Establishing the remote sensing algorithm of retrieving the absorption coefficient of seawater petroleum substances is an efficient way to improve the accuracy of retrieving a seawater petroleum concentration using a ...Establishing the remote sensing algorithm of retrieving the absorption coefficient of seawater petroleum substances is an efficient way to improve the accuracy of retrieving a seawater petroleum concentration using a remote sensing technology. A remote sensing reflectance is a basic physical parameter in water color remote sensing. Apply it to directly retrieve the absorption coefficient of seawater petroleum substances is of potential advantage. The absorption coefficient of waters containing petroleum [ACWCP, a_o(λ)], consists of the absorption coefficient of pure water [ACPW, a_w(λ)], plankton [ACP, a_(ph)(λ)], colored scraps [ACCS, a_(d,g)(λ)], and petroleum substance [ACPS, a_(oil)(λ)]. Among those, ACCS consists of the absorption coefficient of nonalgal particle [ACNP, a_d(λ)] and colored dissolved organic matter [ACCDOM, a_g(λ)]. For waters containing petroleum, the retrieved ACCS using the existing method is a combination absorption coefficient of ACNP,ACCDOM and ACPA [CAC, a_(d,g,oil)(λ)]. Therefore, the principle question is how to extract ACPS from CAC.Through the analysis of the three proportion tests conducted between the year of 2013 and 2015 and the corresponding remote sensing data, an algorithm of retrieving the absorption coefficient of petroleum substances is proposed based on remote sensing reflectance. First of all, ACPS and CAC are retrieved from the reflectance using the quasi-analytical algorithm(QAA), with some parameter modified. Secondly, given the fact that the backscatter coefficient [BC, b_(bp)(555)] of total particles at 555 nm can be obtained completely from the reflectance, the relation between BC and ACNP in petroleum contaminated water can be established. As a result, ACNP can be calculated. Then, combining the remote sensing retrieving algorithm of a_g(440), the method of achieving the spectral slope of the absorption coefficient can be established, from which ACCDOM,can be calculated. Finally, ACPS can be computed as the residual. The accuracy of ACPS based on this algorithm is 86% compared with the in situ measurements.展开更多
The Advanced Geosynchronous Radiation Imager(AGRI)is a mission-critical instrument for the Fengyun series of satellites.AGRI acquires full-disk images every 15 min and views East Asia every 5 min through 14 spectral b...The Advanced Geosynchronous Radiation Imager(AGRI)is a mission-critical instrument for the Fengyun series of satellites.AGRI acquires full-disk images every 15 min and views East Asia every 5 min through 14 spectral bands,enabling the detection of highly variable aerosol optical depth(AOD).Quantitative retrieval of AOD has hitherto been challenging,especially over land.In this study,an AOD retrieval algorithm is proposed that combines deep learning and transfer learning.The algorithm uses core concepts from both the Dark Target(DT)and Deep Blue(DB)algorithms to select features for the machinelearning(ML)algorithm,allowing for AOD retrieval at 550 nm over both dark and bright surfaces.The algorithm consists of two steps:①A baseline deep neural network(DNN)with skip connections is developed using 10 min Advanced Himawari Imager(AHI)AODs as the target variable,and②sunphotometer AODs from 89 ground-based stations are used to fine-tune the DNN parameters.Out-of-station validation shows that the retrieved AOD attains high accuracy,characterized by a coefficient of determination(R2)of 0.70,a mean bias error(MBE)of 0.03,and a percentage of data within the expected error(EE)of 70.7%.A sensitivity study reveals that the top-of-atmosphere reflectance at 650 and 470 nm,as well as the surface reflectance at 650 nm,are the two largest sources of uncertainty impacting the retrieval.In a case study of monitoring an extreme aerosol event,the AGRI AOD is found to be able to capture the detailed temporal evolution of the event.This work demonstrates the superiority of the transfer-learning technique in satellite AOD retrievals and the applicability of the retrieved AGRI AOD in monitoring extreme pollution events.展开更多
WindSat/Coriolis is the first satellite-borne polarimetric microwave radiometer, which aims to improve the potential of polarimetric microwave radiometry for measuring sea surface wind vectors from space. In this pape...WindSat/Coriolis is the first satellite-borne polarimetric microwave radiometer, which aims to improve the potential of polarimetric microwave radiometry for measuring sea surface wind vectors from space. In this paper, a wind vector retrieval algorithm based on a novel and simple forward model was developed for WindSat. The retrieval algorithm of sea surface wind speed was developed using multiple linear regression based on the simulation dataset of the novel forward model. Sea surface wind directions that minimize the difference between simulated and measured values of the third and fourth Stokes parameters were found using maximum likelihood estimation, by which a group of ambiguous wind directions was obtained. A median filter was then used to remove ambiguity of wind direction. Evaluated with sea surface wind speed and direction data from the U.S. National Data Buoy Center (NDBC), root mean square errors are 1.2 rn/s and 30~ for retrieved wind speed and wind direction, respectively. The evaluation results suggest that the simple forward model and the retrieval algorithm are practicable for near-real time applications, without reducing accuracy.展开更多
In recent years, the rapid decline of Arctic sea ice area (SIA) and sea ice extent (SIE), especially for the multiyear (MY) ice, has led to significant effect on climate change. The accurate retrieval of MY ice ...In recent years, the rapid decline of Arctic sea ice area (SIA) and sea ice extent (SIE), especially for the multiyear (MY) ice, has led to significant effect on climate change. The accurate retrieval of MY ice concentration retrieval is very important and challenging to understand the ongoing changes. Three MY ice concentration retrieval algorithms were systematically evaluated. A similar total ice concentration was yielded by these algorithms, while the retrieved MY sea ice concentrations differs from each other. The MY SIA derived from NASA TEAM algorithm is relatively stable. Other two algorithms created seasonal fluctuations of MY SIA, particularly in autumn and winter. In this paper, we proposed an ice concentration retrieval algorithm, which developed the NASA TEAM algorithm by adding to use AMSR-E 6.9 GHz brightness temperature data and sea ice concentration using 89.0 GHz data. Comparison with the reference MY SIA from reference MY ice, indicates that the mean difference and root mean square (rms) difference of MY SIA derived from the algorithm of this study are 0.65×10^6 km^2 and 0.69×10^6 km^2 during January to March, -0.06×10^6 km^2 and 0.14×10^6 km^2during September to December respectively. Comparison with MY SIE obtained from weekly ice age data provided by University of Colorado show that, the mean difference and rms difference are 0.69×10^6 km^2 and 0.84×10^6 km^2, respectively. The developed algorithm proposed in this study has smaller difference compared with the reference MY ice and MY SIE from ice age data than the Wang's, Lomax' and NASA TEAM algorithms.展开更多
Monitoring atmospheric carbon dioxide(CO_2) from space-borne state-of-the-art hyperspectral instruments can provide a high precision global dataset to improve carbon flux estimation and reduce the uncertainty of cli...Monitoring atmospheric carbon dioxide(CO_2) from space-borne state-of-the-art hyperspectral instruments can provide a high precision global dataset to improve carbon flux estimation and reduce the uncertainty of climate projection. Here, we introduce a carbon flux inversion system for estimating carbon flux with satellite measurements under the support of "The Strategic Priority Research Program of the Chinese Academy of Sciences—Climate Change: Carbon Budget and Relevant Issues". The carbon flux inversion system is composed of two separate parts: the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing(IAPCAS), and Carbon Tracker-China(CT-China), developed at the Chinese Academy of Sciences. The Greenhouse gases Observing SATellite(GOSAT) measurements are used in the carbon flux inversion experiment. To improve the quality of the IAPCAS-GOSAT retrieval, we have developed a post-screening and bias correction method, resulting in 25%–30% of the data remaining after quality control. Based on these data, the seasonal variation of XCO_2(column-averaged CO_2dry-air mole fraction) is studied, and a strong relation with vegetation cover and population is identified. Then, the IAPCAS-GOSAT XCO_2 product is used in carbon flux estimation by CT-China. The net ecosystem CO_2 exchange is-0.34 Pg C yr^(-1)(±0.08 Pg C yr^(-1)), with a large error reduction of 84%, which is a significant improvement on the error reduction when compared with in situ-only inversion.展开更多
A convolutional neural network is employed to retrieve the time-domain envelop and phase of few-cycle femtosecond pulses from transient-grating frequency-resolved optical gating(TG-FROG) traces.We use theoretically ge...A convolutional neural network is employed to retrieve the time-domain envelop and phase of few-cycle femtosecond pulses from transient-grating frequency-resolved optical gating(TG-FROG) traces.We use theoretically generated TGFROG traces to complete supervised trainings of the convolutional neural networks,then use similarly generated traces not included in the training dataset to test how well the networks are trained.Accurate retrieval of such traces by the neural network is realized.In our case,we find that networks with exponential linear unit(ELU) activation function perform better than those with leaky rectified linear unit(LRELU) and scaled exponential linear unit(SELU).Finally,the issues that need to be addressed for the retrieval of experimental data by this method are discussed.展开更多
Coherent diffractive imaging (CDI) is a lensless imaging technique and can achieve a resolution beyond the Rayleigh or Abbe limit. The ptychographical iterative engine (PIE) is a CDI phase retrieval algorithm that...Coherent diffractive imaging (CDI) is a lensless imaging technique and can achieve a resolution beyond the Rayleigh or Abbe limit. The ptychographical iterative engine (PIE) is a CDI phase retrieval algorithm that uses multiple diffraction patterns obtained through the scan of a localized illumination on the specimen, which has been demonstrated successfully at optical and X-ray wavelengths. In this paper, a general PIE algorithm (gPIE) is presented and demonstrated with an He-Ne laser light diffraction dataset. This algorithm not only permits the removal of the accurate model of the illumination function in PIE, but also provides improved convergence speed and retrieval quality.展开更多
E-commerce, as an emerging marketing mode, has attracted more and more attention and gradually changed the way of our life. However, the existing layout of distribution centers can't fulfill the storage and picking d...E-commerce, as an emerging marketing mode, has attracted more and more attention and gradually changed the way of our life. However, the existing layout of distribution centers can't fulfill the storage and picking demands of e-commerce sufficiently. In this paper, a modified miniload automated storage/retrieval system is designed to fit these new characteristics of e-commerce in logistics. Meanwhile, a matching problem, concerning with the improvement of picking efficiency in new system, is studied in this paper. The problem is how to reduce the travelling distance of totes between aisles and picking stations. A multi-stage heuristic algorithm is proposed based on statement and model of this problem. The main idea of this algorithm is, with some heuristic strategies based on similarity coefficients, minimizing the transportations of items which can not arrive in the destination picking stations just through direct conveyors. The experimental results based on the cases generated by computers show that the average reduced rate of indirect transport times can reach 14.36% with the application of multi-stage heuristic algorithm. For the cases from a real e-commerce distribution center, the order processing time can be reduced from 11.20 h to 10.06 h with the help of the modified system and the proposed algorithm. In summary, this research proposed a modified system and a multi-stage heuristic algorithm that can reduce the travelling distance of totes effectively and improve the whole performance of e-commerce distribution center.展开更多
Aimed at high turbid coastal waters, an improved algorithm for retrieval ofaerosol optical properties from Geostationary Ocean Color Imager (GOCI) is proposed.The algorithm adopts support vector machine (SVM) to s...Aimed at high turbid coastal waters, an improved algorithm for retrieval ofaerosol optical properties from Geostationary Ocean Color Imager (GOCI) is proposed.The algorithm adopts support vector machine (SVM) to separate the interfering signalof phytoplankton pigments, suspended matter and chromophoric dissolved organicmatter (CDOM). Radioactive Transfer Model (RTM) Rstar5b is utilized to simulate thetransmitting process. The algorithm can retrieve aerosol optical depth (AOD) andaerosol types simultaneously. In the study, the aerosol optical depth was retrieved overthe turbid waters in the summer of 2014 and 2015. The results of inversion werecompared with the corresponding AERONET data and GOCI service product toestimate the accuracy of the advanced method. The study shows that this algorithmhas better performance compared with GOCI service algorithm for turbid water in theYellow Sea.展开更多
In this paper, we conduct research on the multimedia information retrieval algorithm based on the information restructuring and image reconstruction. With the massive growth of information resources, people through va...In this paper, we conduct research on the multimedia information retrieval algorithm based on the information restructuring and image reconstruction. With the massive growth of information resources, people through various retrieval tools for too much information, led directly to information overload. In vector space model and probability retrieval model based on information retrieval tools rarely consider the user' s personalized information needs and features, has resulted in a large amount of information retrieval result and correlation information the user' s information demand is not big. In order to improve the existing retrieval system, in recent years, scholars to study looked that context information retrieval context factors need to be considered, such as the retrieval time, place and the interactive history, mission, environment and other factors stated or implied in the retrieval process. At present, the context research has become the information behavior, information search process and the research hotspot in the field of information retrieval interaction.展开更多
One-dimensional retrieval was performed on Typhoon Haiyan utilizing the advanced technology microwave sounder onboard the satellite Suomi NPP to retrieve the temperature and water vapor profiles of the typhoon.Compari...One-dimensional retrieval was performed on Typhoon Haiyan utilizing the advanced technology microwave sounder onboard the satellite Suomi NPP to retrieve the temperature and water vapor profiles of the typhoon.Comparisons of the retrieved profiles and ECMWF reanalysis were made to assess the results. The main conclusions are as follows.(1) The results have high spatial resolution and therefore can precisely represent the temperature and humidity distribution of the typhoon.(2) The retrieved temperature is low in the areas of low temperature and high in the areas of high temperature; similar patterns are observed for humidity. This means that systematic revision may be needed during routine application.(3) The results of the retrieved temperature and humidity profiles are generally accurate, which is quite important for typhoon monitoring.展开更多
A retrieval algorithm of arctic sea ice concentration (SIC) based on the brightness temperature data of “HY-2” scanning microwave radiometer has been constructed. The tie points of the brightness temperature were ...A retrieval algorithm of arctic sea ice concentration (SIC) based on the brightness temperature data of “HY-2” scanning microwave radiometer has been constructed. The tie points of the brightness temperature were selected based on the statistical analysis of a polarization gradient ratio and a spectral gradient ratio over open water (OW), first-year ice (FYI), and multiyear ice (MYI) in arctic. The thresholds from two weather filters were used to reduce atmospheric effects over the open ocean. SIC retrievals from the “HY-2” radiom-eter data for idealized OW, FYI, and MYI agreed well with theoretical values. The 2012 annual SIC was calcu-lated and compared with two reference operational products from the National Snow and Ice Data Center (NSIDC) and the University of Bremen. The total ice-covered area yielded by the “HY-2” SIC was consistent with the results from the reference products. The assessment of SIC with the aerial photography from the fifth Chinese national arctic research expedition (CHINARE) and six synthetic aperture radar (SAR) images from the National Ice Service was carried out. The “HY-2” SIC product was 16% higher than the values de-rived from the aerial photography in the central arctic. The root-mean-square (RMS) values of SIC between “HY-2” and SAR were comparable with those between the reference products and SAR, varying from 8.57% to 12.34%. The “HY-2” SIC is a promising product that can be used for operational services.展开更多
We explored the potential of the environment and disaster monitoring and forecasting small satellite constellations (HJ-1A/1B satellites) charge-coupled device (CCD) imagery (spatial resolution of 30 m, revisit time o...We explored the potential of the environment and disaster monitoring and forecasting small satellite constellations (HJ-1A/1B satellites) charge-coupled device (CCD) imagery (spatial resolution of 30 m, revisit time of 2 days) in the monitoring of total suspended sediment (TSS) concentrations in dynamic water bodies using Poyang Lake, the largest freshwater lake in China, as an example. Field surveys conducted during October 17-26, 2009 showed a wide range of TSS concentration (3-524 mg/L). Atmospheric correction was implemented using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) module in ENVI with the aid of aerosol information retrieved from concurrent Terra/Moderate Resolution Imaging Spectroradiometer (MODIS) surveys, which worked well at the CCD bands with relatively high reflectance. A practical exponential retrieval algorithm was created between satellite remote sensing reflectance and in-situ measured TSS concentration. The retrieved results for the whole water area matched the in-situ data well at most stations. The retrieval errors may be related to the problem of scale matching and mixed pixel. In three selected subregions of Poyang Lake, the distribution trend of retrieved TSS was consistent with that of the field investigation. It was shown that HJ-1A/1B CCD imagery can be used to estimate TSS concentrations in Poyang Lake over synoptic scales after applying an appropriate atmospheric correction method and retrieval algorithm.展开更多
The C-band wind speed retrieval models, CMOD4, CMOD - IFR2, and CMOD5 were applied to retrieval of sea surface wind speeds from ENVISAT (European environmental satellite) ASAR (advanced synthetic aperture radar) d...The C-band wind speed retrieval models, CMOD4, CMOD - IFR2, and CMOD5 were applied to retrieval of sea surface wind speeds from ENVISAT (European environmental satellite) ASAR (advanced synthetic aperture radar) data in the coastal waters near Hong Kong during a period from October 2005 to July 2007. The retrieved wind speeds are evaluated by comparing with buoy measurements and the QuikSCAT (quick scatterometer) wind products. The results show that the CMOD4 model gives the best performance at wind speeds lower than 15 m/s. The correlation coefficients with buoy and QuikSCAT winds are 0.781 and 0.896, respectively. The root mean square errors are the same 1.74 m/s. Namely, the CMOD4 model is the best one for sea surface wind speed retrieval from ASAR data in the coastal waters near Hong Kong.展开更多
The sea surface salinity(SSS) is a key parameter in monitoring ocean states. Observing SSS can promote the understanding of global water cycle. This paper provides a new approach for retrieving sea surface salinity fr...The sea surface salinity(SSS) is a key parameter in monitoring ocean states. Observing SSS can promote the understanding of global water cycle. This paper provides a new approach for retrieving sea surface salinity from Soil Moisture and Ocean Salinity(SMOS) satellite data. Based on the principal component regression(PCR) model, SSS can also be retrieved from the brightness temperature data of SMOS L2 measurements and Auxiliary data. 26 pair matchup data is used in model validation for the South China Sea(in the area of 4?–25?N, 105?–125?E). The RMSE value of PCR model retrieved SSS reaches 0.37 psu(practical salinity units) and the RMSE of SMOS SSS1 is 1.65 psu when compared with in-situ SSS. The corresponding Argo daily salinity data during April to June 2013 is also used in our validation with RMSE value 0.46 psu compared to 1.82 psu for daily averaged SMOS L2 products. This indicates that the PCR model is valid and may provide us with a good approach for retrieving SSS from SMOS satellite data.展开更多
The Chinese Carbon Dioxide Observation Satellite Mission(TanSat)is the third satellite for global CO2 monitoring and is capable of detecting weak solar-induced chlorophyll fluorescence(SIF)signals with its advanced te...The Chinese Carbon Dioxide Observation Satellite Mission(TanSat)is the third satellite for global CO2 monitoring and is capable of detecting weak solar-induced chlorophyll fluorescence(SIF)signals with its advanced technical characteristics.Based on the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing(IAPCAS)platform,we successfully retrieved the TanSat global SIF product spanning the period of March 2017 to February 2018 with a physically based algorithm.This paper introduces the new TanSat SIF dataset and shows the global seasonal SIF maps.A brief comparison between the IAPCAS TanSat SIF product and the data-driven SVD(singular value decomposition)SIF product is also performed for follow-up algorithm optimization.The comparative results show that there are regional biases between the two SIF datasets and the linear correlations between them are above 0.73 for all seasons.The future SIF data product applications and requirements for SIF space observation are discussed.展开更多
This paper first puts forward a case based system framework based on data mining techniques. Then the paper examines the possibility of using neural networks as a method of retrieval in such a case based system. In ...This paper first puts forward a case based system framework based on data mining techniques. Then the paper examines the possibility of using neural networks as a method of retrieval in such a case based system. In this system we propose data mining algorithms to discover case knowledge and other algorithms.展开更多
An extensive study collected in situ data along the Yellow Sea(YS) and East China Sea(ECS) to assess the radiometric properties and the concentration of the water constituents derived from Moderate Resolution Imaging ...An extensive study collected in situ data along the Yellow Sea(YS) and East China Sea(ECS) to assess the radiometric properties and the concentration of the water constituents derived from Moderate Resolution Imaging Spectroradiometer(MODIS). Thirteen high quality match-ups were obtained for evaluating the MODIS estimates of Rrs(λ), chlorophyll a(Chl a) and concentrations of suspended particulate sediment matter(SPM). For MODIS Rrs(λ), the mean absolute percentage difference(APD) was in the range of 20%–36%, and the highest uncertainty appeared at 412 nm, whereas the band ratio of Rrs(λ) at 488 nm compared with that at 547 nm was highly consistent, with an APD of 7%. A combination of near-infrared bands and shortwave infrared wavelengths atmosphere correction algorithm(NIR-SWIR algorithm) was applied to the MODIS data, and the estimation accuracy of Rrs were improved at most of the visible spectral bands except 645 nm, 667 nm and 678 nm. Two ocean-colour empirical algorithms for Chl a estimation were applied to the processed data, the results indicated that the accuracy of the derived Chl a values was obviously improved, the four-band algorithms outperformed the other algorithm for measured and simulated datasets, and the minimum APD was 35%. The SPM was also quantified. Two regional and two coastal SPM algorithms were modified according to the in situ data. By comparison, the modified Tassan model had a higher accuracy for the application along the YS and ECS with an APD of 21%. However, given the limited match-up dataset and the potential influence of the aerosol properties on atmosphere correction, further research is required to develop additional algorithms especially for the low Chl a coastal water.展开更多
The Microwave Temperature Sounder-Ⅱ(MWTS-Ⅱ) and Microwave Humidity and Temperature Sounder(MWHTS) onboard the Fengyun-3 C(FY-3 C) satellite can be used to detect atmospheric temperature profiles. The MWTS-II has 13 ...The Microwave Temperature Sounder-Ⅱ(MWTS-Ⅱ) and Microwave Humidity and Temperature Sounder(MWHTS) onboard the Fengyun-3 C(FY-3 C) satellite can be used to detect atmospheric temperature profiles. The MWTS-II has 13 temperature sounding channels around the 60 GHz oxygen absorption band and the MWHTS has 8 temperature sounding channels around the 118.75 GHz oxygen absorption line. The data quality of the observed brightness temperatures can be evaluated using atmospheric temperature retrievals from the MWTS-Ⅱ and MWHTS observations. Here, the bias characteristics and corrections of the observed brightness temperatures are described. The information contents of observations are calculated, and the retrieved atmospheric temperature profiles are compared using a neural network(NN) retrieval algorithm and a one-dimensional variational inversion(1 D-var) retrieval algorithm. The retrieval results from the NN algorithm show that the accuracy of the MWTS-Ⅱ retrieval is higher than that of the MWHTS retrieval, which is consistent with the results of the radiometric information analysis. The retrieval results from the 1 D-var algorithm show that the accuracy of MWTS-Ⅱ retrieval is similar to that of the MWHTS retrieval at the levels from 850-1,000 h Pa, is lower than that of the MWHTS retrieval at the levels from 650-850 h Pa and 125-300 h Pa, and is higher than that of MWHTS at the other levels. A comparison of the retrieved atmospheric temperature using these satellite observations provides a reference value for assessing the accuracy of atmospheric temperature detection at the 60 GHz oxygen band and 118.75 GHz oxygen line. In addition, based on the comparison of the retrieval results, an optimized combination method is proposed using a branch and bound algorithm for the NN retrieval algorithm, which combines the observations from both the MWTS-Ⅱand MWHTS instruments to retrieve the atmospheric temperature profiles. The results show that the optimal combination can further improve the accuracy of MWTS-Ⅱ retrieval and enhance the detection accuracy of atmospheric temperatures near the surface.展开更多
As rain drops change the radiation and scattering characteristic of the oceans and the atmosphere, the wind speed measuring by spaceborne remote sensors under rainy conditions remains challenging for years. On the bas...As rain drops change the radiation and scattering characteristic of the oceans and the atmosphere, the wind speed measuring by spaceborne remote sensors under rainy conditions remains challenging for years. On the basis of a microwave radiometer(RM) loaded on HY-2 satellite, the sensitivity of some brightness temperature(TB)channels to a rain rate and the wind speed are analyzed. Consequently, two TB combinations which show minor sensitivity to rain are obtained. Meanwhile, the sensitivity of the TB combination to the wind speed is even better to the original TB channel. On the basis of these TB combinations, a wind speed retrieval algorithm is developed and compared with Wind Sat all-weather wind speed product, HY-2 RM original wind speed product and buoy in situ data. The wind speed retrieval accuracy is better than 2 m/s for rainy conditions, which is evidently superior to HY-2 RM original product. The applicability of this new algorithm is testified for the wind speed measuring in rainy weather with HY-2 RM.展开更多
基金The National Natural Science Foundation of China under contract No.41271364the Key Projects in the National Science and Technology Pillar Program of China under contract No.2012BAH32B01-4the Program for Scientific Research Start-up Funds of Guangdong Ocean University under contract No.E16187
文摘Establishing the remote sensing algorithm of retrieving the absorption coefficient of seawater petroleum substances is an efficient way to improve the accuracy of retrieving a seawater petroleum concentration using a remote sensing technology. A remote sensing reflectance is a basic physical parameter in water color remote sensing. Apply it to directly retrieve the absorption coefficient of seawater petroleum substances is of potential advantage. The absorption coefficient of waters containing petroleum [ACWCP, a_o(λ)], consists of the absorption coefficient of pure water [ACPW, a_w(λ)], plankton [ACP, a_(ph)(λ)], colored scraps [ACCS, a_(d,g)(λ)], and petroleum substance [ACPS, a_(oil)(λ)]. Among those, ACCS consists of the absorption coefficient of nonalgal particle [ACNP, a_d(λ)] and colored dissolved organic matter [ACCDOM, a_g(λ)]. For waters containing petroleum, the retrieved ACCS using the existing method is a combination absorption coefficient of ACNP,ACCDOM and ACPA [CAC, a_(d,g,oil)(λ)]. Therefore, the principle question is how to extract ACPS from CAC.Through the analysis of the three proportion tests conducted between the year of 2013 and 2015 and the corresponding remote sensing data, an algorithm of retrieving the absorption coefficient of petroleum substances is proposed based on remote sensing reflectance. First of all, ACPS and CAC are retrieved from the reflectance using the quasi-analytical algorithm(QAA), with some parameter modified. Secondly, given the fact that the backscatter coefficient [BC, b_(bp)(555)] of total particles at 555 nm can be obtained completely from the reflectance, the relation between BC and ACNP in petroleum contaminated water can be established. As a result, ACNP can be calculated. Then, combining the remote sensing retrieving algorithm of a_g(440), the method of achieving the spectral slope of the absorption coefficient can be established, from which ACCDOM,can be calculated. Finally, ACPS can be computed as the residual. The accuracy of ACPS based on this algorithm is 86% compared with the in situ measurements.
基金supported by the National Natural Science of Foundation of China(41825011,42030608,42105128,and 42075079)the Opening Foundation of Key Laboratory of Atmospheric Sounding,the CMA and the CMA Research Center on Meteorological Observation Engineering Technology(U2021Z03).
文摘The Advanced Geosynchronous Radiation Imager(AGRI)is a mission-critical instrument for the Fengyun series of satellites.AGRI acquires full-disk images every 15 min and views East Asia every 5 min through 14 spectral bands,enabling the detection of highly variable aerosol optical depth(AOD).Quantitative retrieval of AOD has hitherto been challenging,especially over land.In this study,an AOD retrieval algorithm is proposed that combines deep learning and transfer learning.The algorithm uses core concepts from both the Dark Target(DT)and Deep Blue(DB)algorithms to select features for the machinelearning(ML)algorithm,allowing for AOD retrieval at 550 nm over both dark and bright surfaces.The algorithm consists of two steps:①A baseline deep neural network(DNN)with skip connections is developed using 10 min Advanced Himawari Imager(AHI)AODs as the target variable,and②sunphotometer AODs from 89 ground-based stations are used to fine-tune the DNN parameters.Out-of-station validation shows that the retrieved AOD attains high accuracy,characterized by a coefficient of determination(R2)of 0.70,a mean bias error(MBE)of 0.03,and a percentage of data within the expected error(EE)of 70.7%.A sensitivity study reveals that the top-of-atmosphere reflectance at 650 and 470 nm,as well as the surface reflectance at 650 nm,are the two largest sources of uncertainty impacting the retrieval.In a case study of monitoring an extreme aerosol event,the AGRI AOD is found to be able to capture the detailed temporal evolution of the event.This work demonstrates the superiority of the transfer-learning technique in satellite AOD retrievals and the applicability of the retrieved AGRI AOD in monitoring extreme pollution events.
文摘WindSat/Coriolis is the first satellite-borne polarimetric microwave radiometer, which aims to improve the potential of polarimetric microwave radiometry for measuring sea surface wind vectors from space. In this paper, a wind vector retrieval algorithm based on a novel and simple forward model was developed for WindSat. The retrieval algorithm of sea surface wind speed was developed using multiple linear regression based on the simulation dataset of the novel forward model. Sea surface wind directions that minimize the difference between simulated and measured values of the third and fourth Stokes parameters were found using maximum likelihood estimation, by which a group of ambiguous wind directions was obtained. A median filter was then used to remove ambiguity of wind direction. Evaluated with sea surface wind speed and direction data from the U.S. National Data Buoy Center (NDBC), root mean square errors are 1.2 rn/s and 30~ for retrieved wind speed and wind direction, respectively. The evaluation results suggest that the simple forward model and the retrieval algorithm are practicable for near-real time applications, without reducing accuracy.
基金The National Natural Science Foundation of China under contract Nos 41330960 and 41276193 and 41206184
文摘In recent years, the rapid decline of Arctic sea ice area (SIA) and sea ice extent (SIE), especially for the multiyear (MY) ice, has led to significant effect on climate change. The accurate retrieval of MY ice concentration retrieval is very important and challenging to understand the ongoing changes. Three MY ice concentration retrieval algorithms were systematically evaluated. A similar total ice concentration was yielded by these algorithms, while the retrieved MY sea ice concentrations differs from each other. The MY SIA derived from NASA TEAM algorithm is relatively stable. Other two algorithms created seasonal fluctuations of MY SIA, particularly in autumn and winter. In this paper, we proposed an ice concentration retrieval algorithm, which developed the NASA TEAM algorithm by adding to use AMSR-E 6.9 GHz brightness temperature data and sea ice concentration using 89.0 GHz data. Comparison with the reference MY SIA from reference MY ice, indicates that the mean difference and root mean square (rms) difference of MY SIA derived from the algorithm of this study are 0.65×10^6 km^2 and 0.69×10^6 km^2 during January to March, -0.06×10^6 km^2 and 0.14×10^6 km^2during September to December respectively. Comparison with MY SIE obtained from weekly ice age data provided by University of Colorado show that, the mean difference and rms difference are 0.69×10^6 km^2 and 0.84×10^6 km^2, respectively. The developed algorithm proposed in this study has smaller difference compared with the reference MY ice and MY SIE from ice age data than the Wang's, Lomax' and NASA TEAM algorithms.
基金funded by the Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues(Grant No.XDA05040200)the National Key Research and Development Program of China(Grant No.2016YFA0600203)+1 种基金the National Natural Science Foundation of China(Grant Nos.41375035 and 31500402)the Chinese Academy of Sciences Strategic Priority Program on Space Science(Grant No.XDA04077300)
文摘Monitoring atmospheric carbon dioxide(CO_2) from space-borne state-of-the-art hyperspectral instruments can provide a high precision global dataset to improve carbon flux estimation and reduce the uncertainty of climate projection. Here, we introduce a carbon flux inversion system for estimating carbon flux with satellite measurements under the support of "The Strategic Priority Research Program of the Chinese Academy of Sciences—Climate Change: Carbon Budget and Relevant Issues". The carbon flux inversion system is composed of two separate parts: the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing(IAPCAS), and Carbon Tracker-China(CT-China), developed at the Chinese Academy of Sciences. The Greenhouse gases Observing SATellite(GOSAT) measurements are used in the carbon flux inversion experiment. To improve the quality of the IAPCAS-GOSAT retrieval, we have developed a post-screening and bias correction method, resulting in 25%–30% of the data remaining after quality control. Based on these data, the seasonal variation of XCO_2(column-averaged CO_2dry-air mole fraction) is studied, and a strong relation with vegetation cover and population is identified. Then, the IAPCAS-GOSAT XCO_2 product is used in carbon flux estimation by CT-China. The net ecosystem CO_2 exchange is-0.34 Pg C yr^(-1)(±0.08 Pg C yr^(-1)), with a large error reduction of 84%, which is a significant improvement on the error reduction when compared with in situ-only inversion.
基金Project supported by the National Key R&D Program of China(Grant No.2017YFB0405202)the National Natural Science Foundation of China(Grant Nos.61690221,91850209,and 11774277)。
文摘A convolutional neural network is employed to retrieve the time-domain envelop and phase of few-cycle femtosecond pulses from transient-grating frequency-resolved optical gating(TG-FROG) traces.We use theoretically generated TGFROG traces to complete supervised trainings of the convolutional neural networks,then use similarly generated traces not included in the training dataset to test how well the networks are trained.Accurate retrieval of such traces by the neural network is realized.In our case,we find that networks with exponential linear unit(ELU) activation function perform better than those with leaky rectified linear unit(LRELU) and scaled exponential linear unit(SELU).Finally,the issues that need to be addressed for the retrieval of experimental data by this method are discussed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11179009 and 50875013)the Beijing Municipal Natural Science Foundation, China (Grant No. 4102036)the Beijing NOVA Program, China (Grant No. 2009A09)
文摘Coherent diffractive imaging (CDI) is a lensless imaging technique and can achieve a resolution beyond the Rayleigh or Abbe limit. The ptychographical iterative engine (PIE) is a CDI phase retrieval algorithm that uses multiple diffraction patterns obtained through the scan of a localized illumination on the specimen, which has been demonstrated successfully at optical and X-ray wavelengths. In this paper, a general PIE algorithm (gPIE) is presented and demonstrated with an He-Ne laser light diffraction dataset. This algorithm not only permits the removal of the accurate model of the illumination function in PIE, but also provides improved convergence speed and retrieval quality.
文摘E-commerce, as an emerging marketing mode, has attracted more and more attention and gradually changed the way of our life. However, the existing layout of distribution centers can't fulfill the storage and picking demands of e-commerce sufficiently. In this paper, a modified miniload automated storage/retrieval system is designed to fit these new characteristics of e-commerce in logistics. Meanwhile, a matching problem, concerning with the improvement of picking efficiency in new system, is studied in this paper. The problem is how to reduce the travelling distance of totes between aisles and picking stations. A multi-stage heuristic algorithm is proposed based on statement and model of this problem. The main idea of this algorithm is, with some heuristic strategies based on similarity coefficients, minimizing the transportations of items which can not arrive in the destination picking stations just through direct conveyors. The experimental results based on the cases generated by computers show that the average reduced rate of indirect transport times can reach 14.36% with the application of multi-stage heuristic algorithm. For the cases from a real e-commerce distribution center, the order processing time can be reduced from 11.20 h to 10.06 h with the help of the modified system and the proposed algorithm. In summary, this research proposed a modified system and a multi-stage heuristic algorithm that can reduce the travelling distance of totes effectively and improve the whole performance of e-commerce distribution center.
基金supported by Tianjin Natural Science Foundation Project(14JCYBJC22500)
文摘Aimed at high turbid coastal waters, an improved algorithm for retrieval ofaerosol optical properties from Geostationary Ocean Color Imager (GOCI) is proposed.The algorithm adopts support vector machine (SVM) to separate the interfering signalof phytoplankton pigments, suspended matter and chromophoric dissolved organicmatter (CDOM). Radioactive Transfer Model (RTM) Rstar5b is utilized to simulate thetransmitting process. The algorithm can retrieve aerosol optical depth (AOD) andaerosol types simultaneously. In the study, the aerosol optical depth was retrieved overthe turbid waters in the summer of 2014 and 2015. The results of inversion werecompared with the corresponding AERONET data and GOCI service product toestimate the accuracy of the advanced method. The study shows that this algorithmhas better performance compared with GOCI service algorithm for turbid water in theYellow Sea.
文摘In this paper, we conduct research on the multimedia information retrieval algorithm based on the information restructuring and image reconstruction. With the massive growth of information resources, people through various retrieval tools for too much information, led directly to information overload. In vector space model and probability retrieval model based on information retrieval tools rarely consider the user' s personalized information needs and features, has resulted in a large amount of information retrieval result and correlation information the user' s information demand is not big. In order to improve the existing retrieval system, in recent years, scholars to study looked that context information retrieval context factors need to be considered, such as the retrieval time, place and the interactive history, mission, environment and other factors stated or implied in the retrieval process. At present, the context research has become the information behavior, information search process and the research hotspot in the field of information retrieval interaction.
基金National Natural Science Foundation of China(91215302,51278308)Open Project for State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,Institute of Atmospheric Physics(LAPC)
文摘One-dimensional retrieval was performed on Typhoon Haiyan utilizing the advanced technology microwave sounder onboard the satellite Suomi NPP to retrieve the temperature and water vapor profiles of the typhoon.Comparisons of the retrieved profiles and ECMWF reanalysis were made to assess the results. The main conclusions are as follows.(1) The results have high spatial resolution and therefore can precisely represent the temperature and humidity distribution of the typhoon.(2) The retrieved temperature is low in the areas of low temperature and high in the areas of high temperature; similar patterns are observed for humidity. This means that systematic revision may be needed during routine application.(3) The results of the retrieved temperature and humidity profiles are generally accurate, which is quite important for typhoon monitoring.
基金The International Science and Technology Cooperation Project of China under contract No.2011DFA22260the National Natural Science Foundation of China under contract No.41276191+1 种基金the Public Science and Technology Research Funds Projects of Ocean by the State Oceanic Administration under contract No.201205007-05the Chinese Polar Environment Comprehensive Investigation & Assessment Program by the State Oceanic Administration under contract Nos 2013-02-04 and 2012-04-03-02
文摘A retrieval algorithm of arctic sea ice concentration (SIC) based on the brightness temperature data of “HY-2” scanning microwave radiometer has been constructed. The tie points of the brightness temperature were selected based on the statistical analysis of a polarization gradient ratio and a spectral gradient ratio over open water (OW), first-year ice (FYI), and multiyear ice (MYI) in arctic. The thresholds from two weather filters were used to reduce atmospheric effects over the open ocean. SIC retrievals from the “HY-2” radiom-eter data for idealized OW, FYI, and MYI agreed well with theoretical values. The 2012 annual SIC was calcu-lated and compared with two reference operational products from the National Snow and Ice Data Center (NSIDC) and the University of Bremen. The total ice-covered area yielded by the “HY-2” SIC was consistent with the results from the reference products. The assessment of SIC with the aerial photography from the fifth Chinese national arctic research expedition (CHINARE) and six synthetic aperture radar (SAR) images from the National Ice Service was carried out. The “HY-2” SIC product was 16% higher than the values de-rived from the aerial photography in the central arctic. The root-mean-square (RMS) values of SIC between “HY-2” and SAR were comparable with those between the reference products and SAR, varying from 8.57% to 12.34%. The “HY-2” SIC is a promising product that can be used for operational services.
基金Supported by the National Basic Research Program of China(973Program)(No.2011CB707106)the National Natural Science Foundation of China(Nos.41071261,41023001,41021061,40906092,40971193,41101415)+3 种基金the Opening Foundation of Institute of Remote Sensing and Earth Sciences,Hangzhou Normal University(No.PDKF2010YG06)the Fundamental Research Funds for the Central Universities,the China Postdoctoral Science Foundation(No.20100480861)LIESMARS Special Research Funding,the Natural Science Foundation of Hubei Province,China(No.2009CDB107)the Natural Science Foundation of Zhejiang Province,China(No.Y5090143)
文摘We explored the potential of the environment and disaster monitoring and forecasting small satellite constellations (HJ-1A/1B satellites) charge-coupled device (CCD) imagery (spatial resolution of 30 m, revisit time of 2 days) in the monitoring of total suspended sediment (TSS) concentrations in dynamic water bodies using Poyang Lake, the largest freshwater lake in China, as an example. Field surveys conducted during October 17-26, 2009 showed a wide range of TSS concentration (3-524 mg/L). Atmospheric correction was implemented using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) module in ENVI with the aid of aerosol information retrieved from concurrent Terra/Moderate Resolution Imaging Spectroradiometer (MODIS) surveys, which worked well at the CCD bands with relatively high reflectance. A practical exponential retrieval algorithm was created between satellite remote sensing reflectance and in-situ measured TSS concentration. The retrieved results for the whole water area matched the in-situ data well at most stations. The retrieval errors may be related to the problem of scale matching and mixed pixel. In three selected subregions of Poyang Lake, the distribution trend of retrieved TSS was consistent with that of the field investigation. It was shown that HJ-1A/1B CCD imagery can be used to estimate TSS concentrations in Poyang Lake over synoptic scales after applying an appropriate atmospheric correction method and retrieval algorithm.
基金Research Grant Council under contract No.461907Innovation and Technology Commission under contract No.GHP/026/06+1 种基金partly by China Postdoctoral Science Foundation under contract No.2008041345 for ChengONR under contract NosN00014-05-1-0328 and N00014-05-1-0606 for Zheng
文摘The C-band wind speed retrieval models, CMOD4, CMOD - IFR2, and CMOD5 were applied to retrieval of sea surface wind speeds from ENVISAT (European environmental satellite) ASAR (advanced synthetic aperture radar) data in the coastal waters near Hong Kong during a period from October 2005 to July 2007. The retrieved wind speeds are evaluated by comparing with buoy measurements and the QuikSCAT (quick scatterometer) wind products. The results show that the CMOD4 model gives the best performance at wind speeds lower than 15 m/s. The correlation coefficients with buoy and QuikSCAT winds are 0.781 and 0.896, respectively. The root mean square errors are the same 1.74 m/s. Namely, the CMOD4 model is the best one for sea surface wind speed retrieval from ASAR data in the coastal waters near Hong Kong.
基金supported by the National Natural Science Foundation of China under project 41275013the National High-Tech Research and development program of China under project 2013AA09A506-4the National Basic Research Program under project 2009CB723903
文摘The sea surface salinity(SSS) is a key parameter in monitoring ocean states. Observing SSS can promote the understanding of global water cycle. This paper provides a new approach for retrieving sea surface salinity from Soil Moisture and Ocean Salinity(SMOS) satellite data. Based on the principal component regression(PCR) model, SSS can also be retrieved from the brightness temperature data of SMOS L2 measurements and Auxiliary data. 26 pair matchup data is used in model validation for the South China Sea(in the area of 4?–25?N, 105?–125?E). The RMSE value of PCR model retrieved SSS reaches 0.37 psu(practical salinity units) and the RMSE of SMOS SSS1 is 1.65 psu when compared with in-situ SSS. The corresponding Argo daily salinity data during April to June 2013 is also used in our validation with RMSE value 0.46 psu compared to 1.82 psu for daily averaged SMOS L2 products. This indicates that the PCR model is valid and may provide us with a good approach for retrieving SSS from SMOS satellite data.
基金This study was supported by the National Key R&D Program of China(No.2016YFA0600203)the Key Research Program of the Chinese Academy of Sciences(ZDRW-ZS-2019-1&ZDRW-ZS-2019-2)the Youth Program of the National Natural Science Foundation of China(41905029).The TanSat L1B data service was provided by the International Reanalysis Cooperation on Carbon Satellite Data(IRCSD)(131211KYSB20180002)and the Cooperation on the Analysis of Carbon Satellite Data(CASA).The authors thank the OCO-2 team for providing the Level-2 SIF data products.
文摘The Chinese Carbon Dioxide Observation Satellite Mission(TanSat)is the third satellite for global CO2 monitoring and is capable of detecting weak solar-induced chlorophyll fluorescence(SIF)signals with its advanced technical characteristics.Based on the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing(IAPCAS)platform,we successfully retrieved the TanSat global SIF product spanning the period of March 2017 to February 2018 with a physically based algorithm.This paper introduces the new TanSat SIF dataset and shows the global seasonal SIF maps.A brief comparison between the IAPCAS TanSat SIF product and the data-driven SVD(singular value decomposition)SIF product is also performed for follow-up algorithm optimization.The comparative results show that there are regional biases between the two SIF datasets and the linear correlations between them are above 0.73 for all seasons.The future SIF data product applications and requirements for SIF space observation are discussed.
基金Supported by the National Science of China(6 0 0 75 0 15 ) and Key Project of Scientific and Technological Departmentin Anhui
文摘This paper first puts forward a case based system framework based on data mining techniques. Then the paper examines the possibility of using neural networks as a method of retrieval in such a case based system. In this system we propose data mining algorithms to discover case knowledge and other algorithms.
基金The National Natural Science Foundation of China under contract Nos 41506197 and 41406199the Doctoral Scientific Research Foundation of Liaoning Province under contract No.201501190the Fundamental Research Funds for the Central Universities under contract No.3132017110
文摘An extensive study collected in situ data along the Yellow Sea(YS) and East China Sea(ECS) to assess the radiometric properties and the concentration of the water constituents derived from Moderate Resolution Imaging Spectroradiometer(MODIS). Thirteen high quality match-ups were obtained for evaluating the MODIS estimates of Rrs(λ), chlorophyll a(Chl a) and concentrations of suspended particulate sediment matter(SPM). For MODIS Rrs(λ), the mean absolute percentage difference(APD) was in the range of 20%–36%, and the highest uncertainty appeared at 412 nm, whereas the band ratio of Rrs(λ) at 488 nm compared with that at 547 nm was highly consistent, with an APD of 7%. A combination of near-infrared bands and shortwave infrared wavelengths atmosphere correction algorithm(NIR-SWIR algorithm) was applied to the MODIS data, and the estimation accuracy of Rrs were improved at most of the visible spectral bands except 645 nm, 667 nm and 678 nm. Two ocean-colour empirical algorithms for Chl a estimation were applied to the processed data, the results indicated that the accuracy of the derived Chl a values was obviously improved, the four-band algorithms outperformed the other algorithm for measured and simulated datasets, and the minimum APD was 35%. The SPM was also quantified. Two regional and two coastal SPM algorithms were modified according to the in situ data. By comparison, the modified Tassan model had a higher accuracy for the application along the YS and ECS with an APD of 21%. However, given the limited match-up dataset and the potential influence of the aerosol properties on atmosphere correction, further research is required to develop additional algorithms especially for the low Chl a coastal water.
基金Key Fostering Project of the National Space Science Center,Chinese Academy of Sciences(Y62112f37s)National 863 Project of China(2015AA8126027)
文摘The Microwave Temperature Sounder-Ⅱ(MWTS-Ⅱ) and Microwave Humidity and Temperature Sounder(MWHTS) onboard the Fengyun-3 C(FY-3 C) satellite can be used to detect atmospheric temperature profiles. The MWTS-II has 13 temperature sounding channels around the 60 GHz oxygen absorption band and the MWHTS has 8 temperature sounding channels around the 118.75 GHz oxygen absorption line. The data quality of the observed brightness temperatures can be evaluated using atmospheric temperature retrievals from the MWTS-Ⅱ and MWHTS observations. Here, the bias characteristics and corrections of the observed brightness temperatures are described. The information contents of observations are calculated, and the retrieved atmospheric temperature profiles are compared using a neural network(NN) retrieval algorithm and a one-dimensional variational inversion(1 D-var) retrieval algorithm. The retrieval results from the NN algorithm show that the accuracy of the MWTS-Ⅱ retrieval is higher than that of the MWHTS retrieval, which is consistent with the results of the radiometric information analysis. The retrieval results from the 1 D-var algorithm show that the accuracy of MWTS-Ⅱ retrieval is similar to that of the MWHTS retrieval at the levels from 850-1,000 h Pa, is lower than that of the MWHTS retrieval at the levels from 650-850 h Pa and 125-300 h Pa, and is higher than that of MWHTS at the other levels. A comparison of the retrieved atmospheric temperature using these satellite observations provides a reference value for assessing the accuracy of atmospheric temperature detection at the 60 GHz oxygen band and 118.75 GHz oxygen line. In addition, based on the comparison of the retrieval results, an optimized combination method is proposed using a branch and bound algorithm for the NN retrieval algorithm, which combines the observations from both the MWTS-Ⅱand MWHTS instruments to retrieve the atmospheric temperature profiles. The results show that the optimal combination can further improve the accuracy of MWTS-Ⅱ retrieval and enhance the detection accuracy of atmospheric temperatures near the surface.
基金The National Science Foundation for Young Scientists of China under contract 41306183the National High Technology Research and Development Program(863 Program)of China under contract Nos 2013AA09A505 and 2013AA122803
文摘As rain drops change the radiation and scattering characteristic of the oceans and the atmosphere, the wind speed measuring by spaceborne remote sensors under rainy conditions remains challenging for years. On the basis of a microwave radiometer(RM) loaded on HY-2 satellite, the sensitivity of some brightness temperature(TB)channels to a rain rate and the wind speed are analyzed. Consequently, two TB combinations which show minor sensitivity to rain are obtained. Meanwhile, the sensitivity of the TB combination to the wind speed is even better to the original TB channel. On the basis of these TB combinations, a wind speed retrieval algorithm is developed and compared with Wind Sat all-weather wind speed product, HY-2 RM original wind speed product and buoy in situ data. The wind speed retrieval accuracy is better than 2 m/s for rainy conditions, which is evidently superior to HY-2 RM original product. The applicability of this new algorithm is testified for the wind speed measuring in rainy weather with HY-2 RM.