The past decade has seen a sharp increase in machine learning(ML)applications in scientific research.This review introduces the basic constituents of ML,including databases,features,and algorithms,and highlights a few...The past decade has seen a sharp increase in machine learning(ML)applications in scientific research.This review introduces the basic constituents of ML,including databases,features,and algorithms,and highlights a few important achievements in chemistry that have been aided by ML techniques.The described databases include some of the most popular chemical databases for molecules and materials obtained from either experiments or computational calculations.Important two-dimensional(2D)and three-dimensional(3D)features representing the chemical environment of molecules and solids are briefly introduced.Decision tree and deep learning neural network algorithms are overviewed to emphasize their frameworks and typical application scenarios.Three important fields of ML in chemistry are discussed:(1)retrosynthesis,in which ML predicts the likely routes of organic synthesis;(2)atomic simulations,which utilize the ML potential to accelerate potential energy surface sampling;and(3)heterogeneous catalysis,in which ML assists in various aspects of catalytic design,ranging from synthetic condition optimization to reaction mechanism exploration.Finally,a prospect on future ML applications is provided.展开更多
基金financial support from the National Key Research and Development Program of China(2018YFA0208600)the National Natural Science Foundation of China(12188101,22033003,91945301,91745201,92145302,22122301,and 92061112)the Tencent Foundation for XPLORER PRIZE,and Fundamental Research Funds for the Central Universities(20720220011)。
文摘The past decade has seen a sharp increase in machine learning(ML)applications in scientific research.This review introduces the basic constituents of ML,including databases,features,and algorithms,and highlights a few important achievements in chemistry that have been aided by ML techniques.The described databases include some of the most popular chemical databases for molecules and materials obtained from either experiments or computational calculations.Important two-dimensional(2D)and three-dimensional(3D)features representing the chemical environment of molecules and solids are briefly introduced.Decision tree and deep learning neural network algorithms are overviewed to emphasize their frameworks and typical application scenarios.Three important fields of ML in chemistry are discussed:(1)retrosynthesis,in which ML predicts the likely routes of organic synthesis;(2)atomic simulations,which utilize the ML potential to accelerate potential energy surface sampling;and(3)heterogeneous catalysis,in which ML assists in various aspects of catalytic design,ranging from synthetic condition optimization to reaction mechanism exploration.Finally,a prospect on future ML applications is provided.