For the measurement of responsivity of an infrared photodetector,the most-used radiation source is a blackbody.In such a measurement system,distance between the blackbody,the photodetector and the aperture diameter ar...For the measurement of responsivity of an infrared photodetector,the most-used radiation source is a blackbody.In such a measurement system,distance between the blackbody,the photodetector and the aperture diameter are two parameters that contribute most measurement errors.In this work,we describe the configuration of our responsivity measurement system in great detail and present a method to calibrate the distance and aperture diameter.The core of this calibration method is to transfer direct measurements of these two parameters into an extraction procedure by fitting the experiment data to the calculated results.The calibration method is proved experimentally with a commercially extended InGaAs detector at a wide range of blackbody temperature,aperture diameter and distance.Then proof procedures are further extended into a detector fabricated in our laboratory and consistent results were obtained.展开更多
Si-dopedβ-Ga_(2)O_(3)films are fabricated through metal-organic chemical vapor deposition(MOCVD).Solar-blind ultraviolet(UV)photodetector(PD)based on the films is fabricated by standard photolithography,and the photo...Si-dopedβ-Ga_(2)O_(3)films are fabricated through metal-organic chemical vapor deposition(MOCVD).Solar-blind ultraviolet(UV)photodetector(PD)based on the films is fabricated by standard photolithography,and the photodetection properties are investigated.The results show that the photocurrent increases to 11.2 mA under 200μW·cm^(-2)254 nm illumination and±20 V bias,leading to photo-responsivity as high as 788 A·W^(-1).The Si-dopedβ-Ga2O3-based PD is promised to perform solar-blind photodetection with high performance.展开更多
The responsivity and the noise of a detector determine the sensitivity. Thermal energy usually affects both the responsivity and the noise spectral density. In this work, the noise characteristics and responsivity of ...The responsivity and the noise of a detector determine the sensitivity. Thermal energy usually affects both the responsivity and the noise spectral density. In this work, the noise characteristics and responsivity of an antenna-coupled AlGaN/GaN high-electron-mobility-transistor(HEMT) terahertz detector are evaluated at temperatures elevated from 300 K to 473 K. Noise spectrum measurement and a simultaneous measurement of the source–drain conductance and the terahertz photocurrent allow for detailed analysis of the electrical characteristics, the photoresponse, and the noise behavior. The responsivity is reduced from 59 mA/W to 11 mA/W by increasing the detector temperature from 300 K to 473 K. However,the noise spectral density maintains rather constantly around 1–2 pA/Hz^(1/2) at temperatures below 448 K, above which the noise spectrum abruptly shifts from Johnson-noise type into flicker-noise type and the noise density is increased up to one order of magnitude. The noise-equivalent power(NEP) is increased from 22 pW/Hz^(1/2) at 300 K to 60 pW/Hz^(1/2) at 448 K mainly due to the reduction in mobility. Above 448 K, the NEP is increased up to 1000 pW/Hz^(1/2) due to the strongly enhanced noise. The sensitivity can be recovered by cooling the detector back to room temperature.展开更多
In this paper the temperature dependence of responsivity and response time for 6H-SiC ultraviolet (UV) photodetector is simulated based on numerical model in the range from 300 K to 900 K. The simulation results sho...In this paper the temperature dependence of responsivity and response time for 6H-SiC ultraviolet (UV) photodetector is simulated based on numerical model in the range from 300 K to 900 K. The simulation results show that the responsivity and the response time of device are less sensitive to temperature and this kind of UV photodetector has excellent temperature stability. Also the effects of device structure and bias voltage on the responsivity and the response time are presented. The thicker the drift region is, the higher the responsivity and the longer the response time are. So the thickness of drift region has to be carefully designed to make trade-off between responsivity and response time.展开更多
Strontium titanate(SrTiO3),which is a crucial perovskite oxide with a direct energy band gap of 3.2 eV,holds great promise for ultraviolet(UV)photodetection.However,the response performance of the conventional SrTiO3-...Strontium titanate(SrTiO3),which is a crucial perovskite oxide with a direct energy band gap of 3.2 eV,holds great promise for ultraviolet(UV)photodetection.However,the response performance of the conventional SrTiO3-based photodetectors is limited by the large relative dielectric constant of the material,which reduces the internal electric field for electron-hole pair separation to form a current collected by electrodes.Recently,graphene/semiconductor hybrid photodetectors by van-der-Waals heteroepitaxy method demonstrate ultrahigh sensitivity,which is benefit from the interface junction architecture and then prolonged lifetime of photoexcited carriers.Here,a graphene/SrTiO3 interface-based photodetector is demonstrated with an ultrahigh responsivity of 1.2×106 A/W at the wavelength of 325 nm and∼2.4×104 A/W at 261 nm.The corresponding response time is in the order of∼ms.Compared with graphene/GaN interface junctionbased hybrid photodetectors,∼2 orders of magnitude improvement of the ultrahigh responsivity originates from a gain mechanism which correlates with the large work function difference induced long photo-carrier lifetime as well as the low background carrier density.The performance of high responsivity and fast response speed facilitates SrTiO3 material for further efforts seeking practical applications.展开更多
In this paper, we have demonstrated a high performance waveguide photodiode integrated diluted waveguide serving as a fibre-to-waveguide coupler to achieve high coupling efficiency. High responsivity (〉 1 A/W), hig...In this paper, we have demonstrated a high performance waveguide photodiode integrated diluted waveguide serving as a fibre-to-waveguide coupler to achieve high coupling efficiency. High responsivity (〉 1 A/W), high saturation power (〉 45 mA) in the static state and extremely low dark current density (0.04 pA/μm2) with 3 dB bandwidth at 13.4 GHz have been achieved.展开更多
A graphene/AlGaN deep-ultraviolet(UV)photodetector is presented with ultrahigh responsivity of 3.4×105 A/W at 261 nm incident wavelength and 149 pW light power.A gain mechanism based on electron trapping at the p...A graphene/AlGaN deep-ultraviolet(UV)photodetector is presented with ultrahigh responsivity of 3.4×105 A/W at 261 nm incident wavelength and 149 pW light power.A gain mechanism based on electron trapping at the potential well is proposed to be responsible for the high responsivity.To optimize the trade-off between responsivity and response speed,a back-gate electrode is designed at the AlGaN/GaN two-dimensional electron gas(2DEG)area which eliminates the persistent photocurrent effect and shortens the recovery time from several hours to milliseconds.The 2DEG gate is proposed as an alternative way to apply the back gate electrode on AlGaN based devices on insulating substrates.This work sheds light on a possible way for weak deep-UV light detection.展开更多
A top-illuminated circular mesa uni-traveling-carrier photodetector(UTC-PD) is proposed in this paper. By employing Gaussian graded doping in In Ga As absorption layer and In P depleted layer, the responsivity and h...A top-illuminated circular mesa uni-traveling-carrier photodetector(UTC-PD) is proposed in this paper. By employing Gaussian graded doping in In Ga As absorption layer and In P depleted layer, the responsivity and high speed response characteristics of the device are optimized simultaneously. The responsivity up to 1.071 A/W(the external quantum efficiency of 86%) is obtained at 1550 nm with a 40-μm diameter device under 10-V reverse bias condition. Meanwhile, the dark current of 7.874 n A and the 3-d B bandwidth of 11 GHz are obtained with the same device at a reverse bias voltage of3 V.展开更多
We analyze the responsivity and signal-to-noise ratio(SNR)of a punchthrough enhanced phototransistor(PEPT).Measurement results show that the PEPT exhibits a good response to light over a wide range of intensity.Becaus...We analyze the responsivity and signal-to-noise ratio(SNR)of a punchthrough enhanced phototransistor(PEPT).Measurement results show that the PEPT exhibits a good response to light over a wide range of intensity.Because the responsivity is still as high as 106 A/W when the bias voltage is as low as 0.2 V,the device is suitable for ultra-low voltage applications.Meanwhile,with 1–10μA bias current,the PEPT shows the best performance for the responsivity and SNR.When incident light is as low as 3.8×10^(-8) W/cm^(2),the responsivity reaches approximately 108 A/W.The super high responsivity of PEPTs makes it possible to fabricate small sized photodetector.展开更多
The near-infrared responsivity of a silicon photodetector employing the impurity photovoltaic (IPV) effect is investigated with a numerical method. The improvement of the responsivity can reach 0.358 A/W at a wavele...The near-infrared responsivity of a silicon photodetector employing the impurity photovoltaic (IPV) effect is investigated with a numerical method. The improvement of the responsivity can reach 0.358 A/W at a wavelength of about 1200 nm, and its corresponding quantum efficiency is 41.1%. The origin of the enhanced responsivity is attributed to the absorption of sub-bandgap photons, which results in the carrier transition from the impurity energy level to the conduction band. The results indicate that the IPV effect may provide a general approach to enhancing the responsivity of photodetectors.展开更多
We report fabrication and characterization of organic heterojunction UV detectors based on N,N'-bis(naphthalen- 1-y1)-N,N'-bis (phenyl) benzidine (NPB) and fullerene C60. The effects of different thicknesses o...We report fabrication and characterization of organic heterojunction UV detectors based on N,N'-bis(naphthalen- 1-y1)-N,N'-bis (phenyl) benzidine (NPB) and fullerene C60. The effects of different thicknesses of NPB and C60 layers are studied and compared. Notably, the optimal thicknesses of electron acceptor C60 and electron donor NPB are 40 nm and 80 nm, respectively. The J V characteristic curves of the device demonstrate a three-order- of-magnitude difference when illuminated under a 350nm UV light and in the dark at -0.5 V. The device exhibits high sensitivity in the region of 320-380nm with the peak located around 35Onm. Especially, it shows excellent photo-response characteristic with a responsivity as high as 315 mA/W under the illumination of 192μW.cm 2 350nm UV light at -5 V. These results indicate that the NPB/C60 heterojunction structure device might be used as low-cost low-voltage UV photodetectors.展开更多
A novel responsivity model, which is based on the solution of transport and continuity equation of carriers generated both in vertical and lateral PN junctions, is proposed for optical properties of stripe-shaped sili...A novel responsivity model, which is based on the solution of transport and continuity equation of carriers generated both in vertical and lateral PN junctions, is proposed for optical properties of stripe-shaped silicon ultraviolet (UV) photodiodes. With this model, the responsivity of the UV photodiode can be estimated. Fabricated in a standard 0.5 μm CMOS process, the measured spectral responsivity of the stripe-shaped UV photodiode shows a good match with the numerical simulation result of the responsivity model at the spectral of UV range. It means that the responsivity model, which is used for stripe-shaped UV photodiode, is reliable.展开更多
One of the most important parameter used for the evaluation of the energy rating of PV modules is, their spectral responsivities which are the measure of electrical performance parameters per incident solar radiation....One of the most important parameter used for the evaluation of the energy rating of PV modules is, their spectral responsivities which are the measure of electrical performance parameters per incident solar radiation. In this work, spectral responsivity measurements of a mono-crystalline, a poly-crystalline, a CIGS thin film and a bifacial module were measured using xenon-based flash type solar simulator system and a set of band pass filters. For the comprehensive characterization of parameters that may influence the spectral responsivity measurements, initially the simulator system was characterized both optically and thermally according to the IEC60904-9 and IEC60891 standard requirements. The optical characterizations in terms of spectral match, spatial non-uniformity and temporal instability indicate that the measured results (~3.0%, ~0.30% and ~0.20%) according to the IEC 60904-9 standard’s classification requirements correspond to A+A+A+ classes. Moreover, thermal characterizations in terms of the temperature uniformity show that over the 2 × 2 m area temperature uniformity of simulator system’s light distribution (1ºC) is almost two times better than the IEC 60891 standard requirements (±2ºC). Next, PV modules were electrically stabilized according to the IEC 61215-2 standard requirement’s (stability test) to reduce the fluctuations in their electrical performance parameters. Then, using the band pass filters, temperature controlled xenon-based solar simulator system and a reference PV module of the spectral responsivity of PV modules were measured from 400 nm to 1100 nm with 50 nm steps with relative uncertainty of 10<sup>-3</sup> level.展开更多
In the research field of energy storage dielectrics,the“responsivity”parameter,defined as the recyclable/recoverable energy density per unit electric field,has become critically important for a comprehensive evaluat...In the research field of energy storage dielectrics,the“responsivity”parameter,defined as the recyclable/recoverable energy density per unit electric field,has become critically important for a comprehensive evaluation of the energy storage capability of a dielectric.In this work,high recyclable energy density and responsivity,i.e.,W_(rec)=161.1 J·cm^(-3) and ξ=373.8 J·(kV·m^(2))^(-1),have been simultaneously achieved in a prototype perovskite dielectric,BaTiO_(3),which is integrated on Si at 500℃ in the form of a submicron thick film.This ferroelectric film features a multi-scale polar structure consisting of ferroelectric grains with different orientations and inner-grain ferroelastic domains.A LaNiO_(3) buffer layer is used to induce a{001}textured,columnar nanograin microstructure,while an elevated deposition temperature promotes lateral growth of the nanograins(in-plane diameter increases from~10-20 nm at lower temperatures to~30 nm).These preferably oriented and periodically regulated nanograins have resulted in a small remnant polarization and a delayed polarization saturation in the film’s P-E behavior,leading to a high recyclable energy density.Meanwhile,an improved polarizability/dielectric constant of the BaTiO_(3) film has produced a much larger maximum polarization than those deposited at lower temperatures at the same electric field,leading to a record-breaking responsivity for this simple perovskite.展开更多
Transition metal dichalcogenides(TMDCs)are promising candidates for future optoelectronic devices accounting for their high carrier mobility and excellent quantum efficiency.However,the limited light absorption effici...Transition metal dichalcogenides(TMDCs)are promising candidates for future optoelectronic devices accounting for their high carrier mobility and excellent quantum efficiency.However,the limited light absorption efficiency in atomically thin layers significantly hinders photocarrier generation,thereby impairing the optoelectronic performance and hindering practical applications.Herein,we successfully synthesized In_(2)Se_(3)/WSe_(2) heterostructures through a typical two-step chemical vapor deposition(CVD)method.The In_(2)Se_(3) nanosheet with strong light absorption capability,serving as the light absorption layer,was integrated with the monolayer WSe_(2),enhancing the photosensitivity of WSe_(2) significantly.Upon laser irradiation with a wavelength of 520 nm,the In_(2)Se_(3)/WSe_(2) heterostructure device shows an ultrahigh photoresponsivity with a value as high as 2333.5 A/W and a remarkable detectivity reaching up to 6.7×10^(12) Jones,which is the highest among almost the reported TMDCs-based heterostructures grown via CVD even some fabricated by mechanical exfoliation(ME).Combing the advantages of CVD method such as large scale,high yield,and clean interface,the In_(2)Se_(3)/WSe_(2) heterostructures would provide a novel path for future high-performance optoelectronic device.展开更多
Recently,the emerging 2μm waveband has gained increasing interest due to its great potential for a wide scope of applications.Compared with the existing optical communication windows at shorter wavelengths,it also of...Recently,the emerging 2μm waveband has gained increasing interest due to its great potential for a wide scope of applications.Compared with the existing optical communication windows at shorter wavelengths,it also offers distinct advantages of lower nonlinear absorption,better fabrication tolerance,and larger free carrier plasma effects for silicon photonics,which has been a proven device technology.While much progress has been witnessed for silicon photonics at the 2μm waveband,the primary challenge still exists for on-chip detectors.Despite the maturity and compatibility of the waveguide coupled photodetectors made of germanium,the 2μm regime is far beyond its cutoff wavelength.In this work,we demonstrate an efficient and high-speed on-chip waveguidecoupled germanium photodetector operating at the 2μm waveband.The weak sub-bandgap absorption of epitaxial germanium is greatly enhanced by a lateral separation absorption charge multiplication structure.The detector is fabricated by the standard process offered by a commercial foundry.The device has a benchmark performance with responsivity of 1.05 A/W and 3 dB bandwidth of 7.12 GHz,which is able to receive high-speed signals with up to 20 Gbit/s data rate.The availability of such an efficient and fast on-chip detector circumvents the barriers between silicon photonic integrated circuits and the potential applications at the 2μm waveband.展开更多
A novel backside-illuminated double-cliff-layer uni-traveling-carrier(DCL-UTC)photodiode with both high responsivity and ultra-broad bandwidth is designed and demonstrated.A thick absorption layer is adopted for high ...A novel backside-illuminated double-cliff-layer uni-traveling-carrier(DCL-UTC)photodiode with both high responsivity and ultra-broad bandwidth is designed and demonstrated.A thick absorption layer is adopted for high responsivity,and a depletion region with double cliff layers is proposed to alleviate the space charge effect and maintain overshoot electron velocity under large photocurrents.In addition,inductive coplanar waveguide electrodes are employed to enhance the frequency response performance.The 6-μm-diameter photodiode exhibits a high responsivity of 0.51 A/W and a large 3-dB bandwidth of 102 GHz.A high RF output power of 2.7 dBm is recorded at 100 GHz.展开更多
Photodetectors operating at the wavelength in the visible spectrum are key components in high-performance optoelectronic systems.In this work,massive nonlinearities in amorphous silicon p-i-n photodiodes enabled by th...Photodetectors operating at the wavelength in the visible spectrum are key components in high-performance optoelectronic systems.In this work,massive nonlinearities in amorphous silicon p-i-n photodiodes enabled by the photogating are presented,resulting in responsivities up to 744 mA/W at blue wavelengths.The detectors exhibit significant responsivity gains at optical modulation frequencies exceeding MHz and a more than 60-fold enhanced spectral response compared to the non-gated state.The detection limits down to 10.4 nW/mm^(2) and mean signal-to-noise ratio enhancements of 8.5dB are demonstrated by illuminating the sensor with an additional 6.6μW/mm^(2) red wavelength.Electro-optical simulations verify photocarrier modulation due to defect-induced field screening to be the origin of such high responsivity gains.The experimental results validate the theory and enable the development of commercially viable and complementary metal oxide semiconductor(CMOS)compatible high responsivity photodetectors operating in the visible range for low-light level imaging and detection.展开更多
Low-intensity light detection necessitates high-responsivity photodetectors.To achieve this,we report In_(0.53)Ga_(0.47)As∕In As∕In_(0.53)Ga_(0.47)As quantum well(InAs QW)photo-field-effect-transistors(photo-FETs)in...Low-intensity light detection necessitates high-responsivity photodetectors.To achieve this,we report In_(0.53)Ga_(0.47)As∕In As∕In_(0.53)Ga_(0.47)As quantum well(InAs QW)photo-field-effect-transistors(photo-FETs)integrated on a Si substrate using direct wafer bonding.Structure of the In As QW channel was carefully designed to achieve higher effective mobility and a narrower bandgap compared with a bulk In_(0.53)Ga_(0.47)As,while suppressing the generation of defects due to lattice relaxations.High-performance 2.6 nm In As QW photo-FETs were successfully demonstrated with a high on/off ratio of 10~5 and a high effective mobility of 2370 cm^(2)∕(V·s).The outstanding transport characteristics in the InAs QW channel result in an optical responsivity 1.8 times greater than InGaAs photo-FETs and the fast rising/falling times.Further,we experimentally confirmed that the InAs QW photo-FET can detect light in the short-wavelength infrared(SWIR;1.0–2.5μm)near 2μm thanks to bandgap engineering through In As QW structures.Our result suggests that the InAs QW photo-FET is promising for high-responsivity and extended-range SWIR photodetector applications.展开更多
Avalanche photodetectors(APDs) featuring an avalanche multiplication region are vital for reaching high sensitivity and responsivity in optical transceivers. Waveguide-coupled Ge-on-Si separate absorption, charge, and...Avalanche photodetectors(APDs) featuring an avalanche multiplication region are vital for reaching high sensitivity and responsivity in optical transceivers. Waveguide-coupled Ge-on-Si separate absorption, charge, and multiplication(SACM)APDs are popular due to their straightforward fabrication process, low optical propagation loss, and high detection sensitivity in optical communications. This paper introduces a lateral SACM Ge-on-Si APD on a silicon-on-insulator(SOI) wafer, featuring a 10 μm-long, 0.5 μm-wide Ge layer at 1310 nm on a standard 8-inch silicon photonics platform. The dark current measures approximately 38.6 μA at-21 V, indicating a breakdown voltage greater than-21 V for the device. The APDs exhibit a unitgain responsivity of 0.5 A/W at-10 V. At-15 V, their responsivity reaches 2.98 and 2.91 A/W with input powers of-10 and-25 dBm, respectively. The device's 3-dB bandwidth is 15 GHz with an input power of-15 dBm and a gain is 11.68. Experimental results show a peak in impedance at high bias voltages, attributed to inductor and capacitor(LC) circuit resonance, enhancing frequency response. Furthermore, 20 Gbps eye diagrams at-21 V and-9 dBm input power reveal signal to noise ratio(SNRs) of 5.30. This lateral SACM APD, compatible with the stand complementary metal oxide semiconductor(CMOS) process,shows that utilizing the peaking effect at low optical power increases bandwidth.展开更多
基金This work was supported by the National Key Technologies R&D Program of China(No.2019YFA0705203,2019YFA070104)the National Natural Science Foundation of China(No.62004189)the State Key Laboratory of Special Rare Metal Materials,Northwest Rare Metal Materials Research Institute(No.SKL2023K00X).
文摘For the measurement of responsivity of an infrared photodetector,the most-used radiation source is a blackbody.In such a measurement system,distance between the blackbody,the photodetector and the aperture diameter are two parameters that contribute most measurement errors.In this work,we describe the configuration of our responsivity measurement system in great detail and present a method to calibrate the distance and aperture diameter.The core of this calibration method is to transfer direct measurements of these two parameters into an extraction procedure by fitting the experiment data to the calculated results.The calibration method is proved experimentally with a commercially extended InGaAs detector at a wide range of blackbody temperature,aperture diameter and distance.Then proof procedures are further extended into a detector fabricated in our laboratory and consistent results were obtained.
基金the National Natural Science Foundation of China(Grant Nos.61774019 and 51572033)the Fund of State Key Laboratory of Information Photonics and Optical Communications(BUPT)the Fundamental Research Funds for the Central Universities,China.
文摘Si-dopedβ-Ga_(2)O_(3)films are fabricated through metal-organic chemical vapor deposition(MOCVD).Solar-blind ultraviolet(UV)photodetector(PD)based on the films is fabricated by standard photolithography,and the photodetection properties are investigated.The results show that the photocurrent increases to 11.2 mA under 200μW·cm^(-2)254 nm illumination and±20 V bias,leading to photo-responsivity as high as 788 A·W^(-1).The Si-dopedβ-Ga2O3-based PD is promised to perform solar-blind photodetection with high performance.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFF0100501)the National Natural Science Foundation of China(Grant Nos.61771466,61775231,and 61611530708)+1 种基金the Six Talent Peaks of Jiangsu Province,China(Grant No.XXRJ-079)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2017372)
文摘The responsivity and the noise of a detector determine the sensitivity. Thermal energy usually affects both the responsivity and the noise spectral density. In this work, the noise characteristics and responsivity of an antenna-coupled AlGaN/GaN high-electron-mobility-transistor(HEMT) terahertz detector are evaluated at temperatures elevated from 300 K to 473 K. Noise spectrum measurement and a simultaneous measurement of the source–drain conductance and the terahertz photocurrent allow for detailed analysis of the electrical characteristics, the photoresponse, and the noise behavior. The responsivity is reduced from 59 mA/W to 11 mA/W by increasing the detector temperature from 300 K to 473 K. However,the noise spectral density maintains rather constantly around 1–2 pA/Hz^(1/2) at temperatures below 448 K, above which the noise spectrum abruptly shifts from Johnson-noise type into flicker-noise type and the noise density is increased up to one order of magnitude. The noise-equivalent power(NEP) is increased from 22 pW/Hz^(1/2) at 300 K to 60 pW/Hz^(1/2) at 448 K mainly due to the reduction in mobility. Above 448 K, the NEP is increased up to 1000 pW/Hz^(1/2) due to the strongly enhanced noise. The sensitivity can be recovered by cooling the detector back to room temperature.
文摘In this paper the temperature dependence of responsivity and response time for 6H-SiC ultraviolet (UV) photodetector is simulated based on numerical model in the range from 300 K to 900 K. The simulation results show that the responsivity and the response time of device are less sensitive to temperature and this kind of UV photodetector has excellent temperature stability. Also the effects of device structure and bias voltage on the responsivity and the response time are presented. The thicker the drift region is, the higher the responsivity and the longer the response time are. So the thickness of drift region has to be carefully designed to make trade-off between responsivity and response time.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFF0104801 and 2018YFB0406601)the National Natural Science Foundation of China(Grant Nos.61804012 and 11721404).
文摘Strontium titanate(SrTiO3),which is a crucial perovskite oxide with a direct energy band gap of 3.2 eV,holds great promise for ultraviolet(UV)photodetection.However,the response performance of the conventional SrTiO3-based photodetectors is limited by the large relative dielectric constant of the material,which reduces the internal electric field for electron-hole pair separation to form a current collected by electrodes.Recently,graphene/semiconductor hybrid photodetectors by van-der-Waals heteroepitaxy method demonstrate ultrahigh sensitivity,which is benefit from the interface junction architecture and then prolonged lifetime of photoexcited carriers.Here,a graphene/SrTiO3 interface-based photodetector is demonstrated with an ultrahigh responsivity of 1.2×106 A/W at the wavelength of 325 nm and∼2.4×104 A/W at 261 nm.The corresponding response time is in the order of∼ms.Compared with graphene/GaN interface junctionbased hybrid photodetectors,∼2 orders of magnitude improvement of the ultrahigh responsivity originates from a gain mechanism which correlates with the large work function difference induced long photo-carrier lifetime as well as the low background carrier density.The performance of high responsivity and fast response speed facilitates SrTiO3 material for further efforts seeking practical applications.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2006CB302802)
文摘In this paper, we have demonstrated a high performance waveguide photodiode integrated diluted waveguide serving as a fibre-to-waveguide coupler to achieve high coupling efficiency. High responsivity (〉 1 A/W), high saturation power (〉 45 mA) in the static state and extremely low dark current density (0.04 pA/μm2) with 3 dB bandwidth at 13.4 GHz have been achieved.
基金Project supported by the Research Innovation Fund for College Students of Beijing University of Posts and Telecommunications(Grant No.202002046)the National Natural Science Foundation of China(Grant No.61804012).
文摘A graphene/AlGaN deep-ultraviolet(UV)photodetector is presented with ultrahigh responsivity of 3.4×105 A/W at 261 nm incident wavelength and 149 pW light power.A gain mechanism based on electron trapping at the potential well is proposed to be responsible for the high responsivity.To optimize the trade-off between responsivity and response speed,a back-gate electrode is designed at the AlGaN/GaN two-dimensional electron gas(2DEG)area which eliminates the persistent photocurrent effect and shortens the recovery time from several hours to milliseconds.The 2DEG gate is proposed as an alternative way to apply the back gate electrode on AlGaN based devices on insulating substrates.This work sheds light on a possible way for weak deep-UV light detection.
基金Project supported partially by the National Natural Science Foundation of China(Grant Nos.61274044 and 61077049)the National Basic Research Program of China(Grant No.2010CB327600)+3 种基金the Program of Key International Science and Technology Cooperation Projects,China(Grant No.2011RR000100)the 111 Project of China(Grant No.B07005)the Specialized Research Fund for the Doctoral Program of China(Grant No.20130005130001)the Natural Science Foundation of Beijing,China(Grant No.4132069)
文摘A top-illuminated circular mesa uni-traveling-carrier photodetector(UTC-PD) is proposed in this paper. By employing Gaussian graded doping in In Ga As absorption layer and In P depleted layer, the responsivity and high speed response characteristics of the device are optimized simultaneously. The responsivity up to 1.071 A/W(the external quantum efficiency of 86%) is obtained at 1550 nm with a 40-μm diameter device under 10-V reverse bias condition. Meanwhile, the dark current of 7.874 n A and the 3-d B bandwidth of 11 GHz are obtained with the same device at a reverse bias voltage of3 V.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61076046 and 61106003the Science and Technology Development Plan Projects of Jilin Province(No 20100501)。
文摘We analyze the responsivity and signal-to-noise ratio(SNR)of a punchthrough enhanced phototransistor(PEPT).Measurement results show that the PEPT exhibits a good response to light over a wide range of intensity.Because the responsivity is still as high as 106 A/W when the bias voltage is as low as 0.2 V,the device is suitable for ultra-low voltage applications.Meanwhile,with 1–10μA bias current,the PEPT shows the best performance for the responsivity and SNR.When incident light is as low as 3.8×10^(-8) W/cm^(2),the responsivity reaches approximately 108 A/W.The super high responsivity of PEPTs makes it possible to fabricate small sized photodetector.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61464007,61306084,and 51361022)the Postdoctoral Science Foundation of Jiangxi Province,China(Grant No.2014KY32)the Natural Science Foundation of Jiangxi Province,China(Grant No.20122BAB202002)
文摘The near-infrared responsivity of a silicon photodetector employing the impurity photovoltaic (IPV) effect is investigated with a numerical method. The improvement of the responsivity can reach 0.358 A/W at a wavelength of about 1200 nm, and its corresponding quantum efficiency is 41.1%. The origin of the enhanced responsivity is attributed to the absorption of sub-bandgap photons, which results in the carrier transition from the impurity energy level to the conduction band. The results indicate that the IPV effect may provide a general approach to enhancing the responsivity of photodetectors.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61274068 and 61404058the Project of Science and Technology Development Plan of Jilin Province under Grant Nos 20150204003GX and 20130206021GXthe Project of Science and Technology Plan of Changchun City under Grant No 14KG020
文摘We report fabrication and characterization of organic heterojunction UV detectors based on N,N'-bis(naphthalen- 1-y1)-N,N'-bis (phenyl) benzidine (NPB) and fullerene C60. The effects of different thicknesses of NPB and C60 layers are studied and compared. Notably, the optimal thicknesses of electron acceptor C60 and electron donor NPB are 40 nm and 80 nm, respectively. The J V characteristic curves of the device demonstrate a three-order- of-magnitude difference when illuminated under a 350nm UV light and in the dark at -0.5 V. The device exhibits high sensitivity in the region of 320-380nm with the peak located around 35Onm. Especially, it shows excellent photo-response characteristic with a responsivity as high as 315 mA/W under the illumination of 192μW.cm 2 350nm UV light at -5 V. These results indicate that the NPB/C60 heterojunction structure device might be used as low-cost low-voltage UV photodetectors.
文摘A novel responsivity model, which is based on the solution of transport and continuity equation of carriers generated both in vertical and lateral PN junctions, is proposed for optical properties of stripe-shaped silicon ultraviolet (UV) photodiodes. With this model, the responsivity of the UV photodiode can be estimated. Fabricated in a standard 0.5 μm CMOS process, the measured spectral responsivity of the stripe-shaped UV photodiode shows a good match with the numerical simulation result of the responsivity model at the spectral of UV range. It means that the responsivity model, which is used for stripe-shaped UV photodiode, is reliable.
文摘One of the most important parameter used for the evaluation of the energy rating of PV modules is, their spectral responsivities which are the measure of electrical performance parameters per incident solar radiation. In this work, spectral responsivity measurements of a mono-crystalline, a poly-crystalline, a CIGS thin film and a bifacial module were measured using xenon-based flash type solar simulator system and a set of band pass filters. For the comprehensive characterization of parameters that may influence the spectral responsivity measurements, initially the simulator system was characterized both optically and thermally according to the IEC60904-9 and IEC60891 standard requirements. The optical characterizations in terms of spectral match, spatial non-uniformity and temporal instability indicate that the measured results (~3.0%, ~0.30% and ~0.20%) according to the IEC 60904-9 standard’s classification requirements correspond to A+A+A+ classes. Moreover, thermal characterizations in terms of the temperature uniformity show that over the 2 × 2 m area temperature uniformity of simulator system’s light distribution (1ºC) is almost two times better than the IEC 60891 standard requirements (±2ºC). Next, PV modules were electrically stabilized according to the IEC 61215-2 standard requirement’s (stability test) to reduce the fluctuations in their electrical performance parameters. Then, using the band pass filters, temperature controlled xenon-based solar simulator system and a reference PV module of the spectral responsivity of PV modules were measured from 400 nm to 1100 nm with 50 nm steps with relative uncertainty of 10<sup>-3</sup> level.
基金the National Natural Science Foundation of China(Grant Nos.51772175 and 52002192)Natural Science Foundation of Shandong Province(Grant Nos.ZR2022ZD39,ZR2022ME075,ZR2020QE042,ZR2022ME031,and ZR2022QB138)+3 种基金the Science,Education and Industry Integration Pilot Projects of Qilu University of Technology(Shandong Academy of Sciences)(Grant Nos.2022GH018 and 2022PY055)the Jinan City Science and Technology Bureau(Grant No.2021GXRC055)the Education Department of Hunan Province/Xiangtan University(Grant No.KZ0807969)funding for top talents at Qilu University of Technology(Shandong Academy of Sciences).
文摘In the research field of energy storage dielectrics,the“responsivity”parameter,defined as the recyclable/recoverable energy density per unit electric field,has become critically important for a comprehensive evaluation of the energy storage capability of a dielectric.In this work,high recyclable energy density and responsivity,i.e.,W_(rec)=161.1 J·cm^(-3) and ξ=373.8 J·(kV·m^(2))^(-1),have been simultaneously achieved in a prototype perovskite dielectric,BaTiO_(3),which is integrated on Si at 500℃ in the form of a submicron thick film.This ferroelectric film features a multi-scale polar structure consisting of ferroelectric grains with different orientations and inner-grain ferroelastic domains.A LaNiO_(3) buffer layer is used to induce a{001}textured,columnar nanograin microstructure,while an elevated deposition temperature promotes lateral growth of the nanograins(in-plane diameter increases from~10-20 nm at lower temperatures to~30 nm).These preferably oriented and periodically regulated nanograins have resulted in a small remnant polarization and a delayed polarization saturation in the film’s P-E behavior,leading to a high recyclable energy density.Meanwhile,an improved polarizability/dielectric constant of the BaTiO_(3) film has produced a much larger maximum polarization than those deposited at lower temperatures at the same electric field,leading to a record-breaking responsivity for this simple perovskite.
基金support from the following funding:the National Key R&D Program of China(No.2022YFA1204300)the National Natural Science Foundation of China(Nos.62104066,52221001,62090035,U19A2090,U22A20138 and 51902098)+5 种基金the Natural Science Foundation of Hunan Province(No.2021JJ20016)the Science and Technology Innovation Program of Hunan Province(Nos.2021RC3061 and 2020RC2028)the Key Program of Science and Technology Department of Hunan Province(Nos.2019XK2001 and 2020XK2001)the Open Project Program of Wuhan National Laboratory for Optoelectronics(No.2020WNLOKF016)the National Postdoctoral Program for Innovative Talents(No.BX2021094)the Postdoctoral Science Foundation of China(No.2020M680112).
文摘Transition metal dichalcogenides(TMDCs)are promising candidates for future optoelectronic devices accounting for their high carrier mobility and excellent quantum efficiency.However,the limited light absorption efficiency in atomically thin layers significantly hinders photocarrier generation,thereby impairing the optoelectronic performance and hindering practical applications.Herein,we successfully synthesized In_(2)Se_(3)/WSe_(2) heterostructures through a typical two-step chemical vapor deposition(CVD)method.The In_(2)Se_(3) nanosheet with strong light absorption capability,serving as the light absorption layer,was integrated with the monolayer WSe_(2),enhancing the photosensitivity of WSe_(2) significantly.Upon laser irradiation with a wavelength of 520 nm,the In_(2)Se_(3)/WSe_(2) heterostructure device shows an ultrahigh photoresponsivity with a value as high as 2333.5 A/W and a remarkable detectivity reaching up to 6.7×10^(12) Jones,which is the highest among almost the reported TMDCs-based heterostructures grown via CVD even some fabricated by mechanical exfoliation(ME).Combing the advantages of CVD method such as large scale,high yield,and clean interface,the In_(2)Se_(3)/WSe_(2) heterostructures would provide a novel path for future high-performance optoelectronic device.
基金National Natural Science Foundation of China(U21A20454)Science,Technology and Innovation Commission of Shenzhen Municipality (JCYJ20220818102406013,RCYX20210609103707009)Natural Science Foundation of Guangdong Province for Distinguished Young Scholars(2022B1515020057)。
文摘Recently,the emerging 2μm waveband has gained increasing interest due to its great potential for a wide scope of applications.Compared with the existing optical communication windows at shorter wavelengths,it also offers distinct advantages of lower nonlinear absorption,better fabrication tolerance,and larger free carrier plasma effects for silicon photonics,which has been a proven device technology.While much progress has been witnessed for silicon photonics at the 2μm waveband,the primary challenge still exists for on-chip detectors.Despite the maturity and compatibility of the waveguide coupled photodetectors made of germanium,the 2μm regime is far beyond its cutoff wavelength.In this work,we demonstrate an efficient and high-speed on-chip waveguidecoupled germanium photodetector operating at the 2μm waveband.The weak sub-bandgap absorption of epitaxial germanium is greatly enhanced by a lateral separation absorption charge multiplication structure.The detector is fabricated by the standard process offered by a commercial foundry.The device has a benchmark performance with responsivity of 1.05 A/W and 3 dB bandwidth of 7.12 GHz,which is able to receive high-speed signals with up to 20 Gbit/s data rate.The availability of such an efficient and fast on-chip detector circumvents the barriers between silicon photonic integrated circuits and the potential applications at the 2μm waveband.
基金This work was supported in part by the National Key R&D Program of China(No.2022YFB2803002)National Natural Science Foundation of China(Nos.62235005,62127814,62225405,61975093,61927811,61991443,and 61974080)Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics.
文摘A novel backside-illuminated double-cliff-layer uni-traveling-carrier(DCL-UTC)photodiode with both high responsivity and ultra-broad bandwidth is designed and demonstrated.A thick absorption layer is adopted for high responsivity,and a depletion region with double cliff layers is proposed to alleviate the space charge effect and maintain overshoot electron velocity under large photocurrents.In addition,inductive coplanar waveguide electrodes are employed to enhance the frequency response performance.The 6-μm-diameter photodiode exhibits a high responsivity of 0.51 A/W and a large 3-dB bandwidth of 102 GHz.A high RF output power of 2.7 dBm is recorded at 100 GHz.
基金This work has received funding from the German Description Fund for Regional Development(Grant No.EFRE0200545)for the execution of the project and from DFG(Grant No.INST 221/131-1)for utilizing the instruments of the Micro and Nanoanalytics Facility(MNaF)for microscopy.
文摘Photodetectors operating at the wavelength in the visible spectrum are key components in high-performance optoelectronic systems.In this work,massive nonlinearities in amorphous silicon p-i-n photodiodes enabled by the photogating are presented,resulting in responsivities up to 744 mA/W at blue wavelengths.The detectors exhibit significant responsivity gains at optical modulation frequencies exceeding MHz and a more than 60-fold enhanced spectral response compared to the non-gated state.The detection limits down to 10.4 nW/mm^(2) and mean signal-to-noise ratio enhancements of 8.5dB are demonstrated by illuminating the sensor with an additional 6.6μW/mm^(2) red wavelength.Electro-optical simulations verify photocarrier modulation due to defect-induced field screening to be the origin of such high responsivity gains.The experimental results validate the theory and enable the development of commercially viable and complementary metal oxide semiconductor(CMOS)compatible high responsivity photodetectors operating in the visible range for low-light level imaging and detection.
基金Institute for Information and Communications Technology Promotion(2022-0-00208)National Research Foundation of Korea(2022M3F3A2A01065057,2022R1C1C1007333)Korea Institute of Science and Technology(2E32242)。
文摘Low-intensity light detection necessitates high-responsivity photodetectors.To achieve this,we report In_(0.53)Ga_(0.47)As∕In As∕In_(0.53)Ga_(0.47)As quantum well(InAs QW)photo-field-effect-transistors(photo-FETs)integrated on a Si substrate using direct wafer bonding.Structure of the In As QW channel was carefully designed to achieve higher effective mobility and a narrower bandgap compared with a bulk In_(0.53)Ga_(0.47)As,while suppressing the generation of defects due to lattice relaxations.High-performance 2.6 nm In As QW photo-FETs were successfully demonstrated with a high on/off ratio of 10~5 and a high effective mobility of 2370 cm^(2)∕(V·s).The outstanding transport characteristics in the InAs QW channel result in an optical responsivity 1.8 times greater than InGaAs photo-FETs and the fast rising/falling times.Further,we experimentally confirmed that the InAs QW photo-FET can detect light in the short-wavelength infrared(SWIR;1.0–2.5μm)near 2μm thanks to bandgap engineering through In As QW structures.Our result suggests that the InAs QW photo-FET is promising for high-responsivity and extended-range SWIR photodetector applications.
文摘Avalanche photodetectors(APDs) featuring an avalanche multiplication region are vital for reaching high sensitivity and responsivity in optical transceivers. Waveguide-coupled Ge-on-Si separate absorption, charge, and multiplication(SACM)APDs are popular due to their straightforward fabrication process, low optical propagation loss, and high detection sensitivity in optical communications. This paper introduces a lateral SACM Ge-on-Si APD on a silicon-on-insulator(SOI) wafer, featuring a 10 μm-long, 0.5 μm-wide Ge layer at 1310 nm on a standard 8-inch silicon photonics platform. The dark current measures approximately 38.6 μA at-21 V, indicating a breakdown voltage greater than-21 V for the device. The APDs exhibit a unitgain responsivity of 0.5 A/W at-10 V. At-15 V, their responsivity reaches 2.98 and 2.91 A/W with input powers of-10 and-25 dBm, respectively. The device's 3-dB bandwidth is 15 GHz with an input power of-15 dBm and a gain is 11.68. Experimental results show a peak in impedance at high bias voltages, attributed to inductor and capacitor(LC) circuit resonance, enhancing frequency response. Furthermore, 20 Gbps eye diagrams at-21 V and-9 dBm input power reveal signal to noise ratio(SNRs) of 5.30. This lateral SACM APD, compatible with the stand complementary metal oxide semiconductor(CMOS) process,shows that utilizing the peaking effect at low optical power increases bandwidth.