Orthogonal matching pursuit (OMP) algorithm is an efficient method for the recovery of a sparse signal in compressed sensing, due to its ease implementation and low complexity. In this paper, the robustness of the O...Orthogonal matching pursuit (OMP) algorithm is an efficient method for the recovery of a sparse signal in compressed sensing, due to its ease implementation and low complexity. In this paper, the robustness of the OMP algorithm under the restricted isometry property (RIP) is presented. It is shown that 5K+V/KOK,1 〈 1 is sufficient for the OMP algorithm to recover exactly the support of arbitrary /(-sparse signal if its nonzero components are large enough for both 12 bounded and lz~ bounded noises.展开更多
Orthogonal multi-matching pursuit(OMMP)is a natural extension of orthogonal matching pursuit(OMP)in the sense that N(N≥1)indices are selected per iteration instead of 1.In this paper,the theoretical performance...Orthogonal multi-matching pursuit(OMMP)is a natural extension of orthogonal matching pursuit(OMP)in the sense that N(N≥1)indices are selected per iteration instead of 1.In this paper,the theoretical performance of OMMP under the restricted isometry property(RIP)is presented.We demonstrate that OMMP can exactly recover any K-sparse signal from fewer observations y=φx,provided that the sampling matrixφsatisfiesδKN-N+1+√K/NθKN-N+1,N〈1.Moreover,the performance of OMMP for support recovery from noisy observations is also discussed.It is shown that,for l_2 bounded and l_∞bounded noisy cases,OMMP can recover the true support of any K-sparse signal under conditions on the restricted isometry property of the sampling matrixφand the minimum magnitude of the nonzero components of the signal.展开更多
A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with...A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP.展开更多
An Adaptive Measurement Scheme (AMS) is investigated with Compressed Sensing (CS) theory in Cognitive Wireless Sensor Network (C-WSN). Local sensing information is collected via energy detection with Analog-to-Informa...An Adaptive Measurement Scheme (AMS) is investigated with Compressed Sensing (CS) theory in Cognitive Wireless Sensor Network (C-WSN). Local sensing information is collected via energy detection with Analog-to-Information Converter (AIC) at massive cognitive sensors, and sparse representation is considered with the exploration of spatial temporal correlation structure of detected signals. Adaptive measurement matrix is designed in AMS, which is based on maximum energy subset selection. Energy subset is calculated with sparse transformation of sensing information, and maximum energy subset is selected as the row vector of adaptive measurement matrix. In addition, the measurement matrix is constructed by orthogonalization of those selected row vectors, which also satisfies the Restricted Isometry Property (RIP) in CS theory. Orthogonal Matching Pursuit (OMP) reconstruction algorithm is implemented at sink node to recover original information. Simulation results are performed with the comparison of Random Measurement Scheme (RMS). It is revealed that, signal reconstruction effect based on AMS is superior to conventional RMS Gaussian measurement. Moreover, AMS has better detection performance than RMS at lower compression rate region, and it is suitable for large-scale C-WSN wideband spectrum sensing.展开更多
A greedy algorithm used for the recovery of sparse signals,multiple orthogonal least squares(MOLS)have recently attracted quite a big of attention.In this paper,we consider the number of iterations required for the MO...A greedy algorithm used for the recovery of sparse signals,multiple orthogonal least squares(MOLS)have recently attracted quite a big of attention.In this paper,we consider the number of iterations required for the MOLS algorithm for recovery of a K-sparse signal x∈R^(n).We show that MOLS provides stable reconstruction of all K-sparse signals x from y=Ax+w in|6K/ M|iterations when the matrix A satisfies the restricted isometry property(RIP)with isometry constantδ_(7K)≤0.094.Compared with the existing results,our sufficient condition is not related to the sparsity level K.展开更多
Block multiple measurement vectors (BMMV) is a reconstruction algorithm that can be used to recover the support of block K-joint sparse matrix X from Y = ΨX + V. In this paper, we propose a sufficient condition for a...Block multiple measurement vectors (BMMV) is a reconstruction algorithm that can be used to recover the support of block K-joint sparse matrix X from Y = ΨX + V. In this paper, we propose a sufficient condition for accurate support recovery of the block K-joint sparse matrix via the BMMV algorithm in the noisy case. Furthermore, we show the optimality of the condition we proposed in the absence of noise when the problem reduces to single measurement vector case.展开更多
In this paper,we study compressed data separation(CDS)problem,i.e.,sparse data separation from a few linear random measurements.We propose the nonconvex ℓ_(q)-split analysis with ℓ_(∞)-constraint and 0<q≤1.We cal...In this paper,we study compressed data separation(CDS)problem,i.e.,sparse data separation from a few linear random measurements.We propose the nonconvex ℓ_(q)-split analysis with ℓ_(∞)-constraint and 0<q≤1.We call the algorithm ℓ_(q)-split-analysis Dantzig selector(ℓ_(q)-split-analysis DS).We show that the two distinct subcomponents that are approximately sparse in terms of two different dictionaries could be stably approximated via the ℓ_(q)-split-analysis DS,provided that the measurement matrix satisfies either a classical D-RIP(Restricted Isometry Property with respect to Dictionaries and ℓ_(2) norm)or a relatively new(D,q)-RIP(RIP with respect to Dictionaries and ℓ_(q)-quasi norm)condition and the two different dictionaries satisfy a mutual coherence condition between them.For the Gaussian random measurements,the measurement number needed for the(D,q)-RIP condition is far less than those needed for the D-RIP condition and the(D,1)-RIP condition when q is small enough.展开更多
This paper considers a corrupted compressed sensing problem and is devoted to recover signals that are approximately sparse in some general dictionary but corrupted by a combination of interference having a sparse rep...This paper considers a corrupted compressed sensing problem and is devoted to recover signals that are approximately sparse in some general dictionary but corrupted by a combination of interference having a sparse representation in a second general dictionary and measurement noise.We provide new restricted isometry property(RIP)analysis to achieve stable recovery of sparsely corrupted signals through Justice Pursuit De-Noising(JPDN)with an additional parameter.Our main tool is to adapt a crucial sparse decomposition technique to the analysis of the Justice Pursuit method.The proposed RIP condition improves the existing representative results.Numerical simulations are provided to verify the reliability of the JPDN model.展开更多
We consider the block orthogonal multi-matching pursuit(BOMMP) algorithm for the recovery of block sparse signals.A sharp condition is obtained for the exact reconstruction of block K-sparse signals via the BOMMP algo...We consider the block orthogonal multi-matching pursuit(BOMMP) algorithm for the recovery of block sparse signals.A sharp condition is obtained for the exact reconstruction of block K-sparse signals via the BOMMP algorithm in the noiseless case,based on the block restricted isometry constant(block-RIC).Moreover,we show that the sharp condition combining with an extra condition on the minimum l_2 norm of nonzero blocks of block K-sparse signals is sufficient to ensure the BOMMP algorithm selects at least one true block index at each iteration until all true block indices are selected in the noisy case.The significance of the results we obtain in this paper lies in the fact that making explicit use of block sparsity of block sparse signals can achieve better recovery performance than ignoring the additional structure in the problem as being in the conventional sense.展开更多
Inspired by an interesting idea of Cai and Zhang,we formulate and prove the convex k-sparse decomposition of vectors that is invariant with respect to the l_(1) norm.This result fits well in discussing compressed sens...Inspired by an interesting idea of Cai and Zhang,we formulate and prove the convex k-sparse decomposition of vectors that is invariant with respect to the l_(1) norm.This result fits well in discussing compressed sensing problems under the Restricted Isometry property,but we believe it also has independent interest.As an application,a simple derivation of the RIP recovery conditionδk+θk,k<1 is presented.展开更多
The matrix rank minimization problem arises in many engineering applications. As this problem is NP-hard, a nonconvex relaxation of matrix rank minimization, called the Schatten-p quasi-norm minimization(0 < p <...The matrix rank minimization problem arises in many engineering applications. As this problem is NP-hard, a nonconvex relaxation of matrix rank minimization, called the Schatten-p quasi-norm minimization(0 < p < 1), has been developed to approximate the rank function closely. We study the performance of projected gradient descent algorithm for solving the Schatten-p quasi-norm minimization(0 < p < 1) problem.Based on the matrix restricted isometry property(M-RIP), we give the convergence guarantee and error bound for this algorithm and show that the algorithm is robust to noise with an exponential convergence rate.展开更多
Due to the low sound propagation speed, the tradeoff between high azimuth resolution and wide imaging swath has severely limited the application of sonar underwater target imaging. However, based on compressed sensing...Due to the low sound propagation speed, the tradeoff between high azimuth resolution and wide imaging swath has severely limited the application of sonar underwater target imaging. However, based on compressed sensing(CS) technique, it is feasible to image targets with merely one pulse and thus avoid the above tradeoff. To investigate the possible waveforms for CS-based underwater imaging, the deterministic M sequences widely used in sonar applications are introduced in this paper. By analyzing the compressive matrix constructed from M sequences, the coherence parameter and the restricted isometry property(RIP) of the matrix are derived. Also, the feasibility and advances of M sequence are demonstrated by being compared with the existing Alltop sequence in underwater CS imaging framework. Finally, the results of numerical simulations and a real experiment are provided to reveal the effectiveness of the proposed signal.展开更多
It has been shown that analog-to-information conversion(AIC) is an efficient scheme to perform sub-Nyquist sampling of pulsed radar echoes. However, it is often impractical, if not infeasible, to reconstruct full-rang...It has been shown that analog-to-information conversion(AIC) is an efficient scheme to perform sub-Nyquist sampling of pulsed radar echoes. However, it is often impractical, if not infeasible, to reconstruct full-range Nyquist samples because of huge storage and computational load requirements. Based on the analyses of AIC measurement system, this paper develops a novel segment-sliding reconstruction(Seg SR) scheme to effectively reconstruct the Nyquist samples. The Seg SR performs segment-by-segment reconstruction in a sliding mode and can be implemented in real time. An important characteristic that distinguishes the proposed Seg SR from existing methods is that the measurement matrix in each segment satisfies the restricted isometry property(RIP) condition. Partial support in the previous segment can be incorporated into the estimation of the Nyquist samples in the current segment. The effect of interference introduced from adjacent segments is theoretically analyzed, and it is revealed that the interference consists of two interference levels with different impacts to the signal reconstruction performance. With these observations, a two-step orthogonal matching pursuit(OMP)procedure is proposed for segment reconstruction, which takes into account different interference levels and partially known support of the previous segment. The proposed Seg SR scheme achieves near-optimal reconstruction performance with a significant reduction of computational loads and storage requirements. Theoretical analyses and simulations verify its effectiveness.展开更多
Iterative hard thresholding(IHT)and compressive sampling matching pursuit(CoSaMP)are two mainstream compressed sensing algorithms using the hard thresholding operator.The guaranteed performance of the two algorithms f...Iterative hard thresholding(IHT)and compressive sampling matching pursuit(CoSaMP)are two mainstream compressed sensing algorithms using the hard thresholding operator.The guaranteed performance of the two algorithms for signal recovery was mainly analyzed in terms of the restricted isometry property(RIP)of sensing matrices.At present,the best known bound using the RIP of order 3k for guaranteed performance of IHT(with the unit stepsize)isδ3k<1/√3≈0.5774,and the bound for CoSaMP using the RIP of order 4k isδ4k<0.4782.A fundamental question in this area is whether such theoretical results can be further improved.The purpose of this paper is to affirmatively answer this question and to rigorously show that the abovementioned RIP bound for guaranteed performance of IHT can be significantly improved toδ3k<(√5−1)/2≈0.618,and the bound for CoSaMP can be improved toδ4k<0.5102.展开更多
In this paper, motivated by the results in compressive phase retrieval, we study the robustness properties of dimensionality reduction with Gaussian random matrices having arbitrarily erased rows. We first study the r...In this paper, motivated by the results in compressive phase retrieval, we study the robustness properties of dimensionality reduction with Gaussian random matrices having arbitrarily erased rows. We first study the robustness property against erasure for the almost norm preservation property of Gaussian random matrices by obtaining the optimal estimate of the erasure ratio for a small given norm distortion rate. As a consequence, we establish the robustness property of Johnson-Lindenstrauss lemma and the robustness property of restricted isometry property with corruption for Gaussian random matrices. Secondly, we obtain a sharp estimate for the optimal lower and upper bounds of norm distortion rates of Gaussian random matrices under a given erasure ratio. This allows us to establish the strong restricted isometry property with the almost optimal restricted isometry property(RIP) constants, which plays a central role in the study of phaseless compressed sensing. As a byproduct of our results, we also establish the robustness property of Gaussian random finite frames under erasure.展开更多
In the existing work,the recovery of strictly k-sparse signals with partial support information was derived in theℓ2 bounded noise setting.In this paper,the recovery of approximately k-sparse signals with partial supp...In the existing work,the recovery of strictly k-sparse signals with partial support information was derived in theℓ2 bounded noise setting.In this paper,the recovery of approximately k-sparse signals with partial support information in two noise settings is investigated via weightedℓp(0<p≤1)minimization method.The restricted isometry constant(RIC)conditionδt k<1 pη2 p−1+1 on the measurement matrix for some t∈[1+2−p 2+pσ,2]is proved to be sufficient to guarantee the stable and robust recovery of signals under sparsity defect in noisy cases.Herein,σ∈[0,1]is a parameter related to the prior support information of the original signal,andη≥0 is determined by p,t andσ.The new results not only improve the recent work in[17],but also include the optimal results by weightedℓ1 minimization or by standardℓp minimization as special cases.展开更多
Sparse signals can be possibly reconstructed by an algorithm which merges a traditional nonlinear optimization method and a certain thresholding technique.Different from existing thresholding methods,a novel threshold...Sparse signals can be possibly reconstructed by an algorithm which merges a traditional nonlinear optimization method and a certain thresholding technique.Different from existing thresholding methods,a novel thresholding technique referred to as the optimal k-thresholding was recently proposed by Zhao(SIAM J Optim 30(1):31-55,2020).This technique simultaneously performs the minimization of an error metric for the problem and thresholding of the iterates generated by the classic gradient method.In this paper,we propose the so-called Newton-type optimal k-thresholding(NTOT)algorithm which is motivated by the appreciable performance of both Newton-type methods and the optimal k-thresholding technique for signal recovery.The guaranteed performance(including convergence)of the proposed algorithms is shown in terms of suitable choices of the algorithmic parameters and the restricted isometry property(RIP)of the sensing matrix which has been widely used in the analysis of compressive sensing algorithms.The simulation results based on synthetic signals indicate that the proposed algorithms are stable and efficient for signal recovery.展开更多
Weighted ■_(p)(0<p<l)minimization has been extensively studied as an effective way to reconstruct a sparse signal from compressively sampled measurements when some prior support information of the signal is ava...Weighted ■_(p)(0<p<l)minimization has been extensively studied as an effective way to reconstruct a sparse signal from compressively sampled measurements when some prior support information of the signal is available.In this paper,we consider the recovery guarantees of Κ-sparse signals via the weighted ■_(p)(0<P<1)minimization when arbitrarily many support priors are given.Our analysis enables an extension to existing works that assume only a single support prior is used.展开更多
In countless applications,we need to reconstruct a K-sparse signal x∈R n from noisy measurements y=Φx+v,whereΦ∈R^(m×n)is a sensing matrix and v∈R m is a noise vector.Orthogonal least squares(OLS),which selec...In countless applications,we need to reconstruct a K-sparse signal x∈R n from noisy measurements y=Φx+v,whereΦ∈R^(m×n)is a sensing matrix and v∈R m is a noise vector.Orthogonal least squares(OLS),which selects at each step the column that results in the most significant decrease in the residual power,is one of the most popular sparse recovery algorithms.In this paper,we investigate the number of iterations required for recovering x with the OLS algorithm.We show that OLS provides a stable reconstruction of all K-sparse signals x in[2.8K]iterations provided thatΦsatisfies the restricted isometry property(RIP).Our result provides a better recovery bound and fewer number of required iterations than those proposed by Foucart in 2013.展开更多
In this paper,we discuss a gradient-enhancedℓ_(1)approach for the recovery of sparse Fourier expansions.By gradient-enhanced approaches we mean that the directional derivatives along given vectors are utilized to impr...In this paper,we discuss a gradient-enhancedℓ_(1)approach for the recovery of sparse Fourier expansions.By gradient-enhanced approaches we mean that the directional derivatives along given vectors are utilized to improve the sparse approximations.We first consider the case where both the function values and the directional derivatives at sampling points are known.We show that,under some mild conditions,the inclusion of the derivatives information can indeed decrease the coherence of measurementmatrix,and thus leads to the improved the sparse recovery conditions of theℓ_(1)minimization.We also consider the case where either the function values or the directional derivatives are known at the sampling points,in which we present a sufficient condition under which the measurement matrix satisfies RIP,provided that the samples are distributed according to the uniform measure.This result shows that the derivatives information plays a similar role as that of the function values.Several numerical examples are presented to support the theoretical statements.Potential applications to function(Hermite-type)interpolations and uncertainty quantification are also discussed.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11271060,U0935004,U1135003,11071031,11290143 and 11101096)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,National Engineering Research Center of Digital Lifethe Guangdong Natural Science Foundation(Grant No.S2012010010376)
文摘Orthogonal matching pursuit (OMP) algorithm is an efficient method for the recovery of a sparse signal in compressed sensing, due to its ease implementation and low complexity. In this paper, the robustness of the OMP algorithm under the restricted isometry property (RIP) is presented. It is shown that 5K+V/KOK,1 〈 1 is sufficient for the OMP algorithm to recover exactly the support of arbitrary /(-sparse signal if its nonzero components are large enough for both 12 bounded and lz~ bounded noises.
基金supported by the Science Foundation of Guangdong University of Finance & Economics(Grant No.13GJPY11002)National Natural Science Foundation of China(Grant Nos.11071031,11271060,11290143,U0935004 and U1135003)+1 种基金the Guangdong Natural Science Foundation(Grant No.S2012010010376)the Guangdong University and Colleges Technology Innovation Projects(Grant No.2012KJCX0048)
文摘Orthogonal multi-matching pursuit(OMMP)is a natural extension of orthogonal matching pursuit(OMP)in the sense that N(N≥1)indices are selected per iteration instead of 1.In this paper,the theoretical performance of OMMP under the restricted isometry property(RIP)is presented.We demonstrate that OMMP can exactly recover any K-sparse signal from fewer observations y=φx,provided that the sampling matrixφsatisfiesδKN-N+1+√K/NθKN-N+1,N〈1.Moreover,the performance of OMMP for support recovery from noisy observations is also discussed.It is shown that,for l_2 bounded and l_∞bounded noisy cases,OMMP can recover the true support of any K-sparse signal under conditions on the restricted isometry property of the sampling matrixφand the minimum magnitude of the nonzero components of the signal.
文摘A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP.
基金Supported by the National Natural Science Foundation of China (No. 61102066, 60972058)the China Postdoctoral Science Foundation (No. 2012M511365)the Scientific Research Project of Zhejiang Provincial Education Department (No. Y201119890)
文摘An Adaptive Measurement Scheme (AMS) is investigated with Compressed Sensing (CS) theory in Cognitive Wireless Sensor Network (C-WSN). Local sensing information is collected via energy detection with Analog-to-Information Converter (AIC) at massive cognitive sensors, and sparse representation is considered with the exploration of spatial temporal correlation structure of detected signals. Adaptive measurement matrix is designed in AMS, which is based on maximum energy subset selection. Energy subset is calculated with sparse transformation of sensing information, and maximum energy subset is selected as the row vector of adaptive measurement matrix. In addition, the measurement matrix is constructed by orthogonalization of those selected row vectors, which also satisfies the Restricted Isometry Property (RIP) in CS theory. Orthogonal Matching Pursuit (OMP) reconstruction algorithm is implemented at sink node to recover original information. Simulation results are performed with the comparison of Random Measurement Scheme (RMS). It is revealed that, signal reconstruction effect based on AMS is superior to conventional RMS Gaussian measurement. Moreover, AMS has better detection performance than RMS at lower compression rate region, and it is suitable for large-scale C-WSN wideband spectrum sensing.
基金supported by the National Natural Science Foundation of China(61907014,11871248,11701410,61901160)Youth Science Foundation of Henan Normal University(2019QK03).
文摘A greedy algorithm used for the recovery of sparse signals,multiple orthogonal least squares(MOLS)have recently attracted quite a big of attention.In this paper,we consider the number of iterations required for the MOLS algorithm for recovery of a K-sparse signal x∈R^(n).We show that MOLS provides stable reconstruction of all K-sparse signals x from y=Ax+w in|6K/ M|iterations when the matrix A satisfies the restricted isometry property(RIP)with isometry constantδ_(7K)≤0.094.Compared with the existing results,our sufficient condition is not related to the sparsity level K.
文摘Block multiple measurement vectors (BMMV) is a reconstruction algorithm that can be used to recover the support of block K-joint sparse matrix X from Y = ΨX + V. In this paper, we propose a sufficient condition for accurate support recovery of the block K-joint sparse matrix via the BMMV algorithm in the noisy case. Furthermore, we show the optimality of the condition we proposed in the absence of noise when the problem reduces to single measurement vector case.
基金Supported by the National Key Research and Development Program of China(Grant No.2021YFA1003500)the NSFC(Grant Nos.U21A20426,11971427,12071426 and 11901518)。
文摘In this paper,we study compressed data separation(CDS)problem,i.e.,sparse data separation from a few linear random measurements.We propose the nonconvex ℓ_(q)-split analysis with ℓ_(∞)-constraint and 0<q≤1.We call the algorithm ℓ_(q)-split-analysis Dantzig selector(ℓ_(q)-split-analysis DS).We show that the two distinct subcomponents that are approximately sparse in terms of two different dictionaries could be stably approximated via the ℓ_(q)-split-analysis DS,provided that the measurement matrix satisfies either a classical D-RIP(Restricted Isometry Property with respect to Dictionaries and ℓ_(2) norm)or a relatively new(D,q)-RIP(RIP with respect to Dictionaries and ℓ_(q)-quasi norm)condition and the two different dictionaries satisfy a mutual coherence condition between them.For the Gaussian random measurements,the measurement number needed for the(D,q)-RIP condition is far less than those needed for the D-RIP condition and the(D,1)-RIP condition when q is small enough.
基金supported by the NSF of China(Grant Nos.12271050,11871109,11901037)by the CAEP Foundation(Grant No.CX20200027)by the Key Laboratory of Computational Physics Foundation(Grant No.6142A05210502).
文摘This paper considers a corrupted compressed sensing problem and is devoted to recover signals that are approximately sparse in some general dictionary but corrupted by a combination of interference having a sparse representation in a second general dictionary and measurement noise.We provide new restricted isometry property(RIP)analysis to achieve stable recovery of sparsely corrupted signals through Justice Pursuit De-Noising(JPDN)with an additional parameter.Our main tool is to adapt a crucial sparse decomposition technique to the analysis of the Justice Pursuit method.The proposed RIP condition improves the existing representative results.Numerical simulations are provided to verify the reliability of the JPDN model.
基金National Natural Science Foundation of China(Grant Nos. 11271050 and 11371183)
文摘We consider the block orthogonal multi-matching pursuit(BOMMP) algorithm for the recovery of block sparse signals.A sharp condition is obtained for the exact reconstruction of block K-sparse signals via the BOMMP algorithm in the noiseless case,based on the block restricted isometry constant(block-RIC).Moreover,we show that the sharp condition combining with an extra condition on the minimum l_2 norm of nonzero blocks of block K-sparse signals is sufficient to ensure the BOMMP algorithm selects at least one true block index at each iteration until all true block indices are selected in the noisy case.The significance of the results we obtain in this paper lies in the fact that making explicit use of block sparsity of block sparse signals can achieve better recovery performance than ignoring the additional structure in the problem as being in the conventional sense.
基金This research was partially supported by the National 973 Project of China(No.2013CB834205)Zhiqiang Xu was supported by National Natural Science foundation of China(Nos.11171336,11331012,11021101)National Basic Research Program of China(973 Program No.2010CB832702).
文摘Inspired by an interesting idea of Cai and Zhang,we formulate and prove the convex k-sparse decomposition of vectors that is invariant with respect to the l_(1) norm.This result fits well in discussing compressed sensing problems under the Restricted Isometry property,but we believe it also has independent interest.As an application,a simple derivation of the RIP recovery conditionδk+θk,k<1 is presented.
基金supported by National Natural Science Foundation of China(Grant No.11171299)
文摘The matrix rank minimization problem arises in many engineering applications. As this problem is NP-hard, a nonconvex relaxation of matrix rank minimization, called the Schatten-p quasi-norm minimization(0 < p < 1), has been developed to approximate the rank function closely. We study the performance of projected gradient descent algorithm for solving the Schatten-p quasi-norm minimization(0 < p < 1) problem.Based on the matrix restricted isometry property(M-RIP), we give the convergence guarantee and error bound for this algorithm and show that the algorithm is robust to noise with an exponential convergence rate.
基金supported in part by National Natural Science Foundation of China (Grant No. 61271391)111 Project of China Ministry of Education (MOE) (Grant No. B14010)+2 种基金New Century Excellent Talents Supporting Plan of China MOE (Grant No. NCET-13-0049)Ministry Research Foundation (Grant No. 9140A21050114HT05338)Outstanding Youth Teacher Training Plan of BIT (Grant No. BIT-JC-201205)
文摘Due to the low sound propagation speed, the tradeoff between high azimuth resolution and wide imaging swath has severely limited the application of sonar underwater target imaging. However, based on compressed sensing(CS) technique, it is feasible to image targets with merely one pulse and thus avoid the above tradeoff. To investigate the possible waveforms for CS-based underwater imaging, the deterministic M sequences widely used in sonar applications are introduced in this paper. By analyzing the compressive matrix constructed from M sequences, the coherence parameter and the restricted isometry property(RIP) of the matrix are derived. Also, the feasibility and advances of M sequence are demonstrated by being compared with the existing Alltop sequence in underwater CS imaging framework. Finally, the results of numerical simulations and a real experiment are provided to reveal the effectiveness of the proposed signal.
基金supported by National Natural Science Foundation of China (Grant Nos. 61171166, 61401210, 61571228)China Postdoctoral Science Foundation (Grant No. 2014M551597)
文摘It has been shown that analog-to-information conversion(AIC) is an efficient scheme to perform sub-Nyquist sampling of pulsed radar echoes. However, it is often impractical, if not infeasible, to reconstruct full-range Nyquist samples because of huge storage and computational load requirements. Based on the analyses of AIC measurement system, this paper develops a novel segment-sliding reconstruction(Seg SR) scheme to effectively reconstruct the Nyquist samples. The Seg SR performs segment-by-segment reconstruction in a sliding mode and can be implemented in real time. An important characteristic that distinguishes the proposed Seg SR from existing methods is that the measurement matrix in each segment satisfies the restricted isometry property(RIP) condition. Partial support in the previous segment can be incorporated into the estimation of the Nyquist samples in the current segment. The effect of interference introduced from adjacent segments is theoretically analyzed, and it is revealed that the interference consists of two interference levels with different impacts to the signal reconstruction performance. With these observations, a two-step orthogonal matching pursuit(OMP)procedure is proposed for segment reconstruction, which takes into account different interference levels and partially known support of the previous segment. The proposed Seg SR scheme achieves near-optimal reconstruction performance with a significant reduction of computational loads and storage requirements. Theoretical analyses and simulations verify its effectiveness.
基金supported by National Natural Science Foundation of China(Grant Nos.12071307 and 61571384).
文摘Iterative hard thresholding(IHT)and compressive sampling matching pursuit(CoSaMP)are two mainstream compressed sensing algorithms using the hard thresholding operator.The guaranteed performance of the two algorithms for signal recovery was mainly analyzed in terms of the restricted isometry property(RIP)of sensing matrices.At present,the best known bound using the RIP of order 3k for guaranteed performance of IHT(with the unit stepsize)isδ3k<1/√3≈0.5774,and the bound for CoSaMP using the RIP of order 4k isδ4k<0.4782.A fundamental question in this area is whether such theoretical results can be further improved.The purpose of this paper is to affirmatively answer this question and to rigorously show that the abovementioned RIP bound for guaranteed performance of IHT can be significantly improved toδ3k<(√5−1)/2≈0.618,and the bound for CoSaMP can be improved toδ4k<0.5102.
基金supported by Natural Sciences and Engineering Research Council of Canada (Grant No. 05865)Zhiqiang Xu was supported by National Natural Science Foundation of China (Grant Nos. 11422113, 91630203, 11021101 and 11331012)National Basic Research Program of China (973 Program) (Grant No. 2015CB856000)
文摘In this paper, motivated by the results in compressive phase retrieval, we study the robustness properties of dimensionality reduction with Gaussian random matrices having arbitrarily erased rows. We first study the robustness property against erasure for the almost norm preservation property of Gaussian random matrices by obtaining the optimal estimate of the erasure ratio for a small given norm distortion rate. As a consequence, we establish the robustness property of Johnson-Lindenstrauss lemma and the robustness property of restricted isometry property with corruption for Gaussian random matrices. Secondly, we obtain a sharp estimate for the optimal lower and upper bounds of norm distortion rates of Gaussian random matrices under a given erasure ratio. This allows us to establish the strong restricted isometry property with the almost optimal restricted isometry property(RIP) constants, which plays a central role in the study of phaseless compressed sensing. As a byproduct of our results, we also establish the robustness property of Gaussian random finite frames under erasure.
基金supported in part by the National Natural Science Foundation of China under grant numbers 12171496 and U1811461in part by Guangdong Basic and Applied Basic Research Foundation under grant number 2020A1515010454in part by the Science and Technology Program of Guangzhou under grant number 201904010374.
文摘In the existing work,the recovery of strictly k-sparse signals with partial support information was derived in theℓ2 bounded noise setting.In this paper,the recovery of approximately k-sparse signals with partial support information in two noise settings is investigated via weightedℓp(0<p≤1)minimization method.The restricted isometry constant(RIC)conditionδt k<1 pη2 p−1+1 on the measurement matrix for some t∈[1+2−p 2+pσ,2]is proved to be sufficient to guarantee the stable and robust recovery of signals under sparsity defect in noisy cases.Herein,σ∈[0,1]is a parameter related to the prior support information of the original signal,andη≥0 is determined by p,t andσ.The new results not only improve the recent work in[17],but also include the optimal results by weightedℓ1 minimization or by standardℓp minimization as special cases.
基金founded by the National Natural Science Foundation of China(No.12071307).
文摘Sparse signals can be possibly reconstructed by an algorithm which merges a traditional nonlinear optimization method and a certain thresholding technique.Different from existing thresholding methods,a novel thresholding technique referred to as the optimal k-thresholding was recently proposed by Zhao(SIAM J Optim 30(1):31-55,2020).This technique simultaneously performs the minimization of an error metric for the problem and thresholding of the iterates generated by the classic gradient method.In this paper,we propose the so-called Newton-type optimal k-thresholding(NTOT)algorithm which is motivated by the appreciable performance of both Newton-type methods and the optimal k-thresholding technique for signal recovery.The guaranteed performance(including convergence)of the proposed algorithms is shown in terms of suitable choices of the algorithmic parameters and the restricted isometry property(RIP)of the sensing matrix which has been widely used in the analysis of compressive sensing algorithms.The simulation results based on synthetic signals indicate that the proposed algorithms are stable and efficient for signal recovery.
基金supported by the NSF of China(Nos.11871109,11901037 and 11801509)NSAF(Grant No.U1830107),CAEP Foundation(Grant No.CX20200027).
文摘Weighted ■_(p)(0<p<l)minimization has been extensively studied as an effective way to reconstruct a sparse signal from compressively sampled measurements when some prior support information of the signal is available.In this paper,we consider the recovery guarantees of Κ-sparse signals via the weighted ■_(p)(0<P<1)minimization when arbitrarily many support priors are given.Our analysis enables an extension to existing works that assume only a single support prior is used.
基金supported by the National Natural Science Foundation of China(grant nos.61907014,11871248,11701410,61901160)the Natural Science Foundation of Guangdong province(No.2021A1515010857)+2 种基金Youth Science Foundation of Henan Normal University(grant no.2019QK03)China Postdoctoral Science Foundation(grant no.2019M660557)Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2019).
文摘In countless applications,we need to reconstruct a K-sparse signal x∈R n from noisy measurements y=Φx+v,whereΦ∈R^(m×n)is a sensing matrix and v∈R m is a noise vector.Orthogonal least squares(OLS),which selects at each step the column that results in the most significant decrease in the residual power,is one of the most popular sparse recovery algorithms.In this paper,we investigate the number of iterations required for recovering x with the OLS algorithm.We show that OLS provides a stable reconstruction of all K-sparse signals x in[2.8K]iterations provided thatΦsatisfies the restricted isometry property(RIP).Our result provides a better recovery bound and fewer number of required iterations than those proposed by Foucart in 2013.
基金Zhiqiang Xuwas supported by NSFC grant(91630203,11422113,11331012,11688101)by National Basic Research Program of China(973 Program 2015CB856000)+1 种基金Tao Zhou was supported by the NSF of China(under grant numbers 11688101,91630312,91630203,11571351,and 11731006)the science challenge project(No.TZ2018001),NCMIS,and the youth innovation promotion association(CAS).
文摘In this paper,we discuss a gradient-enhancedℓ_(1)approach for the recovery of sparse Fourier expansions.By gradient-enhanced approaches we mean that the directional derivatives along given vectors are utilized to improve the sparse approximations.We first consider the case where both the function values and the directional derivatives at sampling points are known.We show that,under some mild conditions,the inclusion of the derivatives information can indeed decrease the coherence of measurementmatrix,and thus leads to the improved the sparse recovery conditions of theℓ_(1)minimization.We also consider the case where either the function values or the directional derivatives are known at the sampling points,in which we present a sufficient condition under which the measurement matrix satisfies RIP,provided that the samples are distributed according to the uniform measure.This result shows that the derivatives information plays a similar role as that of the function values.Several numerical examples are presented to support the theoretical statements.Potential applications to function(Hermite-type)interpolations and uncertainty quantification are also discussed.