The centralized radio access cellular network infrastructure based on centralized Super Base Station(CSBS) is a promising solution to reduce the high construction cost and energy consumption of conventional cellular n...The centralized radio access cellular network infrastructure based on centralized Super Base Station(CSBS) is a promising solution to reduce the high construction cost and energy consumption of conventional cellular networks. With CSBS, the computing resource for communication protocol processing could be managed flexibly according the protocol load to improve the resource efficiency. Since the protocol load changes frequently and may exceed the capacity of processors, load balancing is needed. However, existing load balancing mechanisms used in data centers cannot satisfy the real-time requirement of the communication protocol processing. Therefore, a new computing resource adjustment scheme is proposed for communication protocol processing in the CSBS architecture. First of all, the main principles of protocol processing resource adjustment is concluded, followed by the analysis on the processing resource outage probability that the computing resource becomes inadequate for protocol processing as load changes. Following the adjustment principles, the proposed scheme is designed to reduce the processing resource outage probability based onthe optimized connected graph which is constructed by the approximate Kruskal algorithm. Simulation re-sults show that compared with the conventional load balancing mechanisms, the proposed scheme can reduce the occurrence number of inadequate processing resource and the additional resource consumption of adjustment greatly.展开更多
Process discovery, as one of the most challenging process analysis techniques, aims to uncover business process models from event logs. Many process discovery approaches were invented in the past twenty years;however,...Process discovery, as one of the most challenging process analysis techniques, aims to uncover business process models from event logs. Many process discovery approaches were invented in the past twenty years;however, most of them have difficulties in handling multi-instance sub-processes. To address this challenge, we first introduce a multi-instance business process model(MBPM) to support the modeling of processes with multiple sub-process instantiations. Formal semantics of MBPMs are precisely defined by using multi-instance Petri nets(MPNs)that are an extension of Petri nets with distinguishable tokens.Then, a novel process discovery technique is developed to support the discovery of MBPMs from event logs with sub-process multi-instantiation information. In addition, we propose to measure the quality of the discovered MBPMs against the input event logs by transforming an MBPM to a classical Petri net such that existing quality metrics, e.g., fitness and precision, can be used.The proposed discovery approach is properly implemented as plugins in the Pro M toolkit. Based on a cloud resource management case study, we compare our approach with the state-of-theart process discovery techniques. The results demonstrate that our approach outperforms existing approaches to discover process models with multi-instance sub-processes.展开更多
Intergenerational conflict coordination is the fundamental requirement and core of sustainable development. In this paper, through the analysis of the future generations-oriented management mechanisms for intergenerat...Intergenerational conflict coordination is the fundamental requirement and core of sustainable development. In this paper, through the analysis of the future generations-oriented management mechanisms for intergenerational conflict, the idea of mechanisms and institution building for the coordination and management of intergenerational conflict is put forward. Furthermore, the future generations-oriented virtual negotiation support system (NSS) for intergenerational conflict is developed, built on the analysis of the process simulation of intergenerational wealth transfer, intergenerational equilibrium allocation of resources, and strategies for the mitigation and avoidance of intergenerational conflict, through the application of advanced IT technology. The virtual NSS for intergenerational conflict is helpful to the practical application of the sustainable development theory; on the other hand, it can be applied directly to the intergenerational equilibrium allocation of resources, national economic accounting, formulation of sustainable development strategies and other urgent national economic and social development issues. Finally, the sustainable development theory can be enriched and extended. Therefore, the development of the future generations-oriented virtual NSS for intergenerational conflict has certain theoretical and practical effects on the theory of sustainable development.展开更多
基金supported in part by the National Science Foundationof China under Grant number 61431001the Beijing Talents Fund under Grant number 2015000021223ZK31
文摘The centralized radio access cellular network infrastructure based on centralized Super Base Station(CSBS) is a promising solution to reduce the high construction cost and energy consumption of conventional cellular networks. With CSBS, the computing resource for communication protocol processing could be managed flexibly according the protocol load to improve the resource efficiency. Since the protocol load changes frequently and may exceed the capacity of processors, load balancing is needed. However, existing load balancing mechanisms used in data centers cannot satisfy the real-time requirement of the communication protocol processing. Therefore, a new computing resource adjustment scheme is proposed for communication protocol processing in the CSBS architecture. First of all, the main principles of protocol processing resource adjustment is concluded, followed by the analysis on the processing resource outage probability that the computing resource becomes inadequate for protocol processing as load changes. Following the adjustment principles, the proposed scheme is designed to reduce the processing resource outage probability based onthe optimized connected graph which is constructed by the approximate Kruskal algorithm. Simulation re-sults show that compared with the conventional load balancing mechanisms, the proposed scheme can reduce the occurrence number of inadequate processing resource and the additional resource consumption of adjustment greatly.
基金supported by the National Natural Science Foundation of China(61902222)the Taishan Scholars Program of Shandong Province(tsqn201909109)+1 种基金the Natural Science Excellent Youth Foundation of Shandong Province(ZR2021YQ45)the Youth Innovation Science and Technology Team Foundation of Shandong Higher School(2021KJ031)。
文摘Process discovery, as one of the most challenging process analysis techniques, aims to uncover business process models from event logs. Many process discovery approaches were invented in the past twenty years;however, most of them have difficulties in handling multi-instance sub-processes. To address this challenge, we first introduce a multi-instance business process model(MBPM) to support the modeling of processes with multiple sub-process instantiations. Formal semantics of MBPMs are precisely defined by using multi-instance Petri nets(MPNs)that are an extension of Petri nets with distinguishable tokens.Then, a novel process discovery technique is developed to support the discovery of MBPMs from event logs with sub-process multi-instantiation information. In addition, we propose to measure the quality of the discovered MBPMs against the input event logs by transforming an MBPM to a classical Petri net such that existing quality metrics, e.g., fitness and precision, can be used.The proposed discovery approach is properly implemented as plugins in the Pro M toolkit. Based on a cloud resource management case study, we compare our approach with the state-of-theart process discovery techniques. The results demonstrate that our approach outperforms existing approaches to discover process models with multi-instance sub-processes.
基金National Key Technol-ogy R&D Program (Grant No. 2006BAC02A15)the National Key Basic Research and Development Plan Projects (Grant No. 2006CB403403).
文摘Intergenerational conflict coordination is the fundamental requirement and core of sustainable development. In this paper, through the analysis of the future generations-oriented management mechanisms for intergenerational conflict, the idea of mechanisms and institution building for the coordination and management of intergenerational conflict is put forward. Furthermore, the future generations-oriented virtual negotiation support system (NSS) for intergenerational conflict is developed, built on the analysis of the process simulation of intergenerational wealth transfer, intergenerational equilibrium allocation of resources, and strategies for the mitigation and avoidance of intergenerational conflict, through the application of advanced IT technology. The virtual NSS for intergenerational conflict is helpful to the practical application of the sustainable development theory; on the other hand, it can be applied directly to the intergenerational equilibrium allocation of resources, national economic accounting, formulation of sustainable development strategies and other urgent national economic and social development issues. Finally, the sustainable development theory can be enriched and extended. Therefore, the development of the future generations-oriented virtual NSS for intergenerational conflict has certain theoretical and practical effects on the theory of sustainable development.