Objective To investigate the distribution of erythropoietin (EPO) and erythropoietin receptor ( EPOR ) expression in the postnatal rat retina development. Methods Forty-two male Sprague-Dawley rats were divided in...Objective To investigate the distribution of erythropoietin (EPO) and erythropoietin receptor ( EPOR ) expression in the postnatal rat retina development. Methods Forty-two male Sprague-Dawley rats were divided into 7 groups according to their various postnatal days: postnatal 1 d (D1 group), 3 d (D3 group), I week (W1 group), 2 weeks (W2 group), 3 weeks (W3 group), 4 weeks (W4 group) and8 weeks (W8 group) ( n = 6 ). Single eye was randomly chosen from each rat for the study. The retinal sections were stained with hematoxylin and eosin (HE) and used for the retina development observation. Immunohistochemical staining was used to localize EPO and EPOR expressions in retinas.of differentstages of development, and the expression intensities were determined by an image plus 4 program~~ Results The retinal inner nuclear layer (INL) and outer nuclear layer (ONL) were mixed together and had not yet fully differentiated in D1 and D3 groups. The INL and ONL formed their own independent regions and the outer plexiform layer (OPL) appeared between two layers in W1 group. With the postnatal retinal development, the inner plexiform layer ( IPL ) , rods and cones layer ( RCL ), and OPL were gradually widened and stabilized in W2 to W3 groups. EPO/EPOR expressions located prominently in the inner part of the postnatal rat developing retinas. The expression of EPO in GCL and INL gradually increased from DI to W4, then the expression decreased in W8. Expression of EPOR in GCL gradually increased from DI to WI , then decreased in W2 ; and it gradually increased again from W3 to W8. Expression of EPOR in INL gradually increased from D1 to W1, then decreased in W2 ; and it continued to decrease from W3 to W8. Expression of EPOR in the external segment of RCL gradually increased from D1 to W8. However, expression in the internal segment of RCL gradually decreased from D1 to W3 , then no obvious expression was seen in the internal segment of RCL in W4 and W8. Conclusion EPO/EPOR expressions locate prominently in the inner part of the postnatal rat developing retina. And EPO/EPOR expressions in the rat retinas exist the dynamic changes during the postnatal retina development period.展开更多
The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and contin...The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and continuous comparison between in vivo retinal development and the organotypic retinal explant culture makes this model controversial in postnatal retinal development studies.Thus,we aimed to verify the feasibility of using this model for postnatal retinal development studies by comparing it with the in vivo retina.In this study,we showed that postnatal retinal explants undergo normal development,and exhibit a consistent structure and timeline with retinas in vivo.Initially,we used SOX2 and PAX6 immunostaining to identify retinal progenitor cells.We then examined cell proliferation and migration by immunostaining with Ki-67 and doublecortin,respectively.Ki-67-and doublecortin-positive cells decreased in both in vivo and explants during postnatal retinogenesis,and exhibited a high degree of similarity in abundance and distribution between groups.Additionally,we used Ceh-10 homeodomain-containing homolog,glutamate-ammonia ligase(glutamine synthetase),neuronal nuclei,and ionized calcium-binding adapter molecule 1 immunostaining to examine the emergence of bipolar cells,Müller glia,mature neurons,and microglia,respectively.The timing and spatial patterns of the emergence of these cell types were remarkably consistent between in vivo and explant retinas.Our study showed that the organotypic retinal explant culture model had a high degree of consistency with the progression of in vivo early postnatal retina development.The findings confirm the accuracy and credibility of this model and support its use for long-term,systematic,and continuous observation.展开更多
文摘Objective To investigate the distribution of erythropoietin (EPO) and erythropoietin receptor ( EPOR ) expression in the postnatal rat retina development. Methods Forty-two male Sprague-Dawley rats were divided into 7 groups according to their various postnatal days: postnatal 1 d (D1 group), 3 d (D3 group), I week (W1 group), 2 weeks (W2 group), 3 weeks (W3 group), 4 weeks (W4 group) and8 weeks (W8 group) ( n = 6 ). Single eye was randomly chosen from each rat for the study. The retinal sections were stained with hematoxylin and eosin (HE) and used for the retina development observation. Immunohistochemical staining was used to localize EPO and EPOR expressions in retinas.of differentstages of development, and the expression intensities were determined by an image plus 4 program~~ Results The retinal inner nuclear layer (INL) and outer nuclear layer (ONL) were mixed together and had not yet fully differentiated in D1 and D3 groups. The INL and ONL formed their own independent regions and the outer plexiform layer (OPL) appeared between two layers in W1 group. With the postnatal retinal development, the inner plexiform layer ( IPL ) , rods and cones layer ( RCL ), and OPL were gradually widened and stabilized in W2 to W3 groups. EPO/EPOR expressions located prominently in the inner part of the postnatal rat developing retinas. The expression of EPO in GCL and INL gradually increased from DI to W4, then the expression decreased in W8. Expression of EPOR in GCL gradually increased from DI to WI , then decreased in W2 ; and it gradually increased again from W3 to W8. Expression of EPOR in INL gradually increased from D1 to W1, then decreased in W2 ; and it continued to decrease from W3 to W8. Expression of EPOR in the external segment of RCL gradually increased from D1 to W8. However, expression in the internal segment of RCL gradually decreased from D1 to W3 , then no obvious expression was seen in the internal segment of RCL in W4 and W8. Conclusion EPO/EPOR expressions locate prominently in the inner part of the postnatal rat developing retina. And EPO/EPOR expressions in the rat retinas exist the dynamic changes during the postnatal retina development period.
基金supported by the National Natural Science Foundation of China,Nos.81901156(to ZZ),82271200(to ZZ),82171308(to XC)the Fundamental Research Funds for the Central Universities,No.xzy012022035(to ZZ)+1 种基金the Natural Science Foundation of Shaanxi Province,Nos.2021JM-261(to QK),2023-YBSF-303(to ZZ)Traditional Chinese Medicine Project of Shaanxi Province,No.2019-ZZ-JC047(to QK)。
文摘The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and continuous comparison between in vivo retinal development and the organotypic retinal explant culture makes this model controversial in postnatal retinal development studies.Thus,we aimed to verify the feasibility of using this model for postnatal retinal development studies by comparing it with the in vivo retina.In this study,we showed that postnatal retinal explants undergo normal development,and exhibit a consistent structure and timeline with retinas in vivo.Initially,we used SOX2 and PAX6 immunostaining to identify retinal progenitor cells.We then examined cell proliferation and migration by immunostaining with Ki-67 and doublecortin,respectively.Ki-67-and doublecortin-positive cells decreased in both in vivo and explants during postnatal retinogenesis,and exhibited a high degree of similarity in abundance and distribution between groups.Additionally,we used Ceh-10 homeodomain-containing homolog,glutamate-ammonia ligase(glutamine synthetase),neuronal nuclei,and ionized calcium-binding adapter molecule 1 immunostaining to examine the emergence of bipolar cells,Müller glia,mature neurons,and microglia,respectively.The timing and spatial patterns of the emergence of these cell types were remarkably consistent between in vivo and explant retinas.Our study showed that the organotypic retinal explant culture model had a high degree of consistency with the progression of in vivo early postnatal retina development.The findings confirm the accuracy and credibility of this model and support its use for long-term,systematic,and continuous observation.