Background Transmissible gastroenteritis virus(TGEV)is one of the main pathogens causing severe diarrhea of pig-lets.The pathogenesis of TGEV is closely related to intestinal inflammation.All-trans retinoic acid(ATRA)...Background Transmissible gastroenteritis virus(TGEV)is one of the main pathogens causing severe diarrhea of pig-lets.The pathogenesis of TGEV is closely related to intestinal inflammation.All-trans retinoic acid(ATRA)is the main active metabolite of vitamin A,which has immunomodulatory and anti-inflammatory properties.However,it is unclear whether ATRA can alleviate TGEV-induced intestinal inflammation and barrier dysfunction in piglets.This study aimed to investigate the effects of ATRA on growth performance,diarrhea,intestinal inflammation and intesti-nal barrier integrity of TGEV-challenged piglets.Methods In a 19-d study,32 weaned piglets were randomly divided into 4 treatments:Control group(basal diet),TGEV group(basal diet+TGEV challenge),TGEV+ATRA5 group(basal diet+5 mg/d ATRA+TGEV challenge)and TGEV+ATRA15 group(basal diet+15 mg/d ATRA+TGEV challenge).On d 14,piglets were orally administered TGEV or the sterile medium.Results Feeding piglets with 5 and 15 mg/d ATRA alleviated the growth inhibition and diarrhea induced by TGEV(P<0.05).Feeding piglets with 5 and 15 mg/d ATRA also inhibited the increase of serum diamine oxidase(DAO)activ-ity and the decrease of occludin and claudin-1 protein levels in jejunal mucosa induced by TGEV,and maintained intestinal barrier integrity(P<0.05).Meanwhile,5 mg/d ATRA feeding increased the sucrase activity and the expres-sions of nutrient transporter related genes(GLUT2 and SLC7A1)in jejunal mucosa of TGEV-challenged piglets(P<0.05).Furthermore,5 mg/d ATRA feeding attenuated TGEV-induced intestinal inflammatory response by inhibit-ing the release of interleukin(IL)-1β,IL-8 and tumor necrosis factor-α(TNF-α),and promoting the secretion of IL-10 and secretory immunoglobulin A(sIgA)(P<0.05).Feeding 5 mg/d ATRA also down-regulated the expressions of Toll-like receptors and RIG-I like receptors signaling pathway related genes(TLR3,TLR4,RIG-I,MyD88,TRIF and MAVS)and the phosphorylation level of nuclear factor-κB-p65(NF-κB p65),and up-regulated the inhibitor kappa B alpha(IκBα)protein level in jejunal mucosa of TGEV-challenged piglets(P<0.05).Conclusions ATRA alleviated TGEV-induced intestinal barrier damage by inhibiting inflammatory response,thus improving the growth performance and inhibiting diarrhea of piglets.The mechanism was associated with the inhibi-tion of NF-κB signaling pathway mediated by TLR3,TLR4 and RIG-I.展开更多
BACKGROUND Gastric cancer(GC)is associated with high mortality rates.Bile acids(BAs)reflux is a well-known risk factor for GC,but the specific mechanism remains unclear.During GC development in both humans and animals...BACKGROUND Gastric cancer(GC)is associated with high mortality rates.Bile acids(BAs)reflux is a well-known risk factor for GC,but the specific mechanism remains unclear.During GC development in both humans and animals,BAs serve as signaling molecules that induce metabolic reprogramming.This confers additional cancer phenotypes,including ferroptosis sensitivity.Ferroptosis is a novel mode of cell death characterized by lipid peroxidation that contributes universally to malignant progression.However,it is not fully defined if BAs can influence GC progression by modulating ferroptosis.AIM To reveal the mechanism of BAs regulation in ferroptosis of GC cells.METHODS In this study,we treated GC cells with various stimuli and evaluated the effect of BAs on the sensitivity to ferroptosis.We used gain and loss of function assays to examine the impacts of farnesoid X receptor(FXR)and BTB and CNC homology 1(BACH1)overexpression and knockdown to obtain further insights into the molecular mechanism involved.RESULTS Our data suggested that BAs could reverse erastin-induced ferroptosis in GC cells.This effect correlated with increased glutathione(GSH)concentrations,a reduced GSH to oxidized GSH ratio,and higher GSH peroxidase 4(GPX4)expression levels.Subsequently,we confirmed that BAs exerted these effects by activating FXR,which markedly increased the expression of GSH synthetase and GPX4.Notably,BACH1 was detected as an essential intermediate molecule in the promotion of GSH synthesis by BAs and FXR.Finally,our results suggested that FXR could significantly promote GC cell proliferation,which may be closely related to its anti-ferroptosis effect.CONCLUSION This study revealed for the first time that BAs could inhibit ferroptosis sensitivity through the FXR-BACH1-GSHGPX4 axis in GC cells.This work provided new insights into the mechanism associated with BA-mediated promotion of GC and may help identify potential therapeutic targets for GC patients with BAs reflux.展开更多
Background Infection with pathogenic bacteria during nonantibiotic breeding is one of the main causes of animal intestinal diseases.Oleanolic acid(OA)is a pentacyclic triterpene that is ubiquitous in plants.Our previo...Background Infection with pathogenic bacteria during nonantibiotic breeding is one of the main causes of animal intestinal diseases.Oleanolic acid(OA)is a pentacyclic triterpene that is ubiquitous in plants.Our previous work demonstrated the protective effect of OA on intestinal health,but the underlying molecular mechanisms remain unclear.This study investigated whether dietary supplementation with OA can prevent diarrhea and intestinal immune dysregulation caused by enterotoxigenic Escherichia coli(ETEC)in piglets.The key molecular role of bile acid receptor signaling in this process has also been explored.Results Our results demonstrated that OA supplementation alleviated the disturbance of bile acid metabolism in ETEC-infected piglets(P<0.05).OA supplementation stabilized the composition of the bile acid pool in piglets by regulating the enterohepatic circulation of bile acids and significantly increased the contents of UDCA and CDCA in the ileum and cecum(P<0.05).This may also explain why OA can maintain the stability of the intestinal microbiota structure in ETEC-challenged piglets.In addition,as a natural ligand of bile acid receptors,OA can reduce the severity of intestinal inflammation and enhance the strength of intestinal epithelial cell antimicrobial programs through the bile acid receptors TGR5 and FXR(P<0.05).Specifically,OA inhibited NF-κB-mediated intestinal inflammation by directly activating TGR5 and its downstream c AMP-PKA-CREB signaling pathway(P<0.05).Furthermore,OA enhanced CDCA-mediated MEK-ERK signaling in intestinal epithelial cells by upregulating the expression of FXR(P<0.05),thereby upregulating the expression of endogenous defense molecules in intestinal epithelial cells.Conclusions In conclusion,our findings suggest that OA-mediated regulation of bile acid metabolism plays an important role in the innate immune response,which provides a new diet-based intervention for intestinal diseases caused by pathogenic bacterial infections in piglets.展开更多
BACKGROUND The expression pattern of gamma aminobutyric acid(GABA)receptor subunits are commonly altered in patients with schizophrenia,which may lead to nerve excitation/inhibition problems,affecting cognition,emotio...BACKGROUND The expression pattern of gamma aminobutyric acid(GABA)receptor subunits are commonly altered in patients with schizophrenia,which may lead to nerve excitation/inhibition problems,affecting cognition,emotion,and behavior.AIM To explore GABA receptor expression and its relationship with schizophrenia and to provide insights into more effective treatments.METHODS This case-control study enrolled 126 patients with schizophrenia treated at our hospital and 126 healthy volunteers who underwent physical examinations at our hospital during the same period.The expression levels of the GABA receptor subunits were detected using 1H-magnetic resonance spectroscopy.The recognized cognitive battery tool,the MATRICS Consensus Cognitive Battery,was used to evaluate the scores for various dimensions of cognitive function.The correlation between GABA receptor subunit downregulation and schizophrenia was also analyzed.RESULTS Significant differences in GABA receptor subunit levels were found between the case and control groups(P<0.05).A significant difference was also found between the case and control groups in terms of cognitive function measures,including attention/alertness and learning ability(P<0.05).Specifically,as the expression levels of GABRA1(α1 subunit gene),GABRB2(β2 subunit gene),GABRD(δsubunit),and GABRE(εsubunit)decreased,the severity of the patients’condition increased gradually,indicating a positive correlation between the downregulation of these 4 receptor subunits and schizophrenia(P<0.05).However,the expression levels of GABRA5(α5 subunit gene)and GABRA6(α6 subunit gene)showed no significant correlation with schizophrenia(P>0.05).CONCLUSION Downregulation of the GABA receptor subunits is positively correlated with schizophrenia.In other words,when GABA receptor subunits are downregulated in patients,cognitive impairment becomes more severe.展开更多
·AIM: To investigate the effect of all-trans retinoic acid(ATRA) on retinol dehydrogenase 5(RDH5), matrix metalloproteinase-2(MMP-2) and transforming growth factor-β2(TGF-β2) transcription levels, and the effec...·AIM: To investigate the effect of all-trans retinoic acid(ATRA) on retinol dehydrogenase 5(RDH5), matrix metalloproteinase-2(MMP-2) and transforming growth factor-β2(TGF-β2) transcription levels, and the effect of RDH5 on MMP-2 and TGF-β2 in retinal pigment epithelium(RPE) cells.·METHODS: After adult RPE cell line-19(ARPE-19 cells) intervened with gradient concentrations of ATRA(0-20 μmol/L) for 24h, flow cytometry was used to detect the proliferation and apoptosis of cells in each group, and quantitative realtime polymerase chain reaction(q RT-PCR) was used to detect RDH5, MMP-2 and TGF-β2 m RNA expression. Then, after ARPE-19 cells transfected with three different si RNA targets for 48h, the RDH5 knockdown efficiency of each group and expression of MMP-2 and TGF-β2 m RNA within them was detected by q RT-PCR. ·RESULTS: Flow cytometry results showed that ATRA could inhibit the proliferation of RPE cells and promote the apoptosis of RPE cells, and the difference of apoptosis was statistically significant when the ATRA concentration exceeded 5 μmol/L and compared with the normal control group(P=0.027 and P=0.031, respectively). q RT-PCR results showed that ATRA could significantly inhibit the expression level of RDH5 m RNA(P<0.001) and promote the expression of MMP-2 and TGF-β2 m RNA(P=0.03 and P<0.001, respectively) in a dose-dependent manner, especially when treated with 5 μmol/L ATRA. The knockdown efficiency of RDH5 si RNA varies with different targets, among which RDH5 si RNA-435 had the highest knockdown efficiency, i.e., more than 50% lower than that of the negative control group(P=0.02). When RDH5 was knocked down for 48h, the results of q RT-PCR showed that the expressions of MMP-2 and TGF-β2 m RNA were significantly up-regulated(P<0.001).·CONCLUSION: ATRA inhibits the expression of RDH5 and promotes MMP-2 and TGF-β2, and further RDH5 knockdown significantly upregulates MMP-2 and TGF-β2. These findings suggest that RDH5 may be involved in an epithelial-mesenchymal transition of RPE cells mediated by ATRA.展开更多
Clinically,arsenic trioxide(ATO)was applied to the treatment of acute promyelocytic leukemia(APL)as a reliable and effective frontline drug.However,the administration regimen of AsⅢwas limited due to its fast clearan...Clinically,arsenic trioxide(ATO)was applied to the treatment of acute promyelocytic leukemia(APL)as a reliable and effective frontline drug.However,the administration regimen of AsⅢwas limited due to its fast clearance,short therapeutic window and toxicity as well.Based on CD71 overexpressed on APL cells,in present study,a transferrin(Tf)-modified liposome(LP)was established firstly to encapsulate AsⅢin arsenic-nickel complex by nickel acetate gradient method.The AsⅢ-loaded liposomes(AsLP)exhibited the feature of acid-sensitive release in vitro.Tf-modified AsLP(Tf-AsLP)were specifically taken up by APL cells and the acidic intracellular environment triggered liposome to release AsⅢwhich stimulated reactive oxygen species level and caspase-3 activity.Tf-AsLP prolonged half-life of AsⅢin blood circulation,lowered systemic toxicity,and promoted apoptosis and induced cell differentiation at lesion site in vivo.Considering that ATO combined with RA is usually applied as the first choice in clinic for APL treatment to improve the therapeutic effect,accordingly,a Tf-modified RA liposome(Tf-RALP)was designed to reduce the severe side effects of free RA and assist Tf-AsLP for better efficacy.As expected,the tumor inhibition rate of Tf-AsLP was improved significantly with the combination of Tf-RALP on subcutaneous tumor model.Furthermore,APL orthotopic NOD/SCID mice model was established by 60CO irradiation and HL-60 cells intravenously injection.The effect of co-administration(Tf-AsLP+Tf-RALP)was also confirmed to conspicuous decrease the number of leukemia cells in the circulatory system and prolong the survival time of APL mice by promoting the APL cells’apoptosis and differentiation in peripheral blood and bone marrow.Collectively,Tf-modified acid-sensitive AsLP could greatly reduce the systemic toxicity of free drug.Moreover,Tf-AsLP combined with Tf-RALP could achieve better efficacy.Thus,transferrinmodified AsⅢliposome would be a novel clinical strategy to improve patient compliance,with promising translation prospects.展开更多
Psoriasis is an inflammatory skin disease that is intricately linked to oxidative stress.Antioxidation and inhibition of abnormal proliferation of keratinocytes are pivotal strategies for psoriasis.Delivering drugs wi...Psoriasis is an inflammatory skin disease that is intricately linked to oxidative stress.Antioxidation and inhibition of abnormal proliferation of keratinocytes are pivotal strategies for psoriasis.Delivering drugs with these effects to the site of skin lesions is a challenge that needs to be solved.Herein,we reported a nanotransdermal delivery system composed of all-trans retinoic acid(TRA),triphenylphosphine(TPP)-modified cerium oxide(CeO2)nanoparticles,flexible nanoliposomes and gels(TCeO_(2)-TRA-FNL-Gel).The results revealed that TCeO_(2)synthesized by the anti-micelle method,with a size of approximately 5 nm,possessed excellent mitochondrial targeting ability and valence conversion capability related to scavenging reactive oxygen species(ROS).TCeO_(2)-TRA-FNL prepared by the film dispersion method,with a size of approximately 70 nm,showed high drug encapsulation efficiency(>96%).TCeO_(2)-TRA-FNL-Gel further showed sustained drug release behaviors,great transdermal permeation ability,and greater skin retention than the free TRA.The results of in vitro EGF-induced and H2O2-induced models suggested that TCeO_(2)-TRA-FNL effectively reduced the level of inflammation and alleviated oxidative stress in HaCat cells.The results of in vivo imiquimod(IMQ)-induced model indicated that TCeO_(2)-TRA-FNL-Gel could greatly alleviate the psoriasis symptoms.In summary,the transdermal drug delivery system designed in this study has shown excellent therapeutic effects on psoriasis and is prospective for the safe and accurate therapy of psoriasis.展开更多
AIM To evaluate the role of RARα gone in mediating the growth inhibitory effect of all-trans retinoic acid(ATRA) on gastric cancer cells. METHODS The expression levels of retinoic acid receptors(PARs)in gastric cance...AIM To evaluate the role of RARα gone in mediating the growth inhibitory effect of all-trans retinoic acid(ATRA) on gastric cancer cells. METHODS The expression levels of retinoic acid receptors(PARs)in gastric cancer cells were detected by Northern blot.Transient transfection and chlorophenicol acetyl transferase(CAT)assay were used to show the transcriptional activity of β retinoic acid response element (βPARE)and AP-1 activity.Cell growth inhibition was determined by MTT assay and anchorage-independent growth assay,respectively.Stable transfection was performed by the method of Lipofectamine,and the cells were screened by G418. RESULTS ATRA could induce expression level of RARα in MGC80-3,BGC-823 and SGC-7901 cells obviously, resulting in growth inhibition of these cell lines.After sense RARα gone was transfected into MKN-45 cells that expressed rather low level of RARα and could not be induced by ATPA,the cell growth was inhibited by ATPA markedly.In contrast,when antisense RARα gone was transfected into BGC-823 cells,a little inhibitory effect by ATPA was seen,compared with the parallel BGC-823 cells.In transient transfection assay,ATPA effectively induced transcriptional activity of βRARE in MGC80-3, BGC-823,SGC-7902 and MKN/RARα cell lines,but not in MKN-45 and BGC/aRARα cell lines.Similar results were observed in measuring anti-AP-1 activity by ATPA in these cancer cell lines. CONCLUSION ATRA inhibits the growth of gastric cancer cells by up-regulating the level of RARα; RARα is the major mediator of ATRA action in gastric cancer cells;and adequate level of RARα is required for ATRA effect on gastric cancer cells.展开更多
·AIM:All-trans retinoic acid (RA) is the only extrinsic biochemical candidate known to date that could act as a growth controller,the aim of this study was to investigate the expression cellular retinoic acid bin...·AIM:All-trans retinoic acid (RA) is the only extrinsic biochemical candidate known to date that could act as a growth controller,the aim of this study was to investigate the expression cellular retinoic acid binding proteins I (CRABP-I) and retinoic acid receptor-β (RAR-β) in retina of the guinea pig eyes with experimental myopia.·METHODS:Ninety guinea pigs aged 14 days were equally and randomly divided into three groups:form deprivation (FD),-5D lens,and control.The diffusers for FD were white translucent hemispheres,and-5D lenses were used to introduce hyperopic defocus.Refraction was measured with streak retinoscopy after cycloplegia,and axial length was calculated with Cinescan A/B ultrasonography.Retina harvested at different time points were used to measure RA level with HPLC and expressions of cellular retinoic acid binding proteins I (CRABP-I) and RA receptor-β (RAR-β) were assayed with Western blot and Real-time PCR.SPSS13.0 software was used for statistical analysis.·RESULTS:Up-regulations of CRABP-I and RAR-β in ocular tissues correlated with changes in the refractive status and growth rate of the guinea pig eye (P <0.05).14 days of monocular form-deprivation led to-5.14D myopia and a 0.281mm axial elongation;14 days of monocular defocus produced-3.64D myopia and a 0.163 mm axial elongation.The level of retinal RA started to elevate in 7 days (P <0.05) after visual manipulation in both FD and-5D lens groups and became more prominent by 14 days (P <0.01).The expressions of CRABP-I and RAR-β increased by 14 days after visual manipulation (P <0.05),the mRNA level of RAR-β,however,increased by 7 days after visual manipulation (P <0.05),which suggested that changes of expressions of CRABP-I and RAR-β might lag behind the change of RA.·CONCLUSION:The levels of CRABP-I and RAR-β were elevated in retina of the guinea pig eye with experimental myopia.During the progression of experimental myopia,the retinal RA level increased rapidly,and there might be a positive feedback between the increase of RA and up-regulation of RAR-β.·展开更多
AIM: To study the role of autophagy and the relationship between retinoic acid receptor α(RARα) and autophagy in liver ischemia and reperfusion(IR) injury.METHODS: All-trans retinoic acid(ATRA) was administered to m...AIM: To study the role of autophagy and the relationship between retinoic acid receptor α(RARα) and autophagy in liver ischemia and reperfusion(IR) injury.METHODS: All-trans retinoic acid(ATRA) was administered to mice for two weeks before operation. Reverse transcription-polymerase chain reaction and Western blot were used to detect the expression levels of related factors. To demonstrate the role of RARα,LE540,a RARα inhibitor,was used to treat hepatocytes injured by H2O2 in vitro.RESULTS: ATRA pretreatment noticeably diminished levels of serum alanine aminotransferase and as-partate aminotransferase as well as the degree of histopathological changes. Apoptosis was also inhibited,whereas autophagy was promoted. In vitro,RARα was inhibited by LE540,which resulted in decreased autophagy and increased apoptosis. Similarly,the expression of Foxo3 a and p-Akt was downregulated,but Foxo1 expression was upregulated.CONCLUSION: This research provides evidence that ATRA can protect the liver from IR injury by promoting autophagy,which is dependent on Foxo3/p-Akt/Foxo1 signaling.展开更多
Objective: The molecular mechanism of prostate cancer is poorly understood. The aim of the study was to investigate the prevalence and prognostic value of promoter hypermethylation of retinoic acid receptor beta (RARB...Objective: The molecular mechanism of prostate cancer is poorly understood. The aim of the study was to investigate the prevalence and prognostic value of promoter hypermethylation of retinoic acid receptor beta (RARB) and p16 among benign prostatic hyperplasia (BPH) and prostate cancer patients. Methods: In this case-control study, 63 patients were included in three groups; 21 with BPH as the control group, 21 with prostate cancer and good prognostic factors (based on prostate-specific antigen, Gleason score and stage) as good prognosis group, and 21 with prostate cancer and poor prognostic features as poor prognosis group. The prostate biopsy specimen of each individual was examined for hypermethylation of RARB and p16 promoters by methylation specific PCR (MSPCR). Results: Seven (33.3%) patients with good prognosis and 15 (71.4%) patients with poor prognosis were positive for RARB methylation, which were significantly higher than controls (P <0.0001). p16 promoter methylation was shown in 19.0% and 47.6% patients with good and poor prognosis, respectively. The RARB and p16 promoter methylation in the poor prognosis group was significantly higher than that in the good prognosis group (P =0.02 for RARB and P<0.0001 for p16). Conclusion: Hypermethylation of RARB and p16 promoters may predict prognosis in prostate cancer.展开更多
Cervical cancer is one of the leading causes of death in women worldwide, particularly in developing countries. Human papillomavirus has been reported as one of the key etiologic factors in cervical carcinoma. Likewis...Cervical cancer is one of the leading causes of death in women worldwide, particularly in developing countries. Human papillomavirus has been reported as one of the key etiologic factors in cervical carcinoma. Likewise, epigenetic aberrations have ability to regulate cancer pathogenesis and progression. Recent research suggested that methylation has been detected already at precancerous stages, which methylation markers may have significant value in cervical cancer screening. The retinoic acid receptor beta (RARβ) gene, a potential tumor suppressor gene, is usually expressed in normal epithelial tissue. Methylation of CpG islands in the promoter region of the RARβ gene has been found to be associated with the development of cervical cancer. To investigate whether RARβ methylation is a potential biomarker that predicts the progression of invasive cancer, we reviewed 14 previously published articles related to RARβ methylation. The majority of them demonstrated that the frequency of RARβ promoter methylation was significantly correlated with the severity of cervical epithelium abnormalities. However, methylation of a single gene may not represent the best approach for predicting disease prognosis. Analyzing combinations of aberrant methylation of multiple genes may increase the sensitivity, and thus this approach may serve as a better tool for predicting disease prognosis.展开更多
·Fungal keratitis(FK) is a worldwide visual impairment disease. This infectious fungus initiates the primary innate immune response and, later the adaptive immune response. The inflammatory process is related to ...·Fungal keratitis(FK) is a worldwide visual impairment disease. This infectious fungus initiates the primary innate immune response and, later the adaptive immune response. The inflammatory process is related to a variety of immune cells, including macrophages, helper T cells, neutrophils, dendritic cells, and Treg cells, and is associated with proinflammatory, chemotactic and regulatory cytokines. All-trans retinoic acids(ATRA)have diverse immunomodulatory actions in a number of inflammatory and autoimmune conditions. These retinoids regulate the transcriptional levels of target genes through the activation of nuclear receptors.Retinoic acid receptor α(RAR α), retinoic acid receptor γ(RAR γ), and retinoid X receptor α(RXR α) are expressed in the cornea and immune cells. This paper summarizes new findings regarding ATRA in immune and inflammatory diseases and analyzes the perspective application of ATRA in FK.展开更多
Human amniotic basement membrane (HABM) model and agarose drop explant method were used to in-vestigate the effects of retinoic acid(RA) on the invasive-ness alld adhesiveness to the basement membrane, and the migrati...Human amniotic basement membrane (HABM) model and agarose drop explant method were used to in-vestigate the effects of retinoic acid(RA) on the invasive-ness alld adhesiveness to the basement membrane, and the migration of a highly invassive human colorectal cancer cell line CCL229. Results showed that 5 ×106 MRA markedly reduced the in vitro invasiveness and adhesiveness to the HABM, and the migration of the CCL229 cells. In addi-tion, to elucidate the relation between expression of epider-mal growth factor receptor (EGFR) and the invasiveness of the colorectal carcinoma cells, two well-differentiated, but with different invasiveness colorectal cancer cell lines were compared at mRNA level for expressioll of EGFR by using EGFR cDNA probe labeled with digoxigenin (DIG). Expression of EGFR was showll to be markedly higher in the highly invassive CCL229 cells than that in the low in- vasive CX-1 cells. Furthermore, expression of EGFR in RA treated CCL229 cells gradually decreased with time,the level being the lowest on day 6 of the RA treatment.展开更多
Objective: To evaluate the expression and its clinical significance of interleukin 6 (IL-6), soluble glycoprotein 130 (sgp130), interleukin 8 (IL-8) and type A interleukin 8 receptor (IL-8RA) in acute promyelocytic le...Objective: To evaluate the expression and its clinical significance of interleukin 6 (IL-6), soluble glycoprotein 130 (sgp130), interleukin 8 (IL-8) and type A interleukin 8 receptor (IL-8RA) in acute promyelocytic leukemia (APL) patients during all-trans retinoic acid (ATRA) induction treatment. Methods: Plasma and bone marrow mononuclear cell (MNC) culture supernatant IL-6, sgp130, IL-8 concentration of 18 cases with APL were kinetically measured in vivo and in vitro (ELISA). Bone marrow MNC IL-8RA was measured by flow cytometry after being cultured with ATRA (10?6mmol/L). Results: Plasma IL-6, sgp130, IL-8 levels were higher than normal (P<0.05), IL-6, spg130 levels correlated with white blood cell (WBC) counts (P<0.05) while IL-8 levels correlated with body temperature (P<0.05) at initial diagnosis. After 72-hour incubation with ATRA, concentration of IL-6 of bone marrow MNC culture supernatant did not change, that of sgp130 mildly decreased, and IL-8 significantly decreased while the positive rate of IL-8RA on bone marrow MNC increased. During ATRA treatment, plasma IL-6 changes were correlated with WBC counts. Peak levels of IL-6 and WBC were lower in patients who received intermittent therapy than those who received continuous therapy. Plasma IL-6 and IL-8 were increased when complicated with infection and IL-8 seemed more sensitive. Conclusion: Plasma IL-6, sgp130, IL-8 levels may reflect patients' responsiveness to ATRA treatment, and could be used to predict hyperleukocytosis and intercurrent infection. ATRA induces APL cell differentiation possibly via sgp130 signal transducer chain. Measurement of sgp130 had certain meaning to prognosis.展开更多
All-trans retinoic acid (ATRA) triggers a wide range of effects on vertebrate development by regulating cell proliferation, differentiation, and apoptosis. ATRA activates retinoic acid receptors (RARs) which heterodim...All-trans retinoic acid (ATRA) triggers a wide range of effects on vertebrate development by regulating cell proliferation, differentiation, and apoptosis. ATRA activates retinoic acid receptors (RARs) which heterodimerize with retinoid X receptors (RXRs). RAR/RXR heterodimers function as ATRA-dependent transcriptional regulators by binding to retinoic acid response elements (RAREs). To identify RAR/RXR heterodimer-binding sites in the human genome, we performed a modified yeast one-hybrid assays and identified 193 RAR/RXR heterodimer-binding fragments in the human genome. The putative target genes included genes involved in development process and cell differentiation. Gel mobility shift assays indicated that 160 putative RAREs could directly interact with the RAR/RXR heterodimer. Moreover, 19 functional regulatory single nucleotide polymorphisms (rSNPs) on the RAR/RXR-binding sequences were identified by analyzing the difference in the DNA-binding affinities. These results provide insights into the molecular mechanisms underlying the physiological and pathological actions of RAR/RXR heterodimers.展开更多
The nuclear retinoic acid receptor may play a critical role in the process of lung carcinogenesis. Alteration or loss of nuclear retinoic acid receptors (RARs) has been associated with progression in premalignant and ...The nuclear retinoic acid receptor may play a critical role in the process of lung carcinogenesis. Alteration or loss of nuclear retinoic acid receptors (RARs) has been associated with progression in premalignant and malignant tissues and it is associated with malignant transformation in human cells. Vitamin A derivates, such as retinoic acid, have emerged as adjuvant to therapy in several types of cancer with favorable effects. Retinoic acid regulates the expression of target genes through the binding and activation of RARs, inhibiting growth proliferation. Diverse studies have evaluated different retinoids alone or in combination with chemotherapy in lung cancer, from which results have been controversial with benefits observed only in the subpopulation with high levels of triglycerides. Additionally, several large randomized trials using retinoids to prevent tobacco-related cancer have failed;due to the latter the use of retinoids in clinical trials remains controversial. However they could reduce the risk of cancer development in non-smokers. There is evidence that retinoids have different effects on lung cancer;still the identification of biomarkers could determinate their benefits as preventive or therapy agents. This review describes the RAR alterations during the development of Non-Small Cell Lung Cancer and sets out the importance of several cancer treatments with retinoid compounds.展开更多
AIM: To explore the effects of retinoic acid receptor-γ (RARγ) on innate immune responses against Aspergillus fumigatus (A. fumigatus) in cultured human corneal epithelial cells (HCECs). METHODS: The HCECs ...AIM: To explore the effects of retinoic acid receptor-γ (RARγ) on innate immune responses against Aspergillus fumigatus (A. fumigatus) in cultured human corneal epithelial cells (HCECs). METHODS: The HCECs were stimulated with A. fumigatus hyphae for 0, 2, 4, 8, 12 and 16h. RARγ mRNA and protein levels were tested by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Then HCECs were pretreated with or without BMS961 (RARγ agonist, 1 μg/mL). The mRNA and protein expression of Dectin-1 and the downstream cytokines (TNF-α and IL-6) were determined by qRT-PCR, Western blot and enzyme-linked immunosorbent assay (ELISA). RESULTS: The expression of RARγ was upregulated after stimulation with A. fumigatus. RARγ mRNA began to rise at 4h and peaked at 8h (P〈0.001). The protein of RARγ reached to the peak at 16h (P〈0.001). Pretreated with BMS961 before A. fumigatus hyphae stimulation, expression of Dectin-1, TNF-α and IL-6 decreased dramatically at mRNA and protein levels. CONCLUSION: HCECs can express RARγ and A. fumigatus hyphae infection can increase RARγ expression. BMS961 can inhibit the expression of Dectin-1 and pro-inflammatory cytokines, and play an anti-inflammatory role in innate immune responses against A. fumigatus.展开更多
Objective To investigate the impact of all-trans retinoic acid (ATRA) on MDM2 gene expression in astrocytoma cell line SHG-44, and to provide basic data for further research on the progression mechanism and gene the...Objective To investigate the impact of all-trans retinoic acid (ATRA) on MDM2 gene expression in astrocytoma cell line SHG-44, and to provide basic data for further research on the progression mechanism and gene therapy of human astrocytoma. Methods The differential expressions of MDM2 gene and protein in SHG-44 cells were detected by cDNA microarray and Western blot, respectively, before and after treatment of ATRA. The expressions of MDM2 protein in WHO grade Ⅱ and grade Ⅳ astrocytomas were determined by immunohistochemical streptavidin-peroxidase method. Some differentially expressed genes were selected randomly for Northern blot analysis. Results The intensity ratio of ATRA-treated to untreated SHG-44 cell was 0.37 in the cDNA microarray, suggesting that the expression of MDM2 gene was down-regulated in SHG-44 cells after treatment with ATRA. Some genes differentially expressed in the microarray were confirmed by Northern blot. Western blot demonstrated that the optical density ratios of MDM2 to β-actin in ATRA-treated and untreated SHG-44 were 14.02±0.35 and 21.40±0.58 (t = 24.728, P = 0.000), respectively, suggesting that the expression of MDM2 protein was inhibited in ATRA-treated SHG-44 cells. Moreover, the percentages of MDM2-positive protein were 24.00% (6/25) and 56.52% (13/23) (x^2 = 5.298, P = 0.021) in WHO grade Ⅱ and grade Ⅳ astrocytomas, respectively, suggesting that the expression of MDM2 protein may increase along with the elevation of astrocytoma malignancy. Conclusion ATRA can inhibit MDM2 gene expression in SHG-44 cells, and MDM2 is related to astrocytoma progression.展开更多
Chronic and recurrent inflammatory disorders of the gastrointestinal tract caused by a complex interplay between genetics and intestinal dysbiosis are called inflammatory bowel disease.As a result of the interaction b...Chronic and recurrent inflammatory disorders of the gastrointestinal tract caused by a complex interplay between genetics and intestinal dysbiosis are called inflammatory bowel disease.As a result of the interaction between the liver and the gut microbiota,bile acids are an atypical class of steroids produced in mammals and traditionally known for their function in food absorption.With the development of genomics and metabolomics,more and more data suggest that the pathophysiological mechanisms of inflammatory bowel disease are regulated by bile acids and their receptors.Bile acids operate as signalling molecules by activating a variety of bile acid receptors that impact intestinal flora,epithelial barrier function,and intestinal immunology.Inflammatory bowel disease can be treated in new ways by using these potential molecules.This paper mainly discusses the increasing function of bile acids and their receptors in inflammatory bowel disease and their prospective therapeutic applications.In addition,we explore bile acid metabolism and the interaction of bile acids and the gut microbiota.展开更多
基金The present study was supported by Sichuan Science and Technology Program(2021ZDZX0009)the Sichuan Pig Innovation Team of National Modern Agricultural Industry Technology System of China(scsztd-2021-08-11)the Sichuan Natural Science Foundation of China(2023NSFSC1141).
文摘Background Transmissible gastroenteritis virus(TGEV)is one of the main pathogens causing severe diarrhea of pig-lets.The pathogenesis of TGEV is closely related to intestinal inflammation.All-trans retinoic acid(ATRA)is the main active metabolite of vitamin A,which has immunomodulatory and anti-inflammatory properties.However,it is unclear whether ATRA can alleviate TGEV-induced intestinal inflammation and barrier dysfunction in piglets.This study aimed to investigate the effects of ATRA on growth performance,diarrhea,intestinal inflammation and intesti-nal barrier integrity of TGEV-challenged piglets.Methods In a 19-d study,32 weaned piglets were randomly divided into 4 treatments:Control group(basal diet),TGEV group(basal diet+TGEV challenge),TGEV+ATRA5 group(basal diet+5 mg/d ATRA+TGEV challenge)and TGEV+ATRA15 group(basal diet+15 mg/d ATRA+TGEV challenge).On d 14,piglets were orally administered TGEV or the sterile medium.Results Feeding piglets with 5 and 15 mg/d ATRA alleviated the growth inhibition and diarrhea induced by TGEV(P<0.05).Feeding piglets with 5 and 15 mg/d ATRA also inhibited the increase of serum diamine oxidase(DAO)activ-ity and the decrease of occludin and claudin-1 protein levels in jejunal mucosa induced by TGEV,and maintained intestinal barrier integrity(P<0.05).Meanwhile,5 mg/d ATRA feeding increased the sucrase activity and the expres-sions of nutrient transporter related genes(GLUT2 and SLC7A1)in jejunal mucosa of TGEV-challenged piglets(P<0.05).Furthermore,5 mg/d ATRA feeding attenuated TGEV-induced intestinal inflammatory response by inhibit-ing the release of interleukin(IL)-1β,IL-8 and tumor necrosis factor-α(TNF-α),and promoting the secretion of IL-10 and secretory immunoglobulin A(sIgA)(P<0.05).Feeding 5 mg/d ATRA also down-regulated the expressions of Toll-like receptors and RIG-I like receptors signaling pathway related genes(TLR3,TLR4,RIG-I,MyD88,TRIF and MAVS)and the phosphorylation level of nuclear factor-κB-p65(NF-κB p65),and up-regulated the inhibitor kappa B alpha(IκBα)protein level in jejunal mucosa of TGEV-challenged piglets(P<0.05).Conclusions ATRA alleviated TGEV-induced intestinal barrier damage by inhibiting inflammatory response,thus improving the growth performance and inhibiting diarrhea of piglets.The mechanism was associated with the inhibi-tion of NF-κB signaling pathway mediated by TLR3,TLR4 and RIG-I.
基金Supported by the Major Basic Research Project of Natural Science Foundation of Shandong Province,No.ZR2020ZD15.
文摘BACKGROUND Gastric cancer(GC)is associated with high mortality rates.Bile acids(BAs)reflux is a well-known risk factor for GC,but the specific mechanism remains unclear.During GC development in both humans and animals,BAs serve as signaling molecules that induce metabolic reprogramming.This confers additional cancer phenotypes,including ferroptosis sensitivity.Ferroptosis is a novel mode of cell death characterized by lipid peroxidation that contributes universally to malignant progression.However,it is not fully defined if BAs can influence GC progression by modulating ferroptosis.AIM To reveal the mechanism of BAs regulation in ferroptosis of GC cells.METHODS In this study,we treated GC cells with various stimuli and evaluated the effect of BAs on the sensitivity to ferroptosis.We used gain and loss of function assays to examine the impacts of farnesoid X receptor(FXR)and BTB and CNC homology 1(BACH1)overexpression and knockdown to obtain further insights into the molecular mechanism involved.RESULTS Our data suggested that BAs could reverse erastin-induced ferroptosis in GC cells.This effect correlated with increased glutathione(GSH)concentrations,a reduced GSH to oxidized GSH ratio,and higher GSH peroxidase 4(GPX4)expression levels.Subsequently,we confirmed that BAs exerted these effects by activating FXR,which markedly increased the expression of GSH synthetase and GPX4.Notably,BACH1 was detected as an essential intermediate molecule in the promotion of GSH synthesis by BAs and FXR.Finally,our results suggested that FXR could significantly promote GC cell proliferation,which may be closely related to its anti-ferroptosis effect.CONCLUSION This study revealed for the first time that BAs could inhibit ferroptosis sensitivity through the FXR-BACH1-GSHGPX4 axis in GC cells.This work provided new insights into the mechanism associated with BA-mediated promotion of GC and may help identify potential therapeutic targets for GC patients with BAs reflux.
基金financially supported by the National Natural Science Foundation of China(Grant No.31972580 and U21A20252)the China Agriculture Research System(CARS-35)+1 种基金the Science Fund for Distinguished Young Scholars of Heilongjiang Province(JQ2022C002)the Support Project of Young Leading Talents of Northeast Agricultural University(NEAU2023QNLJ-017)。
文摘Background Infection with pathogenic bacteria during nonantibiotic breeding is one of the main causes of animal intestinal diseases.Oleanolic acid(OA)is a pentacyclic triterpene that is ubiquitous in plants.Our previous work demonstrated the protective effect of OA on intestinal health,but the underlying molecular mechanisms remain unclear.This study investigated whether dietary supplementation with OA can prevent diarrhea and intestinal immune dysregulation caused by enterotoxigenic Escherichia coli(ETEC)in piglets.The key molecular role of bile acid receptor signaling in this process has also been explored.Results Our results demonstrated that OA supplementation alleviated the disturbance of bile acid metabolism in ETEC-infected piglets(P<0.05).OA supplementation stabilized the composition of the bile acid pool in piglets by regulating the enterohepatic circulation of bile acids and significantly increased the contents of UDCA and CDCA in the ileum and cecum(P<0.05).This may also explain why OA can maintain the stability of the intestinal microbiota structure in ETEC-challenged piglets.In addition,as a natural ligand of bile acid receptors,OA can reduce the severity of intestinal inflammation and enhance the strength of intestinal epithelial cell antimicrobial programs through the bile acid receptors TGR5 and FXR(P<0.05).Specifically,OA inhibited NF-κB-mediated intestinal inflammation by directly activating TGR5 and its downstream c AMP-PKA-CREB signaling pathway(P<0.05).Furthermore,OA enhanced CDCA-mediated MEK-ERK signaling in intestinal epithelial cells by upregulating the expression of FXR(P<0.05),thereby upregulating the expression of endogenous defense molecules in intestinal epithelial cells.Conclusions In conclusion,our findings suggest that OA-mediated regulation of bile acid metabolism plays an important role in the innate immune response,which provides a new diet-based intervention for intestinal diseases caused by pathogenic bacterial infections in piglets.
文摘BACKGROUND The expression pattern of gamma aminobutyric acid(GABA)receptor subunits are commonly altered in patients with schizophrenia,which may lead to nerve excitation/inhibition problems,affecting cognition,emotion,and behavior.AIM To explore GABA receptor expression and its relationship with schizophrenia and to provide insights into more effective treatments.METHODS This case-control study enrolled 126 patients with schizophrenia treated at our hospital and 126 healthy volunteers who underwent physical examinations at our hospital during the same period.The expression levels of the GABA receptor subunits were detected using 1H-magnetic resonance spectroscopy.The recognized cognitive battery tool,the MATRICS Consensus Cognitive Battery,was used to evaluate the scores for various dimensions of cognitive function.The correlation between GABA receptor subunit downregulation and schizophrenia was also analyzed.RESULTS Significant differences in GABA receptor subunit levels were found between the case and control groups(P<0.05).A significant difference was also found between the case and control groups in terms of cognitive function measures,including attention/alertness and learning ability(P<0.05).Specifically,as the expression levels of GABRA1(α1 subunit gene),GABRB2(β2 subunit gene),GABRD(δsubunit),and GABRE(εsubunit)decreased,the severity of the patients’condition increased gradually,indicating a positive correlation between the downregulation of these 4 receptor subunits and schizophrenia(P<0.05).However,the expression levels of GABRA5(α5 subunit gene)and GABRA6(α6 subunit gene)showed no significant correlation with schizophrenia(P>0.05).CONCLUSION Downregulation of the GABA receptor subunits is positively correlated with schizophrenia.In other words,when GABA receptor subunits are downregulated in patients,cognitive impairment becomes more severe.
基金Supported by Project of Science&Technology Department of Sichuan Province (No.23NSFSC1940)City and College Cooperation (No.22SXFWDF0003)。
文摘·AIM: To investigate the effect of all-trans retinoic acid(ATRA) on retinol dehydrogenase 5(RDH5), matrix metalloproteinase-2(MMP-2) and transforming growth factor-β2(TGF-β2) transcription levels, and the effect of RDH5 on MMP-2 and TGF-β2 in retinal pigment epithelium(RPE) cells.·METHODS: After adult RPE cell line-19(ARPE-19 cells) intervened with gradient concentrations of ATRA(0-20 μmol/L) for 24h, flow cytometry was used to detect the proliferation and apoptosis of cells in each group, and quantitative realtime polymerase chain reaction(q RT-PCR) was used to detect RDH5, MMP-2 and TGF-β2 m RNA expression. Then, after ARPE-19 cells transfected with three different si RNA targets for 48h, the RDH5 knockdown efficiency of each group and expression of MMP-2 and TGF-β2 m RNA within them was detected by q RT-PCR. ·RESULTS: Flow cytometry results showed that ATRA could inhibit the proliferation of RPE cells and promote the apoptosis of RPE cells, and the difference of apoptosis was statistically significant when the ATRA concentration exceeded 5 μmol/L and compared with the normal control group(P=0.027 and P=0.031, respectively). q RT-PCR results showed that ATRA could significantly inhibit the expression level of RDH5 m RNA(P<0.001) and promote the expression of MMP-2 and TGF-β2 m RNA(P=0.03 and P<0.001, respectively) in a dose-dependent manner, especially when treated with 5 μmol/L ATRA. The knockdown efficiency of RDH5 si RNA varies with different targets, among which RDH5 si RNA-435 had the highest knockdown efficiency, i.e., more than 50% lower than that of the negative control group(P=0.02). When RDH5 was knocked down for 48h, the results of q RT-PCR showed that the expressions of MMP-2 and TGF-β2 m RNA were significantly up-regulated(P<0.001).·CONCLUSION: ATRA inhibits the expression of RDH5 and promotes MMP-2 and TGF-β2, and further RDH5 knockdown significantly upregulates MMP-2 and TGF-β2. These findings suggest that RDH5 may be involved in an epithelial-mesenchymal transition of RPE cells mediated by ATRA.
基金supported by the Science and Technology Commission of Shanghai Municipality (20S11902600)the National Natural Science Foundation of China (82172615)the PDH-SPFDU Joint Research Fund (RHJJ2018-05)
文摘Clinically,arsenic trioxide(ATO)was applied to the treatment of acute promyelocytic leukemia(APL)as a reliable and effective frontline drug.However,the administration regimen of AsⅢwas limited due to its fast clearance,short therapeutic window and toxicity as well.Based on CD71 overexpressed on APL cells,in present study,a transferrin(Tf)-modified liposome(LP)was established firstly to encapsulate AsⅢin arsenic-nickel complex by nickel acetate gradient method.The AsⅢ-loaded liposomes(AsLP)exhibited the feature of acid-sensitive release in vitro.Tf-modified AsLP(Tf-AsLP)were specifically taken up by APL cells and the acidic intracellular environment triggered liposome to release AsⅢwhich stimulated reactive oxygen species level and caspase-3 activity.Tf-AsLP prolonged half-life of AsⅢin blood circulation,lowered systemic toxicity,and promoted apoptosis and induced cell differentiation at lesion site in vivo.Considering that ATO combined with RA is usually applied as the first choice in clinic for APL treatment to improve the therapeutic effect,accordingly,a Tf-modified RA liposome(Tf-RALP)was designed to reduce the severe side effects of free RA and assist Tf-AsLP for better efficacy.As expected,the tumor inhibition rate of Tf-AsLP was improved significantly with the combination of Tf-RALP on subcutaneous tumor model.Furthermore,APL orthotopic NOD/SCID mice model was established by 60CO irradiation and HL-60 cells intravenously injection.The effect of co-administration(Tf-AsLP+Tf-RALP)was also confirmed to conspicuous decrease the number of leukemia cells in the circulatory system and prolong the survival time of APL mice by promoting the APL cells’apoptosis and differentiation in peripheral blood and bone marrow.Collectively,Tf-modified acid-sensitive AsLP could greatly reduce the systemic toxicity of free drug.Moreover,Tf-AsLP combined with Tf-RALP could achieve better efficacy.Thus,transferrinmodified AsⅢliposome would be a novel clinical strategy to improve patient compliance,with promising translation prospects.
基金supported by Zhejiang Provincial Natural Science Foundation of China under Grant No.LYY21H300001Zhejiang Medical and Health Science and Technology project under Grant No.2021KY906Hangzhou Medical Key Discipline Construction Project under Grant No.[2021]21–39
文摘Psoriasis is an inflammatory skin disease that is intricately linked to oxidative stress.Antioxidation and inhibition of abnormal proliferation of keratinocytes are pivotal strategies for psoriasis.Delivering drugs with these effects to the site of skin lesions is a challenge that needs to be solved.Herein,we reported a nanotransdermal delivery system composed of all-trans retinoic acid(TRA),triphenylphosphine(TPP)-modified cerium oxide(CeO2)nanoparticles,flexible nanoliposomes and gels(TCeO_(2)-TRA-FNL-Gel).The results revealed that TCeO_(2)synthesized by the anti-micelle method,with a size of approximately 5 nm,possessed excellent mitochondrial targeting ability and valence conversion capability related to scavenging reactive oxygen species(ROS).TCeO_(2)-TRA-FNL prepared by the film dispersion method,with a size of approximately 70 nm,showed high drug encapsulation efficiency(>96%).TCeO_(2)-TRA-FNL-Gel further showed sustained drug release behaviors,great transdermal permeation ability,and greater skin retention than the free TRA.The results of in vitro EGF-induced and H2O2-induced models suggested that TCeO_(2)-TRA-FNL effectively reduced the level of inflammation and alleviated oxidative stress in HaCat cells.The results of in vivo imiquimod(IMQ)-induced model indicated that TCeO_(2)-TRA-FNL-Gel could greatly alleviate the psoriasis symptoms.In summary,the transdermal drug delivery system designed in this study has shown excellent therapeutic effects on psoriasis and is prospective for the safe and accurate therapy of psoriasis.
基金Supported by the National Outstanding Youth Science Foundation of China(B type),No.39825502 National Natural Science Foundation of China,No.39880015.
文摘AIM To evaluate the role of RARα gone in mediating the growth inhibitory effect of all-trans retinoic acid(ATRA) on gastric cancer cells. METHODS The expression levels of retinoic acid receptors(PARs)in gastric cancer cells were detected by Northern blot.Transient transfection and chlorophenicol acetyl transferase(CAT)assay were used to show the transcriptional activity of β retinoic acid response element (βPARE)and AP-1 activity.Cell growth inhibition was determined by MTT assay and anchorage-independent growth assay,respectively.Stable transfection was performed by the method of Lipofectamine,and the cells were screened by G418. RESULTS ATRA could induce expression level of RARα in MGC80-3,BGC-823 and SGC-7901 cells obviously, resulting in growth inhibition of these cell lines.After sense RARα gone was transfected into MKN-45 cells that expressed rather low level of RARα and could not be induced by ATPA,the cell growth was inhibited by ATPA markedly.In contrast,when antisense RARα gone was transfected into BGC-823 cells,a little inhibitory effect by ATPA was seen,compared with the parallel BGC-823 cells.In transient transfection assay,ATPA effectively induced transcriptional activity of βRARE in MGC80-3, BGC-823,SGC-7902 and MKN/RARα cell lines,but not in MKN-45 and BGC/aRARα cell lines.Similar results were observed in measuring anti-AP-1 activity by ATPA in these cancer cell lines. CONCLUSION ATRA inhibits the growth of gastric cancer cells by up-regulating the level of RARα; RARα is the major mediator of ATRA action in gastric cancer cells;and adequate level of RARα is required for ATRA effect on gastric cancer cells.
基金Key Program of National Natural Science Foundation of China (No.30530770)Scientific Research Program of Shanghai Municipal Health Bureau, China (No.054072)
文摘·AIM:All-trans retinoic acid (RA) is the only extrinsic biochemical candidate known to date that could act as a growth controller,the aim of this study was to investigate the expression cellular retinoic acid binding proteins I (CRABP-I) and retinoic acid receptor-β (RAR-β) in retina of the guinea pig eyes with experimental myopia.·METHODS:Ninety guinea pigs aged 14 days were equally and randomly divided into three groups:form deprivation (FD),-5D lens,and control.The diffusers for FD were white translucent hemispheres,and-5D lenses were used to introduce hyperopic defocus.Refraction was measured with streak retinoscopy after cycloplegia,and axial length was calculated with Cinescan A/B ultrasonography.Retina harvested at different time points were used to measure RA level with HPLC and expressions of cellular retinoic acid binding proteins I (CRABP-I) and RA receptor-β (RAR-β) were assayed with Western blot and Real-time PCR.SPSS13.0 software was used for statistical analysis.·RESULTS:Up-regulations of CRABP-I and RAR-β in ocular tissues correlated with changes in the refractive status and growth rate of the guinea pig eye (P <0.05).14 days of monocular form-deprivation led to-5.14D myopia and a 0.281mm axial elongation;14 days of monocular defocus produced-3.64D myopia and a 0.163 mm axial elongation.The level of retinal RA started to elevate in 7 days (P <0.05) after visual manipulation in both FD and-5D lens groups and became more prominent by 14 days (P <0.01).The expressions of CRABP-I and RAR-β increased by 14 days after visual manipulation (P <0.05),the mRNA level of RAR-β,however,increased by 7 days after visual manipulation (P <0.05),which suggested that changes of expressions of CRABP-I and RAR-β might lag behind the change of RA.·CONCLUSION:The levels of CRABP-I and RAR-β were elevated in retina of the guinea pig eye with experimental myopia.During the progression of experimental myopia,the retinal RA level increased rapidly,and there might be a positive feedback between the increase of RA and up-regulation of RAR-β.·
基金Supported by National Natural Science Foundation of ChinaNo.81273261
文摘AIM: To study the role of autophagy and the relationship between retinoic acid receptor α(RARα) and autophagy in liver ischemia and reperfusion(IR) injury.METHODS: All-trans retinoic acid(ATRA) was administered to mice for two weeks before operation. Reverse transcription-polymerase chain reaction and Western blot were used to detect the expression levels of related factors. To demonstrate the role of RARα,LE540,a RARα inhibitor,was used to treat hepatocytes injured by H2O2 in vitro.RESULTS: ATRA pretreatment noticeably diminished levels of serum alanine aminotransferase and as-partate aminotransferase as well as the degree of histopathological changes. Apoptosis was also inhibited,whereas autophagy was promoted. In vitro,RARα was inhibited by LE540,which resulted in decreased autophagy and increased apoptosis. Similarly,the expression of Foxo3 a and p-Akt was downregulated,but Foxo1 expression was upregulated.CONCLUSION: This research provides evidence that ATRA can protect the liver from IR injury by promoting autophagy,which is dependent on Foxo3/p-Akt/Foxo1 signaling.
文摘Objective: The molecular mechanism of prostate cancer is poorly understood. The aim of the study was to investigate the prevalence and prognostic value of promoter hypermethylation of retinoic acid receptor beta (RARB) and p16 among benign prostatic hyperplasia (BPH) and prostate cancer patients. Methods: In this case-control study, 63 patients were included in three groups; 21 with BPH as the control group, 21 with prostate cancer and good prognostic factors (based on prostate-specific antigen, Gleason score and stage) as good prognosis group, and 21 with prostate cancer and poor prognostic features as poor prognosis group. The prostate biopsy specimen of each individual was examined for hypermethylation of RARB and p16 promoters by methylation specific PCR (MSPCR). Results: Seven (33.3%) patients with good prognosis and 15 (71.4%) patients with poor prognosis were positive for RARB methylation, which were significantly higher than controls (P <0.0001). p16 promoter methylation was shown in 19.0% and 47.6% patients with good and poor prognosis, respectively. The RARB and p16 promoter methylation in the poor prognosis group was significantly higher than that in the good prognosis group (P =0.02 for RARB and P<0.0001 for p16). Conclusion: Hypermethylation of RARB and p16 promoters may predict prognosis in prostate cancer.
基金Supported by Research Chair Grant from the National Science and Technology Development Agency,No.P-15-50004the Center of Excellence in Clinical Virology,Chulalongkorn Unversity and King Chulalongkourn Memorial Hospital,No.GCE 5900930-005the Rachadapisek Sompote Fund of Chulalongkorn University for postdoctoral fellowships to Chaninya Wongwarangkana
文摘Cervical cancer is one of the leading causes of death in women worldwide, particularly in developing countries. Human papillomavirus has been reported as one of the key etiologic factors in cervical carcinoma. Likewise, epigenetic aberrations have ability to regulate cancer pathogenesis and progression. Recent research suggested that methylation has been detected already at precancerous stages, which methylation markers may have significant value in cervical cancer screening. The retinoic acid receptor beta (RARβ) gene, a potential tumor suppressor gene, is usually expressed in normal epithelial tissue. Methylation of CpG islands in the promoter region of the RARβ gene has been found to be associated with the development of cervical cancer. To investigate whether RARβ methylation is a potential biomarker that predicts the progression of invasive cancer, we reviewed 14 previously published articles related to RARβ methylation. The majority of them demonstrated that the frequency of RARβ promoter methylation was significantly correlated with the severity of cervical epithelium abnormalities. However, methylation of a single gene may not represent the best approach for predicting disease prognosis. Analyzing combinations of aberrant methylation of multiple genes may increase the sensitivity, and thus this approach may serve as a better tool for predicting disease prognosis.
基金Supported by National Natural Science Foundation of China(No.81300727)Jilin University Basic Scientific Research Operating Expenses Fund(Research Fund of the Bethune B Plan of Jilin University,2012No.2012230)
文摘·Fungal keratitis(FK) is a worldwide visual impairment disease. This infectious fungus initiates the primary innate immune response and, later the adaptive immune response. The inflammatory process is related to a variety of immune cells, including macrophages, helper T cells, neutrophils, dendritic cells, and Treg cells, and is associated with proinflammatory, chemotactic and regulatory cytokines. All-trans retinoic acids(ATRA)have diverse immunomodulatory actions in a number of inflammatory and autoimmune conditions. These retinoids regulate the transcriptional levels of target genes through the activation of nuclear receptors.Retinoic acid receptor α(RAR α), retinoic acid receptor γ(RAR γ), and retinoid X receptor α(RXR α) are expressed in the cornea and immune cells. This paper summarizes new findings regarding ATRA in immune and inflammatory diseases and analyzes the perspective application of ATRA in FK.
文摘Human amniotic basement membrane (HABM) model and agarose drop explant method were used to in-vestigate the effects of retinoic acid(RA) on the invasive-ness alld adhesiveness to the basement membrane, and the migration of a highly invassive human colorectal cancer cell line CCL229. Results showed that 5 ×106 MRA markedly reduced the in vitro invasiveness and adhesiveness to the HABM, and the migration of the CCL229 cells. In addi-tion, to elucidate the relation between expression of epider-mal growth factor receptor (EGFR) and the invasiveness of the colorectal carcinoma cells, two well-differentiated, but with different invasiveness colorectal cancer cell lines were compared at mRNA level for expressioll of EGFR by using EGFR cDNA probe labeled with digoxigenin (DIG). Expression of EGFR was showll to be markedly higher in the highly invassive CCL229 cells than that in the low in- vasive CX-1 cells. Furthermore, expression of EGFR in RA treated CCL229 cells gradually decreased with time,the level being the lowest on day 6 of the RA treatment.
文摘Objective: To evaluate the expression and its clinical significance of interleukin 6 (IL-6), soluble glycoprotein 130 (sgp130), interleukin 8 (IL-8) and type A interleukin 8 receptor (IL-8RA) in acute promyelocytic leukemia (APL) patients during all-trans retinoic acid (ATRA) induction treatment. Methods: Plasma and bone marrow mononuclear cell (MNC) culture supernatant IL-6, sgp130, IL-8 concentration of 18 cases with APL were kinetically measured in vivo and in vitro (ELISA). Bone marrow MNC IL-8RA was measured by flow cytometry after being cultured with ATRA (10?6mmol/L). Results: Plasma IL-6, sgp130, IL-8 levels were higher than normal (P<0.05), IL-6, spg130 levels correlated with white blood cell (WBC) counts (P<0.05) while IL-8 levels correlated with body temperature (P<0.05) at initial diagnosis. After 72-hour incubation with ATRA, concentration of IL-6 of bone marrow MNC culture supernatant did not change, that of sgp130 mildly decreased, and IL-8 significantly decreased while the positive rate of IL-8RA on bone marrow MNC increased. During ATRA treatment, plasma IL-6 changes were correlated with WBC counts. Peak levels of IL-6 and WBC were lower in patients who received intermittent therapy than those who received continuous therapy. Plasma IL-6 and IL-8 were increased when complicated with infection and IL-8 seemed more sensitive. Conclusion: Plasma IL-6, sgp130, IL-8 levels may reflect patients' responsiveness to ATRA treatment, and could be used to predict hyperleukocytosis and intercurrent infection. ATRA induces APL cell differentiation possibly via sgp130 signal transducer chain. Measurement of sgp130 had certain meaning to prognosis.
文摘All-trans retinoic acid (ATRA) triggers a wide range of effects on vertebrate development by regulating cell proliferation, differentiation, and apoptosis. ATRA activates retinoic acid receptors (RARs) which heterodimerize with retinoid X receptors (RXRs). RAR/RXR heterodimers function as ATRA-dependent transcriptional regulators by binding to retinoic acid response elements (RAREs). To identify RAR/RXR heterodimer-binding sites in the human genome, we performed a modified yeast one-hybrid assays and identified 193 RAR/RXR heterodimer-binding fragments in the human genome. The putative target genes included genes involved in development process and cell differentiation. Gel mobility shift assays indicated that 160 putative RAREs could directly interact with the RAR/RXR heterodimer. Moreover, 19 functional regulatory single nucleotide polymorphisms (rSNPs) on the RAR/RXR-binding sequences were identified by analyzing the difference in the DNA-binding affinities. These results provide insights into the molecular mechanisms underlying the physiological and pathological actions of RAR/RXR heterodimers.
文摘The nuclear retinoic acid receptor may play a critical role in the process of lung carcinogenesis. Alteration or loss of nuclear retinoic acid receptors (RARs) has been associated with progression in premalignant and malignant tissues and it is associated with malignant transformation in human cells. Vitamin A derivates, such as retinoic acid, have emerged as adjuvant to therapy in several types of cancer with favorable effects. Retinoic acid regulates the expression of target genes through the binding and activation of RARs, inhibiting growth proliferation. Diverse studies have evaluated different retinoids alone or in combination with chemotherapy in lung cancer, from which results have been controversial with benefits observed only in the subpopulation with high levels of triglycerides. Additionally, several large randomized trials using retinoids to prevent tobacco-related cancer have failed;due to the latter the use of retinoids in clinical trials remains controversial. However they could reduce the risk of cancer development in non-smokers. There is evidence that retinoids have different effects on lung cancer;still the identification of biomarkers could determinate their benefits as preventive or therapy agents. This review describes the RAR alterations during the development of Non-Small Cell Lung Cancer and sets out the importance of several cancer treatments with retinoid compounds.
基金Supported by National Natural Science Foundation of China(No.81470609No.81500695+2 种基金No.81300730)Key Project of Natural Science Foundation of Shandong Province(No.ZR2012HZ001)Youth Natural Science Foundation of Shandong Province(No.ZR2013HQ007)
文摘AIM: To explore the effects of retinoic acid receptor-γ (RARγ) on innate immune responses against Aspergillus fumigatus (A. fumigatus) in cultured human corneal epithelial cells (HCECs). METHODS: The HCECs were stimulated with A. fumigatus hyphae for 0, 2, 4, 8, 12 and 16h. RARγ mRNA and protein levels were tested by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Then HCECs were pretreated with or without BMS961 (RARγ agonist, 1 μg/mL). The mRNA and protein expression of Dectin-1 and the downstream cytokines (TNF-α and IL-6) were determined by qRT-PCR, Western blot and enzyme-linked immunosorbent assay (ELISA). RESULTS: The expression of RARγ was upregulated after stimulation with A. fumigatus. RARγ mRNA began to rise at 4h and peaked at 8h (P〈0.001). The protein of RARγ reached to the peak at 16h (P〈0.001). Pretreated with BMS961 before A. fumigatus hyphae stimulation, expression of Dectin-1, TNF-α and IL-6 decreased dramatically at mRNA and protein levels. CONCLUSION: HCECs can express RARγ and A. fumigatus hyphae infection can increase RARγ expression. BMS961 can inhibit the expression of Dectin-1 and pro-inflammatory cytokines, and play an anti-inflammatory role in innate immune responses against A. fumigatus.
基金a grant from the Bureau of Health, Sichuan Province, China (No. 050209).
文摘Objective To investigate the impact of all-trans retinoic acid (ATRA) on MDM2 gene expression in astrocytoma cell line SHG-44, and to provide basic data for further research on the progression mechanism and gene therapy of human astrocytoma. Methods The differential expressions of MDM2 gene and protein in SHG-44 cells were detected by cDNA microarray and Western blot, respectively, before and after treatment of ATRA. The expressions of MDM2 protein in WHO grade Ⅱ and grade Ⅳ astrocytomas were determined by immunohistochemical streptavidin-peroxidase method. Some differentially expressed genes were selected randomly for Northern blot analysis. Results The intensity ratio of ATRA-treated to untreated SHG-44 cell was 0.37 in the cDNA microarray, suggesting that the expression of MDM2 gene was down-regulated in SHG-44 cells after treatment with ATRA. Some genes differentially expressed in the microarray were confirmed by Northern blot. Western blot demonstrated that the optical density ratios of MDM2 to β-actin in ATRA-treated and untreated SHG-44 were 14.02±0.35 and 21.40±0.58 (t = 24.728, P = 0.000), respectively, suggesting that the expression of MDM2 protein was inhibited in ATRA-treated SHG-44 cells. Moreover, the percentages of MDM2-positive protein were 24.00% (6/25) and 56.52% (13/23) (x^2 = 5.298, P = 0.021) in WHO grade Ⅱ and grade Ⅳ astrocytomas, respectively, suggesting that the expression of MDM2 protein may increase along with the elevation of astrocytoma malignancy. Conclusion ATRA can inhibit MDM2 gene expression in SHG-44 cells, and MDM2 is related to astrocytoma progression.
基金National Natural Science Foundation of China,No.81900466and Hunan Provincial Natural Science Foundation of China,No.2020JJ5307.
文摘Chronic and recurrent inflammatory disorders of the gastrointestinal tract caused by a complex interplay between genetics and intestinal dysbiosis are called inflammatory bowel disease.As a result of the interaction between the liver and the gut microbiota,bile acids are an atypical class of steroids produced in mammals and traditionally known for their function in food absorption.With the development of genomics and metabolomics,more and more data suggest that the pathophysiological mechanisms of inflammatory bowel disease are regulated by bile acids and their receptors.Bile acids operate as signalling molecules by activating a variety of bile acid receptors that impact intestinal flora,epithelial barrier function,and intestinal immunology.Inflammatory bowel disease can be treated in new ways by using these potential molecules.This paper mainly discusses the increasing function of bile acids and their receptors in inflammatory bowel disease and their prospective therapeutic applications.In addition,we explore bile acid metabolism and the interaction of bile acids and the gut microbiota.