrent producer, and the dye had an absorption band overlapped with that of the QDs, which led to the resonance absorption of the excitation energy and thus decreased the photocurrent of QDs. By using porphyrin and fluorscein isothiocyanate isomer I as the resonance absorption dyes, the proposed mechanism was proved by UV-Vis spectra, photoluminescence spectra and photocurrent-to-wavelength response, respectively. The interaction of the absorption-matched dye with biomolecule could be conveniently used to introduce it into the photocurrent quenching system, leading to a simple switch-off biosensing method for detection of the biomolecule. As example, a label-free method was proposed for photoelectrochemical detection of target DNA. This method showed a detection range from 6.0 to 600 nmol/L with a detection limit of 2.5 nmol/L. The result demonstrated that the photocurrent quenching via energy resonance absorption not only contributed to the theoretical study of photoelectrochemistry, but also provided a universal tool for photoelectrochemical biosensing.展开更多
Exploiting new concepts for dense, fast, and nonvolatile random access memory with reduced energy consump- tion is a significant issue for information technology. Here we design an 'electrically written and optically...Exploiting new concepts for dense, fast, and nonvolatile random access memory with reduced energy consump- tion is a significant issue for information technology. Here we design an 'electrically written and optically read' information storage device employing BiFeO3/A u heterostruetures with strong absorption resonance. The electro- optic effect is the basis for the device design, which arises from the strong absorption resonance in BiFeO3/Au heterostructures and the electrically tunable significant birefringence of the BiFeO3 film. We first construct a sim- ulation calculation of the BiFeO3/Au structure spectrum and identify absorption resonance and electro-optical modulation characteristics. Following a micro scale partition, the surface reflected light intensity of different polarization units is calculated. The results depend on electric polarization states of the BiFeO3 film, thus BiFeO3/Au heterostructures can essentially be designed as a type of electrically written and optically read infor- mation storage device by utilizing the scanning near-field optical microscopy technology based on the conductive silicon cantilever tip with nanofabricated aperture. This work will shed light on information storage technology.展开更多
The fractional resonance absorption ε(0) in transmission Mossbauer spectroscopy is defined as a relative number of the absorbed γ-ray, and regarded as a measure of Mossbauer effect. The absorption linewidth Λ a , a...The fractional resonance absorption ε(0) in transmission Mossbauer spectroscopy is defined as a relative number of the absorbed γ-ray, and regarded as a measure of Mossbauer effect. The absorption linewidth Λ a , as it is usually suggested, is nearly equal to the emission linewidth, Λ s , and such an approximation leads to a extremely simplified expression ε(0), depending on neither Λ s nor Λ a . We consider the general case Λ s ≠Λ a , and obtain an exact expression for ε(0) which is given in the present paper. This expression ε(0), as a function oft a, Λ s , Λ a , is figured and discussed.展开更多
The acoustic properties of anechoic layers with a singly periodic array of cylindrical scatterers are investigated. A method combined plane wave expansion and finite element analysis is extended for out-of-plane incid...The acoustic properties of anechoic layers with a singly periodic array of cylindrical scatterers are investigated. A method combined plane wave expansion and finite element analysis is extended for out-of-plane incidence. The reflection characteristics of the anechoic layers with cavities and locally resonant scatterers are discussed. The backing is a steel plate followed by an air half space. Under this approximate zero transmission backing condition, the reflection reduction is induced by the absorption enhancement. The absorption mechanism is explained by the scattering/absorption cross section of the isolated scatterer. Three types of resonant modes which can induce efficient absorption are revealed. Due to the fact that the frequencies of the resonant modes are related to the size of the scatterers, anechoic layers with scatterers of mixed size can broaden the absorption band. A genetic optimization algorithm is adopted to design the anechoic layer with scatterers of mixed size at a desired frequency band from 2 kHz to l0 kHz for normal incidence, and the influence of the incident angle is also discussed.展开更多
The resonant absorption of a plasma surface wave is supposed to be an important and efficient mechanism of power deposition for a surface wave plasma source. In this paper, by using the particle-in-cell method and Mon...The resonant absorption of a plasma surface wave is supposed to be an important and efficient mechanism of power deposition for a surface wave plasma source. In this paper, by using the particle-in-cell method and Monte Carlo simulation, the resonance absorption mechanism is investigated. Simulation results demonstrate the existence of surface wave resonance and show the high efficiency of heating electrons. The positions of resonant points, the resonance width and the spatio-temporal evolution of the resonant electric field are presented, which accord well with the theoretical results. The paper also discusses the effect of pressure on the resonance electric field and the plasma density.展开更多
We present a comprehensive understanding of the nonHneer absorption characteristics of CdSe- based nanoplatelets (NPLs) synthesized by the solution-phase method and the colloidal atomic layer deposition approach thr...We present a comprehensive understanding of the nonHneer absorption characteristics of CdSe- based nanoplatelets (NPLs) synthesized by the solution-phase method and the colloidal atomic layer deposition approach through Z- scan techniques at 532nm with picosecond pulses. The CdSe NPLs exhibit strong two-photon induced free carrier absorption (effective three-photon absorption) upon the nonresonant excitation, resulting in a remarkable optical limiting behavior with the limiting threshold of approximately 75 GW/cm2. A nonlinear optical switching from saturable absorption (SA) to reverse saturable absorption (RSA) with increasing the laser intensity is observed when coating CdSe NPLs with a monolayer of CdS shell to realize the resonant absorption. The SA behavior originates from the ground state bleaching and the RSA behavior is attributed to the free carrier absorption. These findings explicitly demonstrate the potential applications of CdSe-based NPLs in nonlinear optoelectronics such as optical limiting devices, optical pulse compressors and optical switching devices.展开更多
The authors numerically investigated the characteristics of surface plasmons excited on a thin metal grating placed in planer or conical mounting. After formulating the problem, the solution method, Yasuura's method ...The authors numerically investigated the characteristics of surface plasmons excited on a thin metal grating placed in planer or conical mounting. After formulating the problem, the solution method, Yasuura's method (a modal expansion approach with least-squares boundary matching) was described. Although the grating is periodic in one direction, coupling between TE and TM waves Occurs because arbitrary incidence is assumed. This requires the employment of both TE and TM vector modal functions in the analysis. Numerical computations showed: (l) the excitation of surface plasmons with total or partial absorption of incident light; (2) the resonance character of the coefficient of an evanescent order that couples the plasmon surface wave; (3) the field profile and Poynting's vector. The plasmons excited on the surfaces of a thin metal grating are classified into three types: SISP, SRSP, and LRSP, different from each other in the feature of field profile and energy flow. In addition, the eigenvalue of a plasmon mode was obtained by solving a sequence of diffraction problems with complex-valued angles of incidence and using the quasi-Newton algorithm to predict the real angle of incidence at which the absorption occurs.展开更多
A combined Ag nanoparticle with an insulating or conductive layer structure has been designed tor molecular detection using surface enhanced Raman scattering microscopy. Optical absorption studies revealed localized s...A combined Ag nanoparticle with an insulating or conductive layer structure has been designed tor molecular detection using surface enhanced Raman scattering microscopy. Optical absorption studies revealed localized surface plasmon resonance, which shows regular red shift with increasing environmental dielectric constant. With the combined structure of surface enhanced Raman scattering substrates and rhodamine 6C as a test molecule, the results in this paper show that the absorption has a linear relationship with the local electromagnetic field for insulating substrates, and the electrical property of the substrate has a non-negligible effect on the intensity of the local electromagnetic field and hence the Raman enhancement.展开更多
In the face of deteriorating environmental conditions in the world,water quality control is an urgent task.It can be solved by creating sensors with high accuracy and low cost,which requires the development of fundame...In the face of deteriorating environmental conditions in the world,water quality control is an urgent task.It can be solved by creating sensors with high accuracy and low cost,which requires the development of fundamentally new radiophysical methods that take advantage of the optical,microwave and millimeter wavelengths that have a significantly greater sensitivity to low concentrations of pollutants and a lower inertia.The article presents prototypes of measuring cells of the microwave and optical ranges as well as the results of an experimental study of water of various degrees of pollution with their help.The results show that the use of the highly sensitive method of capillary-waveguide resonance makes it possible to detect the presence of micro impurities in water with concentrations up to0.1%and to identify water even from sources of various natural origins.In addition,the use of measurements at several frequencies in the optical range will make it possible to solve the problem of creating water control sensors with high sensitivity to pollution and low cost.It can be concluded that the possibility of complex use of multiwave sensors(optical,infrared and microwave ranges)allows to increase the sensitivity and reliability of water quality assessment.展开更多
In this paper, we propose a new form of nanostructures with Al film deposited on a patterned dielectric material for generating structural color, which is induced by local surface plasmonic resonant(LSPR) absorption i...In this paper, we propose a new form of nanostructures with Al film deposited on a patterned dielectric material for generating structural color, which is induced by local surface plasmonic resonant(LSPR) absorption in sub-wavelengthindented hole/ring arrays. Unlike other reported results obtained by using focus ion beam(FIB) to create metallic nanostructures, the nano-sized hole/ring arrays in Al film in this work are replicated by high resolution electron beam lithography(EBL) combined with self-aligned metallization. Clear structural color is observed and systematically studied by numerical simulations as well as optical characterizations. The central color is strongly related to the geometric size, which provides us with good opportunities to dye the colorless Al surface by controlling the hole/ring dimensions(both diameter and radius), and to open up broad applications in display, jewelry decoration, green production of packing papers, security code,and counterfeits prevention.展开更多
The linear mode conversion of electromagnetic waves in the hot, unmagnetized inhomogeneous plasma is studied numerically for different density profiles, and the dependence of the absorption coefficient on the incident...The linear mode conversion of electromagnetic waves in the hot, unmagnetized inhomogeneous plasma is studied numerically for different density profiles, and the dependence of the absorption coefficient on the incident angles and the wave frequencies are obtained for different electrons' temperature. The results show that the shapes of the density profiles and the electron's temperature create a certain effect on the coefficients of absorption, which reaches its peak value (about 50%) for appropriate parameters. Effective absorption occurs in a limited range of parameter q.展开更多
In this paper, an overview of the theory of Mössbauer effect is covered, and the main hyperfine interactions parameters which affect the shape of the resultant Mössbauer spectrum are explained and il...In this paper, an overview of the theory of Mössbauer effect is covered, and the main hyperfine interactions parameters which affect the shape of the resultant Mössbauer spectrum are explained and illustrated as well. In principle, Mössbauer effect applies to any and all nuclides, but in practice, certain ideal properties are desirable;that is, the conditions for recoil-free emission and absorption of gamma rays must be optimized. Therefore, briefly discussed in this review, one of the most commonly used for practical and fundamental studies the 151Eu Mössbauer isotope. Also, the intermediate valence phenomena and their theoretical treatments are briefly discussed.展开更多
We study through electromagnetic modeling the absorption of light of a given wavelength in an array of horizontal In P nanowires of diameter less than 100 nm. Such absorption is performed most efficiently by using pol...We study through electromagnetic modeling the absorption of light of a given wavelength in an array of horizontal In P nanowires of diameter less than 100 nm. Such absorption is performed most efficiently by using polarized light and by exciting a coupled optical resonance in a sparse array. In that case, we excite a resonance in the individual nanowires and couple the resonances in neighboring nanowires through a lattice resonance of the periodic array.At such a resonance, an array with nanowires of 80 nm in diameter can absorb more than eight times more strongly than a tight-packed array, despite containing a seven times smaller amount of the absorbing InP material.展开更多
The predicted extraordinary properties of carbon nanotubes(CNTs)from theoretical calculations have great potential for many applications.However,reliable experimental determination of intrinsic properties at the singl...The predicted extraordinary properties of carbon nanotubes(CNTs)from theoretical calculations have great potential for many applications.However,reliable experimental determination of intrinsic properties at the single-tube level is currently a matter of concern,and many challenges remain because of the unhandled and nanoscale size of individual nanotubes.Here,we demonstrated a prototype to detect the intrinsic thermal conductivity of the single-wall carbon nanotube(SWCNT)and verify the significant non-resonant optical absorption behavior on tiny nanotubes by integrating the nanotube and ice into a new core-shell design.In particular,a reversible optical visualization method based on the individual suspended ultra-long SWCNT was first developed by wrapping a nanotube with ice in the cryogenic air environment.The light-induced thermal effect on the hybrid core-shell structure was used tomelt the ice shell,which subsequently acted as a temperature sensor to verify the intrinsic thermal conductivity of the core-like nanotube.More interestingly,we successfully determined for the first time the thermal response phenomenon of the tiny absorption cross section in SWCNT in the vertical-polarization configuration and the significant non-resonant absorption behavior in the parallel-polarization configuration.These investigations will provide a better understanding for the unique optical behaviors of CNT and enable the detection of intrinsic properties of various one-dimensional nanostructures such as nanotubes,nanowires,and nanoribbons.展开更多
The microwave synthesis of MnC204.2H2O nanoparticles was performed through the thermal double decomposition of oxalic acid dihydrate (C2H204.2H20) and Mn(OAc)2.4H2O solutions using a CATA-2R microwave reactor. Str...The microwave synthesis of MnC204.2H2O nanoparticles was performed through the thermal double decomposition of oxalic acid dihydrate (C2H204.2H20) and Mn(OAc)2.4H2O solutions using a CATA-2R microwave reactor. Structural characterization was performed using X-ray diffraction (XRD), particle size and shape were analyzed using transmission electron microscopy (TEM). The chemical in the structures was investigated using electron paramagnetic resonance (EPR) as well as optical absorption spectra and near-infrared (NIR) spectroscopies. The nanocrystals produced with this method were pure and had a distorted rhombic octahedral structure.Manganese oxalate展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.50872129)the National Basic Research Program of China (Grant No.2006cb302900)
文摘Alternative Ag and Si02 multilayers are prepared by using radio frequency magnetron sputtering. The Ag particles are found to diffuse toward and mostly accumulate near the surface of the Ag-SiO2 composite film via a rapid thermal treatment. Different shapes of the Ag particles are obtained by changing the thickness of each Ag and SiO2 layer. The response absorption property of the Ag composite film is also investigated. We relate the resonance absorption to the surface level and the Fermi level. To induce the obvious resonance absorption in an Ag composite film, it is necessary to maintain special shapes with sharp edges and wide terraces and to maintain the particle sizes ranging from 0 nm to
基金financially supported by the National Basic Research Program of China(2010CB732400)the National Natural Science Foundation of China(21375060,21135002,21121091)
文摘A new concept of energy resonance absorption for photocurrent quenching was proposed using a system of quantum dots(QDs) and the matched dye. The QDs were used as the photocurrent producer, and the dye had an absorption band overlapped with that of the QDs, which led to the resonance absorption of the excitation energy and thus decreased the photocurrent of QDs. By using porphyrin and fluorscein isothiocyanate isomer I as the resonance absorption dyes, the proposed mechanism was proved by UV-Vis spectra, photoluminescence spectra and photocurrent-to-wavelength response, respectively. The interaction of the absorption-matched dye with biomolecule could be conveniently used to introduce it into the photocurrent quenching system, leading to a simple switch-off biosensing method for detection of the biomolecule. As example, a label-free method was proposed for photoelectrochemical detection of target DNA. This method showed a detection range from 6.0 to 600 nmol/L with a detection limit of 2.5 nmol/L. The result demonstrated that the photocurrent quenching via energy resonance absorption not only contributed to the theoretical study of photoelectrochemistry, but also provided a universal tool for photoelectrochemical biosensing.
基金Supported by the National Natural Science Foundation of China under Grant No 11304384the Research Project of National University of Defense Technology under Grant No JC13-07-02
文摘Exploiting new concepts for dense, fast, and nonvolatile random access memory with reduced energy consump- tion is a significant issue for information technology. Here we design an 'electrically written and optically read' information storage device employing BiFeO3/A u heterostruetures with strong absorption resonance. The electro- optic effect is the basis for the device design, which arises from the strong absorption resonance in BiFeO3/Au heterostructures and the electrically tunable significant birefringence of the BiFeO3 film. We first construct a sim- ulation calculation of the BiFeO3/Au structure spectrum and identify absorption resonance and electro-optical modulation characteristics. Following a micro scale partition, the surface reflected light intensity of different polarization units is calculated. The results depend on electric polarization states of the BiFeO3 film, thus BiFeO3/Au heterostructures can essentially be designed as a type of electrically written and optically read infor- mation storage device by utilizing the scanning near-field optical microscopy technology based on the conductive silicon cantilever tip with nanofabricated aperture. This work will shed light on information storage technology.
文摘The fractional resonance absorption ε(0) in transmission Mossbauer spectroscopy is defined as a relative number of the absorbed γ-ray, and regarded as a measure of Mossbauer effect. The absorption linewidth Λ a , as it is usually suggested, is nearly equal to the emission linewidth, Λ s , and such an approximation leads to a extremely simplified expression ε(0), depending on neither Λ s nor Λ a . We consider the general case Λ s ≠Λ a , and obtain an exact expression for ε(0) which is given in the present paper. This expression ε(0), as a function oft a, Λ s , Λ a , is figured and discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.1100429 and 51275519)
文摘The acoustic properties of anechoic layers with a singly periodic array of cylindrical scatterers are investigated. A method combined plane wave expansion and finite element analysis is extended for out-of-plane incidence. The reflection characteristics of the anechoic layers with cavities and locally resonant scatterers are discussed. The backing is a steel plate followed by an air half space. Under this approximate zero transmission backing condition, the reflection reduction is induced by the absorption enhancement. The absorption mechanism is explained by the scattering/absorption cross section of the isolated scatterer. Three types of resonant modes which can induce efficient absorption are revealed. Due to the fact that the frequencies of the resonant modes are related to the size of the scatterers, anechoic layers with scatterers of mixed size can broaden the absorption band. A genetic optimization algorithm is adopted to design the anechoic layer with scatterers of mixed size at a desired frequency band from 2 kHz to l0 kHz for normal incidence, and the influence of the incident angle is also discussed.
文摘The resonant absorption of a plasma surface wave is supposed to be an important and efficient mechanism of power deposition for a surface wave plasma source. In this paper, by using the particle-in-cell method and Monte Carlo simulation, the resonance absorption mechanism is investigated. Simulation results demonstrate the existence of surface wave resonance and show the high efficiency of heating electrons. The positions of resonant points, the resonance width and the spatio-temporal evolution of the resonant electric field are presented, which accord well with the theoretical results. The paper also discusses the effect of pressure on the resonance electric field and the plasma density.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61234005 and 11304197
文摘We present a comprehensive understanding of the nonHneer absorption characteristics of CdSe- based nanoplatelets (NPLs) synthesized by the solution-phase method and the colloidal atomic layer deposition approach through Z- scan techniques at 532nm with picosecond pulses. The CdSe NPLs exhibit strong two-photon induced free carrier absorption (effective three-photon absorption) upon the nonresonant excitation, resulting in a remarkable optical limiting behavior with the limiting threshold of approximately 75 GW/cm2. A nonlinear optical switching from saturable absorption (SA) to reverse saturable absorption (RSA) with increasing the laser intensity is observed when coating CdSe NPLs with a monolayer of CdS shell to realize the resonant absorption. The SA behavior originates from the ground state bleaching and the RSA behavior is attributed to the free carrier absorption. These findings explicitly demonstrate the potential applications of CdSe-based NPLs in nonlinear optoelectronics such as optical limiting devices, optical pulse compressors and optical switching devices.
基金Project supported by Grants-in-Aid for Scientific Research fromJapan Society for the Promotion of Science (No. 17560313), and theNational Basic Research Program (973) of China (No. 2004CB719801)
文摘The authors numerically investigated the characteristics of surface plasmons excited on a thin metal grating placed in planer or conical mounting. After formulating the problem, the solution method, Yasuura's method (a modal expansion approach with least-squares boundary matching) was described. Although the grating is periodic in one direction, coupling between TE and TM waves Occurs because arbitrary incidence is assumed. This requires the employment of both TE and TM vector modal functions in the analysis. Numerical computations showed: (l) the excitation of surface plasmons with total or partial absorption of incident light; (2) the resonance character of the coefficient of an evanescent order that couples the plasmon surface wave; (3) the field profile and Poynting's vector. The plasmons excited on the surfaces of a thin metal grating are classified into three types: SISP, SRSP, and LRSP, different from each other in the feature of field profile and energy flow. In addition, the eigenvalue of a plasmon mode was obtained by solving a sequence of diffraction problems with complex-valued angles of incidence and using the quasi-Newton algorithm to predict the real angle of incidence at which the absorption occurs.
基金Project supported by Hi-Tech Research and Development Program of China(Grant Nos.2007AA05Z436 and 2009AA050602)Science and Technology Foundation of Tianjin(Grant No.08ZCKFGX03500)+3 种基金National Basic Research Program of China(Grant Nos.2006CB202602 and 2006CB202603)National Natural Science Foundation of China(Grant No.60976051)International Cooperation Project between China-Greece Government(Grant Nos.2006DFA62390 and 2009DFA62580)Program for New Century Excellent Talents in University of China(Grant No.NCET-08-0295)
文摘A combined Ag nanoparticle with an insulating or conductive layer structure has been designed tor molecular detection using surface enhanced Raman scattering microscopy. Optical absorption studies revealed localized surface plasmon resonance, which shows regular red shift with increasing environmental dielectric constant. With the combined structure of surface enhanced Raman scattering substrates and rhodamine 6C as a test molecule, the results in this paper show that the absorption has a linear relationship with the local electromagnetic field for insulating substrates, and the electrical property of the substrate has a non-negligible effect on the intensity of the local electromagnetic field and hence the Raman enhancement.
文摘In the face of deteriorating environmental conditions in the world,water quality control is an urgent task.It can be solved by creating sensors with high accuracy and low cost,which requires the development of fundamentally new radiophysical methods that take advantage of the optical,microwave and millimeter wavelengths that have a significantly greater sensitivity to low concentrations of pollutants and a lower inertia.The article presents prototypes of measuring cells of the microwave and optical ranges as well as the results of an experimental study of water of various degrees of pollution with their help.The results show that the use of the highly sensitive method of capillary-waveguide resonance makes it possible to detect the presence of micro impurities in water with concentrations up to0.1%and to identify water even from sources of various natural origins.In addition,the use of measurements at several frequencies in the optical range will make it possible to solve the problem of creating water control sensors with high sensitivity to pollution and low cost.It can be concluded that the possibility of complex use of multiwave sensors(optical,infrared and microwave ranges)allows to increase the sensitivity and reliability of water quality assessment.
基金partially supported by the National Natural Science Foundation of China(Grant No.61205148)
文摘In this paper, we propose a new form of nanostructures with Al film deposited on a patterned dielectric material for generating structural color, which is induced by local surface plasmonic resonant(LSPR) absorption in sub-wavelengthindented hole/ring arrays. Unlike other reported results obtained by using focus ion beam(FIB) to create metallic nanostructures, the nano-sized hole/ring arrays in Al film in this work are replicated by high resolution electron beam lithography(EBL) combined with self-aligned metallization. Clear structural color is observed and systematically studied by numerical simulations as well as optical characterizations. The central color is strongly related to the geometric size, which provides us with good opportunities to dye the colorless Al surface by controlling the hole/ring dimensions(both diameter and radius), and to open up broad applications in display, jewelry decoration, green production of packing papers, security code,and counterfeits prevention.
基金The project supported by National Natural Science Foundation of China (Nos. 40336052, 10375063)
文摘The linear mode conversion of electromagnetic waves in the hot, unmagnetized inhomogeneous plasma is studied numerically for different density profiles, and the dependence of the absorption coefficient on the incident angles and the wave frequencies are obtained for different electrons' temperature. The results show that the shapes of the density profiles and the electron's temperature create a certain effect on the coefficients of absorption, which reaches its peak value (about 50%) for appropriate parameters. Effective absorption occurs in a limited range of parameter q.
文摘In this paper, an overview of the theory of Mössbauer effect is covered, and the main hyperfine interactions parameters which affect the shape of the resultant Mössbauer spectrum are explained and illustrated as well. In principle, Mössbauer effect applies to any and all nuclides, but in practice, certain ideal properties are desirable;that is, the conditions for recoil-free emission and absorption of gamma rays must be optimized. Therefore, briefly discussed in this review, one of the most commonly used for practical and fundamental studies the 151Eu Mössbauer isotope. Also, the intermediate valence phenomena and their theoretical treatments are briefly discussed.
基金supported by the Swedish Research Council (VR)the Swedish Foundation for Strategic Research (SSF)+1 种基金the Nanometer Structure Consortium at Lund University(nmC@LU)Science and Engineering Research Council, Agency for Science, Technology and Research (Grant No.112290-4018)
文摘We study through electromagnetic modeling the absorption of light of a given wavelength in an array of horizontal In P nanowires of diameter less than 100 nm. Such absorption is performed most efficiently by using polarized light and by exciting a coupled optical resonance in a sparse array. In that case, we excite a resonance in the individual nanowires and couple the resonances in neighboring nanowires through a lattice resonance of the periodic array.At such a resonance, an array with nanowires of 80 nm in diameter can absorb more than eight times more strongly than a tight-packed array, despite containing a seven times smaller amount of the absorbing InP material.
基金This work was supported by the National Basic Research Program of China(Grant Nos.2012CB932302,2014CB848900)National Natural Science Foundation of China(U1232131,90921012,51172271,51372269 and 11375198)+3 种基金“Strategic Priority Research Program” of the Chinese Academy of Sciences(XDA09040202)Beijing Municipal Education Commission(Grant No.YB20108000101)and Fundamental Research Funds for the Central Universities(WK2310000035)Li Song thanks the recruitment program of global experts and the CAS Hundred Talent Program of China.The authors thank M.Habib from University of Science and Technology of China for his useful discussion.
文摘The predicted extraordinary properties of carbon nanotubes(CNTs)from theoretical calculations have great potential for many applications.However,reliable experimental determination of intrinsic properties at the single-tube level is currently a matter of concern,and many challenges remain because of the unhandled and nanoscale size of individual nanotubes.Here,we demonstrated a prototype to detect the intrinsic thermal conductivity of the single-wall carbon nanotube(SWCNT)and verify the significant non-resonant optical absorption behavior on tiny nanotubes by integrating the nanotube and ice into a new core-shell design.In particular,a reversible optical visualization method based on the individual suspended ultra-long SWCNT was first developed by wrapping a nanotube with ice in the cryogenic air environment.The light-induced thermal effect on the hybrid core-shell structure was used tomelt the ice shell,which subsequently acted as a temperature sensor to verify the intrinsic thermal conductivity of the core-like nanotube.More interestingly,we successfully determined for the first time the thermal response phenomenon of the tiny absorption cross section in SWCNT in the vertical-polarization configuration and the significant non-resonant absorption behavior in the parallel-polarization configuration.These investigations will provide a better understanding for the unique optical behaviors of CNT and enable the detection of intrinsic properties of various one-dimensional nanostructures such as nanotubes,nanowires,and nanoribbons.
基金New Delhi for financial assistance(Major research Project No:38-188/2009)The financial and infra-structure support of the Queensland University of Technology,Chemistry discipline
文摘The microwave synthesis of MnC204.2H2O nanoparticles was performed through the thermal double decomposition of oxalic acid dihydrate (C2H204.2H20) and Mn(OAc)2.4H2O solutions using a CATA-2R microwave reactor. Structural characterization was performed using X-ray diffraction (XRD), particle size and shape were analyzed using transmission electron microscopy (TEM). The chemical in the structures was investigated using electron paramagnetic resonance (EPR) as well as optical absorption spectra and near-infrared (NIR) spectroscopies. The nanocrystals produced with this method were pure and had a distorted rhombic octahedral structure.Manganese oxalate