This paper presents the operation of LCL type resonant arc welding power supply with fixed frequency and its steady state mathematical model. Using MathCAD to get the results and compared it to the results of the SP...This paper presents the operation of LCL type resonant arc welding power supply with fixed frequency and its steady state mathematical model. Using MathCAD to get the results and compared it to the results of the SPICE simulative experiment, we verify this mathematical model is correct.展开更多
Objective To explore the influence of a polymorphism of protein tyrosine phosphatase receptor type R(PTPRR)gene rs1513105 on abnormal brain activities in resting-state patients with major depressive disorder(MDD)using...Objective To explore the influence of a polymorphism of protein tyrosine phosphatase receptor type R(PTPRR)gene rs1513105 on abnormal brain activities in resting-state patients with major depressive disorder(MDD)using the gene-imaging technology.Methods 54MDD and 43 gender-,age-,and education-matched con-展开更多
Spiral waves have been observed in the biological experiments on rat cortex perfused with drugs which can block inhibitory synapse and switch neuron excitability from type II to type I. To simulate the spiral waves ob...Spiral waves have been observed in the biological experiments on rat cortex perfused with drugs which can block inhibitory synapse and switch neuron excitability from type II to type I. To simulate the spiral waves observed in the experiment, the spatiotemporal patterns are investigated in a network composed of neurons with type I and II excitabilities and excitatory coupling. Spiral waves emerge when the percentage(p) of neurons with type I excitability in the network is at middle levels, which is dependent on the coupling strength. Compared with other spatial patterns which appear at different p values, spiral waves exhibit optimal spatial correlation at a certain spatial frequency, implying the occurrence of spatial coherence resonance-like phenomenon. Some dynamical characteristics of the network such as mean firing frequency and synchronous degree can be well interpreted with distinct properties between type I excitability and type II excitability. The results not only identify dynamics of spiral waves in neuronal networks composed of neurons with different excitabilities, but also are helpful to understanding the emergence of spiral waves observed in the biological experiment.展开更多
文摘This paper presents the operation of LCL type resonant arc welding power supply with fixed frequency and its steady state mathematical model. Using MathCAD to get the results and compared it to the results of the SPICE simulative experiment, we verify this mathematical model is correct.
文摘Objective To explore the influence of a polymorphism of protein tyrosine phosphatase receptor type R(PTPRR)gene rs1513105 on abnormal brain activities in resting-state patients with major depressive disorder(MDD)using the gene-imaging technology.Methods 54MDD and 43 gender-,age-,and education-matched con-
基金supported by the National Natural Science Foundation of China(Grant Nos.11372224&11572225)
文摘Spiral waves have been observed in the biological experiments on rat cortex perfused with drugs which can block inhibitory synapse and switch neuron excitability from type II to type I. To simulate the spiral waves observed in the experiment, the spatiotemporal patterns are investigated in a network composed of neurons with type I and II excitabilities and excitatory coupling. Spiral waves emerge when the percentage(p) of neurons with type I excitability in the network is at middle levels, which is dependent on the coupling strength. Compared with other spatial patterns which appear at different p values, spiral waves exhibit optimal spatial correlation at a certain spatial frequency, implying the occurrence of spatial coherence resonance-like phenomenon. Some dynamical characteristics of the network such as mean firing frequency and synchronous degree can be well interpreted with distinct properties between type I excitability and type II excitability. The results not only identify dynamics of spiral waves in neuronal networks composed of neurons with different excitabilities, but also are helpful to understanding the emergence of spiral waves observed in the biological experiment.