The convergence of computation and communication at network edges plays a significant role in coping with computation-intensive and delay-critical tasks.During the stage of network planning,the resource provisioning p...The convergence of computation and communication at network edges plays a significant role in coping with computation-intensive and delay-critical tasks.During the stage of network planning,the resource provisioning problem for edge nodes has to be investigated to provide prior information for future system configurations.This work focuses on how to quantify the computation capabilities of access points at network edges when provisioning resources of computation and communication in multi-cell wireless networks.The problem is formulated as a discrete and non-convex minimization problem,where practical constraints including delay requirements,the inter-cell interference,and resource allocation strategies are considered.An iterative algorithm is also developed based on decomposition theory and fractional programming to solve this problem.The analysis shows that the necessary computation capability needed for certain delay guarantee depends on resource allocation strategies for delay-critical tasks.For delay-tolerant tasks,it can be approximately estimated by a derived lower bound which ignores the scheduling strategy.The efficiency of the proposed algorithm is demonstrated using numerical results.展开更多
In a cloud environment, Virtual Machines (VMs) consolidation andresource provisioning are used to address the issues of workload fluctuations.VM consolidation aims to move the VMs from one host to another in order tor...In a cloud environment, Virtual Machines (VMs) consolidation andresource provisioning are used to address the issues of workload fluctuations.VM consolidation aims to move the VMs from one host to another in order toreduce the number of active hosts and save power. Whereas resource provisioningattempts to provide additional resource capacity to the VMs as needed in order tomeet Quality of Service (QoS) requirements. However, these techniques have aset of limitations in terms of the additional costs related to migration and scalingtime, and energy overhead that need further consideration. Therefore, this paperpresents a comprehensive literature review on the subject of dynamic resourcemanagement (i.e., VMs consolidation and resource provisioning) in cloud computing environments, along with an overall discussion of the closely relatedworks. The outcomes of this research can be used to enhance the developmentof predictive resource management techniques, by considering the awareness ofperformance variation, energy consumption and cost to efficiently manage thecloud resources.展开更多
Scientific workflows have gained the emerging attention in sophisti-cated large-scale scientific problem-solving environments.The pay-per-use model of cloud,its scalability and dynamic deployment enables it suited for ex...Scientific workflows have gained the emerging attention in sophisti-cated large-scale scientific problem-solving environments.The pay-per-use model of cloud,its scalability and dynamic deployment enables it suited for executing scientific workflow applications.Since the cloud is not a utopian environment,failures are inevitable that may result in experiencingfluctuations in the delivered performance.Though a single task failure occurs in workflow based applications,due to its task dependency nature,the reliability of the overall system will be affected drastically.Hence rather than reactive fault-tolerant approaches,proactive measures are vital in scientific workflows.This work puts forth an attempt to con-centrate on the exploration issue of structuring a nature inspired metaheuristics-Intelligent Water Drops Algorithm(IWDA)combined with an efficient machine learning approach-Support Vector Regression(SVR)for task failure prognostica-tion which facilitates proactive fault-tolerance in the scheduling of scientific workflow applications.The failure prediction models in this study have been implemented through SVR-based machine learning approaches and the precision accuracy of prediction is optimized by IWDA and several performance metrics were evaluated on various benchmark workflows.The experimental results prove that the proposed proactive fault-tolerant approach performs better compared with the other existing techniques.展开更多
Cloud computing provides the essential infrastructure for multi-tier Ambient Assisted Living(AAL) applications that facilitate people's lives. Resource provisioning is a critically important problem for AAL applic...Cloud computing provides the essential infrastructure for multi-tier Ambient Assisted Living(AAL) applications that facilitate people's lives. Resource provisioning is a critically important problem for AAL applications in cloud data centers(CDCs). This paper focuses on modeling and analysis of multi-tier AAL applications, and aims to optimize resource provisioning while meeting requests' response time constraint. This paper models a multi-tier AAL application as a hybrid multi-tier queueing model consisting of an M/M/c queueing model and multiple M/M/1 queueing models. Then, virtual machine(VM) allocation is formulated as a constrained optimization problem in a CDC, and is further solved with the proposed heuristic VM allocation algorithm(HVMA). The results demonstrate that the proposed model and algorithm can effectively achieve dynamic resource provisioning while meeting the performance constraint.展开更多
Conventional resource provision algorithms focus on how to maximize resource utilization and meet a fixed constraint of response time which be written in service level agreement(SLA).Unfortunately,the expected respo...Conventional resource provision algorithms focus on how to maximize resource utilization and meet a fixed constraint of response time which be written in service level agreement(SLA).Unfortunately,the expected response time is highly variable and it is usually longer than the value of SLA.So,it leads to a poor resource utilization and unnecessary servers migration.We develop a framework for customer-driven dynamic resource allocation in cloud computing.Termed CDSMS(customer-driven service manage system),and the framework’s contributions are twofold.First,it can reduce the total migration times by adjusting the value of parameters of response time dynamically according to customers’profiles.Second,it can choose a best resource provision algorithm automatically in different scenarios to improve resource utilization.Finally,we perform a serious experiment in a real cloud computing platform.Experimental results show that CDSMS provides a satisfactory solution for the prediction of expected response time and the interval period between two tasks and reduce the total resource usage cost.展开更多
基金Supported by the Shanghai Sailing Program(No.18YF1427900)the National Natural Science Foundation of China(No.61471347)the Shanghai Pujiang Program(No.2020PJD081).
文摘The convergence of computation and communication at network edges plays a significant role in coping with computation-intensive and delay-critical tasks.During the stage of network planning,the resource provisioning problem for edge nodes has to be investigated to provide prior information for future system configurations.This work focuses on how to quantify the computation capabilities of access points at network edges when provisioning resources of computation and communication in multi-cell wireless networks.The problem is formulated as a discrete and non-convex minimization problem,where practical constraints including delay requirements,the inter-cell interference,and resource allocation strategies are considered.An iterative algorithm is also developed based on decomposition theory and fractional programming to solve this problem.The analysis shows that the necessary computation capability needed for certain delay guarantee depends on resource allocation strategies for delay-critical tasks.For delay-tolerant tasks,it can be approximately estimated by a derived lower bound which ignores the scheduling strategy.The efficiency of the proposed algorithm is demonstrated using numerical results.
文摘In a cloud environment, Virtual Machines (VMs) consolidation andresource provisioning are used to address the issues of workload fluctuations.VM consolidation aims to move the VMs from one host to another in order toreduce the number of active hosts and save power. Whereas resource provisioningattempts to provide additional resource capacity to the VMs as needed in order tomeet Quality of Service (QoS) requirements. However, these techniques have aset of limitations in terms of the additional costs related to migration and scalingtime, and energy overhead that need further consideration. Therefore, this paperpresents a comprehensive literature review on the subject of dynamic resourcemanagement (i.e., VMs consolidation and resource provisioning) in cloud computing environments, along with an overall discussion of the closely relatedworks. The outcomes of this research can be used to enhance the developmentof predictive resource management techniques, by considering the awareness ofperformance variation, energy consumption and cost to efficiently manage thecloud resources.
文摘Scientific workflows have gained the emerging attention in sophisti-cated large-scale scientific problem-solving environments.The pay-per-use model of cloud,its scalability and dynamic deployment enables it suited for executing scientific workflow applications.Since the cloud is not a utopian environment,failures are inevitable that may result in experiencingfluctuations in the delivered performance.Though a single task failure occurs in workflow based applications,due to its task dependency nature,the reliability of the overall system will be affected drastically.Hence rather than reactive fault-tolerant approaches,proactive measures are vital in scientific workflows.This work puts forth an attempt to con-centrate on the exploration issue of structuring a nature inspired metaheuristics-Intelligent Water Drops Algorithm(IWDA)combined with an efficient machine learning approach-Support Vector Regression(SVR)for task failure prognostica-tion which facilitates proactive fault-tolerance in the scheduling of scientific workflow applications.The failure prediction models in this study have been implemented through SVR-based machine learning approaches and the precision accuracy of prediction is optimized by IWDA and several performance metrics were evaluated on various benchmark workflows.The experimental results prove that the proposed proactive fault-tolerant approach performs better compared with the other existing techniques.
文摘Cloud computing provides the essential infrastructure for multi-tier Ambient Assisted Living(AAL) applications that facilitate people's lives. Resource provisioning is a critically important problem for AAL applications in cloud data centers(CDCs). This paper focuses on modeling and analysis of multi-tier AAL applications, and aims to optimize resource provisioning while meeting requests' response time constraint. This paper models a multi-tier AAL application as a hybrid multi-tier queueing model consisting of an M/M/c queueing model and multiple M/M/1 queueing models. Then, virtual machine(VM) allocation is formulated as a constrained optimization problem in a CDC, and is further solved with the proposed heuristic VM allocation algorithm(HVMA). The results demonstrate that the proposed model and algorithm can effectively achieve dynamic resource provisioning while meeting the performance constraint.
基金Supported by the National Natural Science Foundation of China(61272454)
文摘Conventional resource provision algorithms focus on how to maximize resource utilization and meet a fixed constraint of response time which be written in service level agreement(SLA).Unfortunately,the expected response time is highly variable and it is usually longer than the value of SLA.So,it leads to a poor resource utilization and unnecessary servers migration.We develop a framework for customer-driven dynamic resource allocation in cloud computing.Termed CDSMS(customer-driven service manage system),and the framework’s contributions are twofold.First,it can reduce the total migration times by adjusting the value of parameters of response time dynamically according to customers’profiles.Second,it can choose a best resource provision algorithm automatically in different scenarios to improve resource utilization.Finally,we perform a serious experiment in a real cloud computing platform.Experimental results show that CDSMS provides a satisfactory solution for the prediction of expected response time and the interval period between two tasks and reduce the total resource usage cost.