The wear rate of dental restoration materials on fixed, removable, and implant prostheses is important in the maintenance of cuspate form, masticatory efficiency and occlusal stability. Many permanent restoration mate...The wear rate of dental restoration materials on fixed, removable, and implant prostheses is important in the maintenance of cuspate form, masticatory efficiency and occlusal stability. Many permanent restoration materials such as composite, amalgam, gold, or porcelain show enough resistance to wear, but the wear rates of newly developed materials are generally unknown. To evaluate the wear rate of these dental materials, in vivo (clinic) and in vitro methods can be used. Since in vivo investigations are expensive, time consuming, and difficult to standardize, various in vitro methods have been developed. The use of a chewing machine is considered the best method, because a variety of wear mechanisms, temperature changes, and chemical effects of food and drink can be simulated simultaneously. This paper describes a dual axis chewing simulator for in vitro wear test of dental restoration materials. It consists of 8 test chambers, two stepper motors and related mechanism, a hot and cool water circle system, and a control unit. In the chambers, samples and antagonists make chewing movements vertically and Albert Ludwigs University, School of dentistry, Freiburg, Germany (Lü XY, Kern M and Strub JR) horizontally driven by the stepper motors so that the gnashing and slippage of two teeth against each other is simulated. A weighted test object is programmed to collide with a sample under precise operator control. The antagonists strike against the samples at various speeds from a slow nudge to snapping. Sample holders are designed for installation of varying samples, from single teeth to complete dentures. Two baths, six valves, and a group of pipes are used for the thermocycling. The machine can simulate various chewing modes in the mouth, including fully programmable thermal water cycling between 5℃ and 60℃ The control unit consists of a computer system with a built in specific program. Important operations such as “Start”, “Zero point”, and “Stop” are carried out by pressing the function keys on the front board of the unit. During the programming process and the simulation, several test modes and relevant test parameters are shown on the monitor. The control unit is connected via a series of interfaces to different controlled parts of the machine, such as the stepper motors and the pumps of cool and warm water.展开更多
To evaluate the effect of restorative materials on stress distribution of endodontically treated teeth, the 3D models of an endodontically treated mand^ular first molar, restoration, and cement layer were created. Thr...To evaluate the effect of restorative materials on stress distribution of endodontically treated teeth, the 3D models of an endodontically treated mand^ular first molar, restoration, and cement layer were created. Three different materials (composite resin, ceramage and ceramic) were studied and two loading conditions (vertical and oblique load) were simulated. Mohr-Coulomb failure criterion of enamel, dentine, endocrown and cement were evaluated separately. It is indicated that under both loading conditions, the highest values of Mohr-Coulomb failure criterion were observed in Ceramage-restored group for remaining tooth structure while in ceramic-restored group for the restoration. Compared to composite resin and Ceramage, ceramic endocrown transferred less stress, namely was more protective to the tooth structure.展开更多
Purpose: To investigate the periapical tissue response after root end filling with intermediate restorative material (IRM) and filling of the root-end resection bone defects with autogenous bone or a bone graft substi...Purpose: To investigate the periapical tissue response after root end filling with intermediate restorative material (IRM) and filling of the root-end resection bone defects with autogenous bone or a bone graft substitute in comparison to empty controls. Materials and Methods: Vital roots of the second, third and fourth mandibular premolars in six healthy mongrel dogs were apectomized. The root canals were prepared and sealed with IRM following a standardized surgical procedure. The resection bone defects were either filled with autogenous bone (PB) or one of the bone graft substitutes;CERAMENTTM|BONE VOID FILLER, ChronOS?, TigranTM PTG, Easygraft? CLASSIC or left empty. After 120 days the animals were sacrificed and the specimens were analyzed radiologically and histologically. Kruskal-Wallis and Mann-Whitney tests were performed for statistical evaluation. Results: 34 sections were analyzed histologically. The evaluation revealed a variation in the outcome amongst the tested options, regarding reestablishment of the periapical bone healing and inflammatory infiltration in the sections. According to the tested variables, there was no statistical significant difference between the materials when comparing all groups as a whole. When comparing individual materials to each other there was statistical differences among some of the tested materials. Conclusion: The healing outcome after periapical surgery of a five-wall resection defect could not be increased by infill with autogenous bone or bone graft substitutes. The most important factor for the healing outcome in periapical surgery is the quality of the root-end sealing. The healing outcome after some of the tested bone substitutes, might be improved by longer healing time.展开更多
Background: To date there is not a material considered ideal for the lased dentin. Objective: To compare the bond strength to human lased dentin of self-etch and etch-and-rinse adhesive systems, a self-adhesive resin ...Background: To date there is not a material considered ideal for the lased dentin. Objective: To compare the bond strength to human lased dentin of self-etch and etch-and-rinse adhesive systems, a self-adhesive resin composite and a glass-ionomer cement. Methods: Forty human molars were sectioned to obtain a 2 mm-thick slab of mid-coronal dentin. The occlusal surface of each slab was polished by SiC paper (P600) for 10 s. Then an half part of dentin slabs was randomly selected for receiving treatment with 2.94 μm Er:YAG laser (DEKA, Smart 2940D Plus) with 10 Hz at 100 mJ, pulse duration of 230 μs with contact tip. Dentin slabs were randomly divided into four groups (n = 10). Six conical frustum-shaped build-ups were constructed on the occlusal surface of each dentin slab using bonding agents (OptiBond Solo Plus Group 1;OptiBond All-in-one Group 2) combined with a resin composite (Premise Flow), self-adhesive resin composites (Vertise Flow Group 3) and a glass-ionomer cement (Ketac-Fil Group 4). Specimens were subjected to μSBS test. Data were analyzed by a mixed model and Tukey’s test. Results: Measured bond strengths were (mean ± standard deviation): 20.8 ± 5.5 MPa (laser treatment) and 15.6 ± 4.5 MPa (SiC paper) for Group 1, 18.9 ± 5.3 MPa (laser treatment) and 14.0 ± 4.3 MPa (SiC paper) for Group 2, 7.9 ± 2.8 MPa (laser treatment) and 4.3 ± 2.2 MPa (SiC paper) for Group 3, 4.7 ± 1.9 MPa (laser treatment) and 2.6 ± 1.2 MPa (SiC paper) for Group 4. The inferential analysis showed that the dentin laser treatment significantly affected the bond strength within each individual group. On dentin treated with laser the bond strengths recorded for build-ups constructed with etch and rinse and self-etch adhesive systems were significantly higher than those recorded for build-ups constructed with self-adhesive resin composite and glass-ionomer cement (p < 0.0001). Similarly, on dentin treated with SiC paper the bond strengths recorded for build-ups constructed with etch and rinse and self-etch adhesive systems were significantly higher than those recorded for build-ups constructed with self-adhesive resin composite and glass-ionomer cement (p < 0.0001). Conclusion: Er:YAG laser treatment has increased the shear bond strength of all the adhesive materials used.展开更多
We evaluated the effect of water storage on fluoride release and mechanical properties of compomer restorative material. Fluoride release was recorded using a specific fluoride electrode. Flexural properties and fract...We evaluated the effect of water storage on fluoride release and mechanical properties of compomer restorative material. Fluoride release was recorded using a specific fluoride electrode. Flexural properties and fracture toughness were measured using a universal testing machine. Vickers hardness was measured using a micro-hardness tester. There was initial burst of fluoride release up to 1 w, which was diminished to a low level in 1 mon and remained relatively constant over 6 mon. Flexural strength and hardness were increased up to 1 mon followed by a gradual decrease up to 6 mon. Flexural modulus was decreased gradually up to 6 mon. Fracture toughness was increased during the first week and gradually decreased over the storage period. We concluded that flexural properties, fracture toughness, Vickers hardness and fluoride release of compomer were sensitive to water as well as storage time. There was a significant effect of fluoride release on the studied mechanical properties.展开更多
文摘The wear rate of dental restoration materials on fixed, removable, and implant prostheses is important in the maintenance of cuspate form, masticatory efficiency and occlusal stability. Many permanent restoration materials such as composite, amalgam, gold, or porcelain show enough resistance to wear, but the wear rates of newly developed materials are generally unknown. To evaluate the wear rate of these dental materials, in vivo (clinic) and in vitro methods can be used. Since in vivo investigations are expensive, time consuming, and difficult to standardize, various in vitro methods have been developed. The use of a chewing machine is considered the best method, because a variety of wear mechanisms, temperature changes, and chemical effects of food and drink can be simulated simultaneously. This paper describes a dual axis chewing simulator for in vitro wear test of dental restoration materials. It consists of 8 test chambers, two stepper motors and related mechanism, a hot and cool water circle system, and a control unit. In the chambers, samples and antagonists make chewing movements vertically and Albert Ludwigs University, School of dentistry, Freiburg, Germany (Lü XY, Kern M and Strub JR) horizontally driven by the stepper motors so that the gnashing and slippage of two teeth against each other is simulated. A weighted test object is programmed to collide with a sample under precise operator control. The antagonists strike against the samples at various speeds from a slow nudge to snapping. Sample holders are designed for installation of varying samples, from single teeth to complete dentures. Two baths, six valves, and a group of pipes are used for the thermocycling. The machine can simulate various chewing modes in the mouth, including fully programmable thermal water cycling between 5℃ and 60℃ The control unit consists of a computer system with a built in specific program. Important operations such as “Start”, “Zero point”, and “Stop” are carried out by pressing the function keys on the front board of the unit. During the programming process and the simulation, several test modes and relevant test parameters are shown on the monitor. The control unit is connected via a series of interfaces to different controlled parts of the machine, such as the stepper motors and the pumps of cool and warm water.
基金Founded by National Natural Science Foundation of China(No.51305306)Hubei Province Science and Technology Support Program(No.2013BCB025)Fundamental Research Funds for the Central University(No.2042014kf0274)
文摘To evaluate the effect of restorative materials on stress distribution of endodontically treated teeth, the 3D models of an endodontically treated mand^ular first molar, restoration, and cement layer were created. Three different materials (composite resin, ceramage and ceramic) were studied and two loading conditions (vertical and oblique load) were simulated. Mohr-Coulomb failure criterion of enamel, dentine, endocrown and cement were evaluated separately. It is indicated that under both loading conditions, the highest values of Mohr-Coulomb failure criterion were observed in Ceramage-restored group for remaining tooth structure while in ceramic-restored group for the restoration. Compared to composite resin and Ceramage, ceramic endocrown transferred less stress, namely was more protective to the tooth structure.
文摘Purpose: To investigate the periapical tissue response after root end filling with intermediate restorative material (IRM) and filling of the root-end resection bone defects with autogenous bone or a bone graft substitute in comparison to empty controls. Materials and Methods: Vital roots of the second, third and fourth mandibular premolars in six healthy mongrel dogs were apectomized. The root canals were prepared and sealed with IRM following a standardized surgical procedure. The resection bone defects were either filled with autogenous bone (PB) or one of the bone graft substitutes;CERAMENTTM|BONE VOID FILLER, ChronOS?, TigranTM PTG, Easygraft? CLASSIC or left empty. After 120 days the animals were sacrificed and the specimens were analyzed radiologically and histologically. Kruskal-Wallis and Mann-Whitney tests were performed for statistical evaluation. Results: 34 sections were analyzed histologically. The evaluation revealed a variation in the outcome amongst the tested options, regarding reestablishment of the periapical bone healing and inflammatory infiltration in the sections. According to the tested variables, there was no statistical significant difference between the materials when comparing all groups as a whole. When comparing individual materials to each other there was statistical differences among some of the tested materials. Conclusion: The healing outcome after periapical surgery of a five-wall resection defect could not be increased by infill with autogenous bone or bone graft substitutes. The most important factor for the healing outcome in periapical surgery is the quality of the root-end sealing. The healing outcome after some of the tested bone substitutes, might be improved by longer healing time.
文摘Background: To date there is not a material considered ideal for the lased dentin. Objective: To compare the bond strength to human lased dentin of self-etch and etch-and-rinse adhesive systems, a self-adhesive resin composite and a glass-ionomer cement. Methods: Forty human molars were sectioned to obtain a 2 mm-thick slab of mid-coronal dentin. The occlusal surface of each slab was polished by SiC paper (P600) for 10 s. Then an half part of dentin slabs was randomly selected for receiving treatment with 2.94 μm Er:YAG laser (DEKA, Smart 2940D Plus) with 10 Hz at 100 mJ, pulse duration of 230 μs with contact tip. Dentin slabs were randomly divided into four groups (n = 10). Six conical frustum-shaped build-ups were constructed on the occlusal surface of each dentin slab using bonding agents (OptiBond Solo Plus Group 1;OptiBond All-in-one Group 2) combined with a resin composite (Premise Flow), self-adhesive resin composites (Vertise Flow Group 3) and a glass-ionomer cement (Ketac-Fil Group 4). Specimens were subjected to μSBS test. Data were analyzed by a mixed model and Tukey’s test. Results: Measured bond strengths were (mean ± standard deviation): 20.8 ± 5.5 MPa (laser treatment) and 15.6 ± 4.5 MPa (SiC paper) for Group 1, 18.9 ± 5.3 MPa (laser treatment) and 14.0 ± 4.3 MPa (SiC paper) for Group 2, 7.9 ± 2.8 MPa (laser treatment) and 4.3 ± 2.2 MPa (SiC paper) for Group 3, 4.7 ± 1.9 MPa (laser treatment) and 2.6 ± 1.2 MPa (SiC paper) for Group 4. The inferential analysis showed that the dentin laser treatment significantly affected the bond strength within each individual group. On dentin treated with laser the bond strengths recorded for build-ups constructed with etch and rinse and self-etch adhesive systems were significantly higher than those recorded for build-ups constructed with self-adhesive resin composite and glass-ionomer cement (p < 0.0001). Similarly, on dentin treated with SiC paper the bond strengths recorded for build-ups constructed with etch and rinse and self-etch adhesive systems were significantly higher than those recorded for build-ups constructed with self-adhesive resin composite and glass-ionomer cement (p < 0.0001). Conclusion: Er:YAG laser treatment has increased the shear bond strength of all the adhesive materials used.
文摘We evaluated the effect of water storage on fluoride release and mechanical properties of compomer restorative material. Fluoride release was recorded using a specific fluoride electrode. Flexural properties and fracture toughness were measured using a universal testing machine. Vickers hardness was measured using a micro-hardness tester. There was initial burst of fluoride release up to 1 w, which was diminished to a low level in 1 mon and remained relatively constant over 6 mon. Flexural strength and hardness were increased up to 1 mon followed by a gradual decrease up to 6 mon. Flexural modulus was decreased gradually up to 6 mon. Fracture toughness was increased during the first week and gradually decreased over the storage period. We concluded that flexural properties, fracture toughness, Vickers hardness and fluoride release of compomer were sensitive to water as well as storage time. There was a significant effect of fluoride release on the studied mechanical properties.