[Objective] The aim was to reduce fertilizer and water losses caused by surface runoffs in rainy season and provide scientific references for soil moisture in arid season. [Method] The application proportion of comple...[Objective] The aim was to reduce fertilizer and water losses caused by surface runoffs in rainy season and provide scientific references for soil moisture in arid season. [Method] The application proportion of complex water-holding organic materials was determined by multi-factor mixture experiment and the curve changes of soil moisture characters were tested to analyze water-holding capacity and water availability of soils. [Result] The initial moisture content of soil with different mixture proportions improved in varying degrees. For example, when water-retention agents reached 0.4% and 0.6% of soil weight, soil moisture contents were 69.0% and70.5%, respectively, which showed significant differences with the control(S0.0). Soil dehydration terms in different treatments all extended, prolonging in the range of4.6-14 d. [Conclusion] The applications of water-retention agent and organic material would improve water-holding capacity of hills and low mountains, and initial moisture content and dehydration cycle tend to be volatile upon mixture proportion. Therefore,it is necessary to adjust soil fertility, crop species, and irrigation to meet crop demands on fertilizer and water.展开更多
This paper analyzed the water-retention mechanism of feldspathic sandstone (fine-(〈 1 mm diam.) and gravel-sized (2-3 cm diam.) in Mu Us Sandy Land, Northwest China. The objective of this study is to study the e...This paper analyzed the water-retention mechanism of feldspathic sandstone (fine-(〈 1 mm diam.) and gravel-sized (2-3 cm diam.) in Mu Us Sandy Land, Northwest China. The objective of this study is to study the effect of feldspathic sandstone amendment on water retention in sandy land. The results showed that as the proportion of fine feldspathic sandstone in the sandy land soil increased, the soil texture changed from sand to silt loam, the capillary po- rosity gradually increased from 26.3% to 44.9%, and the soil saturated hydraulic conductivity decreased from 7.10 ram/rain to 0.07 mm/min. Feldspathic sandstone gravel formed micro-reservoirs in the sandy land soil, playing the role of a 'water absorbent' and 'water retaining agent' in sandy land. Amendment with feldspathic sandstone can increase water retention in the arable layer of sandy land by 67%. This study provides a theoretical basis for the amelioration of sandy land on a large scale. It can be concluded that amendment with feldspathic sandstone can improve the physical properties of sandy land soil and increase soil water retention.展开更多
Field experiments were conducted in 2003 and 2004 to study the effects of plastic ridges and furrow film mulching (plastic film on sowing, as well as plastic film on flat soil and hole sowing) and chemicals (a drou...Field experiments were conducted in 2003 and 2004 to study the effects of plastic ridges and furrow film mulching (plastic film on sowing, as well as plastic film on flat soil and hole sowing) and chemicals (a drought resistant agent and a water- retaining agent) on growth, photosynthetic rate, yield, and water use efficiency (WUE) of spring millet (Setaria italica L.). The experimental results showed that water-collecting and -retaining techniques can effectively increase soil moisture content, the leaf photosynthetic rate and crop growth. Due to increased soil moisture under the plastic-covered ridge and furrow water-collecting in July and August, dry matter and plant height had a increase at the booting stage (late growth advantage). However, the plastic-covered flat soil and hole sowing reduced soil evaporation during early growth, the increase of dry matter and plant height appeared at the seedling stage (early growth advantage). Plastic-covered ridge and furrow sowing supplemented with chemical reagents had significant positive effects on water collection and soil moisture retention. Improvement of soil moisture resulted into the increase of the photosynthetic rate, dry matter accumulation yield and WUE. The water-collecting and -retaining techniques can improve WUE and enhance crop yield. Correlation analysis demonstrated that the photosynthetic rate under the water-collecting and -retaining techniques was significantly associated with the soil moisture, but had no significant relationship with leaf chlorophyll content. Plastic- covered ridge and furrow sowing supplemented with chemical reagents increased the yield and WUE by 114% and 8.16 kg ha-1 mm-1, respectively, compared with the control; while without the chemical reagents the yield and WUE were 95% and 7.42 kg ha-1 mm-1 higher, respectively, than those of the control.展开更多
[Objective] In order to reveal the effects of reducing the amount of novel nano-carbon humic acid water-retaining fertilizer(CSF) on soil microbial community structure and citrus growth. [Method]In this study,conventi...[Objective] In order to reveal the effects of reducing the amount of novel nano-carbon humic acid water-retaining fertilizer(CSF) on soil microbial community structure and citrus growth. [Method]In this study,conventional fertilization was as the control(KC1) in Wanzhou citrus orchard of Three Gorges Reservoir area. CSF reductions by 0%(KC2),10%(KC3),20%(KC4),30%(KC5) and 40%(KC6) were used to analyze the changes of soil bacterial community structure,citrus yield and quality. [Result]The results showed that the observed species,Shannon index,Chao1 index and PDwholetree of KC6 were higher than those of KC1,and were the same as KC2. The abundance of Xanthomonadaceae was the highest in KC5. Compared with KC1,the Xanthomonadaceae in KC3,KC4 and KC6 was significantly decreased,and the levels of Nitrosomonadaceae and Pseudomonasaceae were higher than that of KC1 after the treatment of KC6. Sphingomonas in different reduction treatments was lower than that of KC1,but Burkholderia and Pseudomonas were significantly higher than those of KC1. It was found that the similarity among treatments was small after bacterial community similarity clustering analysis,and citrus yield increased somewhat after CSF fertilization reduction.When CSF fertilization reduced by 30%,citrus yield increased by 4. 50%. When CSF fertilization reduced by 40%,citrus yield decreased by4. 14%. After CSF fertilization,citrus quality did not change significantly in CSF conventional fertilization and reduction of 10% and 40%,while significantly decreased in 20% and 30% of fertilization reduction. [Conclusion] CSF fertilization reduction changed the diversity of soil bacterial community structure and the yield and quality of citrus.展开更多
There are a number of serious problems connected with building and repairing water-reining elements in embankment dams in cold regions. One of them is the difficulty in finding inexpensive clay materials with the nece...There are a number of serious problems connected with building and repairing water-reining elements in embankment dams in cold regions. One of them is the difficulty in finding inexpensive clay materials with the necessary structural properties and using them in the winter. Another is the cracks that appear in the upper part of a dam when the core freezes to the banks, and leakage along the cracks threatens to desWoy the dam. Still another is the process of erosion at the bottom of the core which may occur through fissures in the rock foundation of a dam and in transport constructions. Also, the behaviour of water-retaining elements during eazthquakes is unreliable. All of these problems can be solved by using iceand cryogel-soil composites created by cryotropic gel formation (CGF). Our laboratory investigations demonstrate that the materials proposed for water-retaining elements have the necessary permeable, plastic, thermophysical, and slrength properties to solve all of these problems. Certain consmactious of water-retaining elements which may prove to be both safe and cost-effective are proposed. However, these iceand cryogel-soil composites need to be field-validated before they are used in dams and transport structures in cold regions.展开更多
The effects of nano-carbon water-retaining fertilizer on yield,quality of tuber mustard,and fertilizer utilization efficiency were studied with the field experiments compared to the local tuber mustard fertilizer with...The effects of nano-carbon water-retaining fertilizer on yield,quality of tuber mustard,and fertilizer utilization efficiency were studied with the field experiments compared to the local tuber mustard fertilizer with equal amount of effective composition. The results showed that the yield of tuber mustard was 50 670-56 496 kg/ha in treatments of nano-carbon water-retaining fertilizer decreasing by 10%-40%,and compared with local tuber mustard fertilizer,the average yield was increased by 94. 8%. The yield increasing rate of tuber mustard was 93. 0%in treatment of nano-carbon water-retaining fertilizer decreasing by 30%. The average fertilizer utilization efficiency of nitrogen and phosphorus was 54% and 39. 7%,respectively,the average increment of fertilizer utilization efficiency was 36% and 37%,respectively compared with local tuber mustard fertilizer. Especially in treatment of reducing nano-carbon water-retaining fertilizer by 30%,the nitrogen and phosphorus fertilizer utilization efficiency was increased by 64% and 56%,respectively. By comprehensive comparison,it was found that nano-carbon waterretaining fertilizer and the treatment of 30% reduction could significantly improve the yield of tuber mustard and fertilizer utilization efficiency,and have popularization and application value in the Three Gorges Reservoir area.展开更多
This paper reviews several recently-developed techniques for the minimum-cost optimal design of water-retaining structures (WRSs), which integrate the effects of seepage. These include the incorporation of uncertainty...This paper reviews several recently-developed techniques for the minimum-cost optimal design of water-retaining structures (WRSs), which integrate the effects of seepage. These include the incorporation of uncertainty in heterogeneous soil parameter estimates and quantification of reliability. This review is limited to methods based on coupled simulation-optimization (S-O) models. In this context, the design of WRSs is mainly affected by hydraulic design variables such as seepage quantities, which are difficult to determine from closed-form solutions or approximation theories. An S-O model is built by integrating numerical seepage modeling responses to an optimization algorithm based on efficient surrogate models. The surrogate models (meta-models) are trained on simulated data obtained from finite element numerical code solutions. The proposed methodology is applied using several machine learning techniques and optimization solvers to optimize the design of WRS by incorporating different design variables and boundary conditions. Additionally, the effects of several scenarios of flow domain hydraulic conductivity are integrated into the S-O model. Also, reliability based optimum design concepts are incorporated in the S-O model to quantify uncertainty in seepage quantities due to uncertainty in hydraulic conductivity estimates. We can conclude that the S-O model can efficiently optimize WRS designs. The ANN, SVM, and GPR machine learning technique-based surrogate models are efficiently and expeditiously incorporated into the S-O models to imitate the numerical responses of simulations of various problems.展开更多
基金Supported by Fund for Independent Innovation of Agricultural Sciences in Jiangsu Province(CX(14)2099)~~
文摘[Objective] The aim was to reduce fertilizer and water losses caused by surface runoffs in rainy season and provide scientific references for soil moisture in arid season. [Method] The application proportion of complex water-holding organic materials was determined by multi-factor mixture experiment and the curve changes of soil moisture characters were tested to analyze water-holding capacity and water availability of soils. [Result] The initial moisture content of soil with different mixture proportions improved in varying degrees. For example, when water-retention agents reached 0.4% and 0.6% of soil weight, soil moisture contents were 69.0% and70.5%, respectively, which showed significant differences with the control(S0.0). Soil dehydration terms in different treatments all extended, prolonging in the range of4.6-14 d. [Conclusion] The applications of water-retention agent and organic material would improve water-holding capacity of hills and low mountains, and initial moisture content and dehydration cycle tend to be volatile upon mixture proportion. Therefore,it is necessary to adjust soil fertility, crop species, and irrigation to meet crop demands on fertilizer and water.
基金Under the auspices of Key Direction Program of Chinese Academy of Science(No.KZCX2-YW-Q06-03)MajorState Basic Research Development Program of China(No.2009CB421103)+1 种基金National Natural Science Foundation of China(No.41001050)Major Science and Technology Program for Water Pollution Control and Treatment(No.2012ZX07201004)
文摘This paper analyzed the water-retention mechanism of feldspathic sandstone (fine-(〈 1 mm diam.) and gravel-sized (2-3 cm diam.) in Mu Us Sandy Land, Northwest China. The objective of this study is to study the effect of feldspathic sandstone amendment on water retention in sandy land. The results showed that as the proportion of fine feldspathic sandstone in the sandy land soil increased, the soil texture changed from sand to silt loam, the capillary po- rosity gradually increased from 26.3% to 44.9%, and the soil saturated hydraulic conductivity decreased from 7.10 ram/rain to 0.07 mm/min. Feldspathic sandstone gravel formed micro-reservoirs in the sandy land soil, playing the role of a 'water absorbent' and 'water retaining agent' in sandy land. Amendment with feldspathic sandstone can increase water retention in the arable layer of sandy land by 67%. This study provides a theoretical basis for the amelioration of sandy land on a large scale. It can be concluded that amendment with feldspathic sandstone can improve the physical properties of sandy land soil and increase soil water retention.
基金the National Natural Science Foundation of China (30300213 and 30070439)the Program for New Century Excellent Talents in University, China (NCET-07-0700)
文摘Field experiments were conducted in 2003 and 2004 to study the effects of plastic ridges and furrow film mulching (plastic film on sowing, as well as plastic film on flat soil and hole sowing) and chemicals (a drought resistant agent and a water- retaining agent) on growth, photosynthetic rate, yield, and water use efficiency (WUE) of spring millet (Setaria italica L.). The experimental results showed that water-collecting and -retaining techniques can effectively increase soil moisture content, the leaf photosynthetic rate and crop growth. Due to increased soil moisture under the plastic-covered ridge and furrow water-collecting in July and August, dry matter and plant height had a increase at the booting stage (late growth advantage). However, the plastic-covered flat soil and hole sowing reduced soil evaporation during early growth, the increase of dry matter and plant height appeared at the seedling stage (early growth advantage). Plastic-covered ridge and furrow sowing supplemented with chemical reagents had significant positive effects on water collection and soil moisture retention. Improvement of soil moisture resulted into the increase of the photosynthetic rate, dry matter accumulation yield and WUE. The water-collecting and -retaining techniques can improve WUE and enhance crop yield. Correlation analysis demonstrated that the photosynthetic rate under the water-collecting and -retaining techniques was significantly associated with the soil moisture, but had no significant relationship with leaf chlorophyll content. Plastic- covered ridge and furrow sowing supplemented with chemical reagents increased the yield and WUE by 114% and 8.16 kg ha-1 mm-1, respectively, compared with the control; while without the chemical reagents the yield and WUE were 95% and 7.42 kg ha-1 mm-1 higher, respectively, than those of the control.
基金Supported by the National Natural Science Foundation of China(41571303)Science and Technology Development Plan of Tai’an City,Shandong Province(2018HZ0115)
文摘[Objective] In order to reveal the effects of reducing the amount of novel nano-carbon humic acid water-retaining fertilizer(CSF) on soil microbial community structure and citrus growth. [Method]In this study,conventional fertilization was as the control(KC1) in Wanzhou citrus orchard of Three Gorges Reservoir area. CSF reductions by 0%(KC2),10%(KC3),20%(KC4),30%(KC5) and 40%(KC6) were used to analyze the changes of soil bacterial community structure,citrus yield and quality. [Result]The results showed that the observed species,Shannon index,Chao1 index and PDwholetree of KC6 were higher than those of KC1,and were the same as KC2. The abundance of Xanthomonadaceae was the highest in KC5. Compared with KC1,the Xanthomonadaceae in KC3,KC4 and KC6 was significantly decreased,and the levels of Nitrosomonadaceae and Pseudomonasaceae were higher than that of KC1 after the treatment of KC6. Sphingomonas in different reduction treatments was lower than that of KC1,but Burkholderia and Pseudomonas were significantly higher than those of KC1. It was found that the similarity among treatments was small after bacterial community similarity clustering analysis,and citrus yield increased somewhat after CSF fertilization reduction.When CSF fertilization reduced by 30%,citrus yield increased by 4. 50%. When CSF fertilization reduced by 40%,citrus yield decreased by4. 14%. After CSF fertilization,citrus quality did not change significantly in CSF conventional fertilization and reduction of 10% and 40%,while significantly decreased in 20% and 30% of fertilization reduction. [Conclusion] CSF fertilization reduction changed the diversity of soil bacterial community structure and the yield and quality of citrus.
文摘There are a number of serious problems connected with building and repairing water-reining elements in embankment dams in cold regions. One of them is the difficulty in finding inexpensive clay materials with the necessary structural properties and using them in the winter. Another is the cracks that appear in the upper part of a dam when the core freezes to the banks, and leakage along the cracks threatens to desWoy the dam. Still another is the process of erosion at the bottom of the core which may occur through fissures in the rock foundation of a dam and in transport constructions. Also, the behaviour of water-retaining elements during eazthquakes is unreliable. All of these problems can be solved by using iceand cryogel-soil composites created by cryotropic gel formation (CGF). Our laboratory investigations demonstrate that the materials proposed for water-retaining elements have the necessary permeable, plastic, thermophysical, and slrength properties to solve all of these problems. Certain consmactious of water-retaining elements which may prove to be both safe and cost-effective are proposed. However, these iceand cryogel-soil composites need to be field-validated before they are used in dams and transport structures in cold regions.
基金Supported by National Natural Science Foundation of China(41571303)Scientific Research Project for Follow-up Work of the Three Gorges(2015HXKY2-4-2)
文摘The effects of nano-carbon water-retaining fertilizer on yield,quality of tuber mustard,and fertilizer utilization efficiency were studied with the field experiments compared to the local tuber mustard fertilizer with equal amount of effective composition. The results showed that the yield of tuber mustard was 50 670-56 496 kg/ha in treatments of nano-carbon water-retaining fertilizer decreasing by 10%-40%,and compared with local tuber mustard fertilizer,the average yield was increased by 94. 8%. The yield increasing rate of tuber mustard was 93. 0%in treatment of nano-carbon water-retaining fertilizer decreasing by 30%. The average fertilizer utilization efficiency of nitrogen and phosphorus was 54% and 39. 7%,respectively,the average increment of fertilizer utilization efficiency was 36% and 37%,respectively compared with local tuber mustard fertilizer. Especially in treatment of reducing nano-carbon water-retaining fertilizer by 30%,the nitrogen and phosphorus fertilizer utilization efficiency was increased by 64% and 56%,respectively. By comprehensive comparison,it was found that nano-carbon waterretaining fertilizer and the treatment of 30% reduction could significantly improve the yield of tuber mustard and fertilizer utilization efficiency,and have popularization and application value in the Three Gorges Reservoir area.
文摘This paper reviews several recently-developed techniques for the minimum-cost optimal design of water-retaining structures (WRSs), which integrate the effects of seepage. These include the incorporation of uncertainty in heterogeneous soil parameter estimates and quantification of reliability. This review is limited to methods based on coupled simulation-optimization (S-O) models. In this context, the design of WRSs is mainly affected by hydraulic design variables such as seepage quantities, which are difficult to determine from closed-form solutions or approximation theories. An S-O model is built by integrating numerical seepage modeling responses to an optimization algorithm based on efficient surrogate models. The surrogate models (meta-models) are trained on simulated data obtained from finite element numerical code solutions. The proposed methodology is applied using several machine learning techniques and optimization solvers to optimize the design of WRS by incorporating different design variables and boundary conditions. Additionally, the effects of several scenarios of flow domain hydraulic conductivity are integrated into the S-O model. Also, reliability based optimum design concepts are incorporated in the S-O model to quantify uncertainty in seepage quantities due to uncertainty in hydraulic conductivity estimates. We can conclude that the S-O model can efficiently optimize WRS designs. The ANN, SVM, and GPR machine learning technique-based surrogate models are efficiently and expeditiously incorporated into the S-O models to imitate the numerical responses of simulations of various problems.