A new resonance scattering method was proposed for the determination of chlorite, basing on the resonance scattering effect of rhodamine dye. In HCl-sodium acetate buffer solution, chlorite oxidizes 1- into 12 and the...A new resonance scattering method was proposed for the determination of chlorite, basing on the resonance scattering effect of rhodamine dye. In HCl-sodium acetate buffer solution, chlorite oxidizes 1- into 12 and the reaction of 12 and excess 1- results in If. It is respectively combined with rhodaminc dyes, including rhodamine B (RhB), butyl rhodamine B (b-RhB), rhodamine G (RhG) and rhodamine S (RhS), to form association complex particles, which exhibit stronger resonance scattering (RS) effect at 400 nm. The chlorite concentration of ClO2 in the range of 0.00726-0.218 μg/ml, 0.0102-0.292 μg/ml, 0.00726-0.145 μg/ml and 0.0290- 0.174 μg/ml is respectively linear to the RS intensity of association complex particle systems at 400 nm for the RhB, b-RhB, RhG and RhS. The detection limits of the four systems were respectively 0.00436, 0.00652, 0.00580 and 0.01450μg/ml ClO2^-. In the four systems, the RhB system possesses good stability and high sensitivity. It has been applied to the analysis of chlorite in wastewater with satisfactory results.展开更多
基金The Natural Foundation of Guangxi, China (No. 0575042) and the Foundation of Ten-Hundred-Thousand Talents of Guangxi, China
文摘A new resonance scattering method was proposed for the determination of chlorite, basing on the resonance scattering effect of rhodamine dye. In HCl-sodium acetate buffer solution, chlorite oxidizes 1- into 12 and the reaction of 12 and excess 1- results in If. It is respectively combined with rhodaminc dyes, including rhodamine B (RhB), butyl rhodamine B (b-RhB), rhodamine G (RhG) and rhodamine S (RhS), to form association complex particles, which exhibit stronger resonance scattering (RS) effect at 400 nm. The chlorite concentration of ClO2 in the range of 0.00726-0.218 μg/ml, 0.0102-0.292 μg/ml, 0.00726-0.145 μg/ml and 0.0290- 0.174 μg/ml is respectively linear to the RS intensity of association complex particle systems at 400 nm for the RhB, b-RhB, RhG and RhS. The detection limits of the four systems were respectively 0.00436, 0.00652, 0.00580 and 0.01450μg/ml ClO2^-. In the four systems, the RhB system possesses good stability and high sensitivity. It has been applied to the analysis of chlorite in wastewater with satisfactory results.