Recently the phenomenon of disposable schoolbook in China not only has wasted so many resources that produce unfavorable influence, but also has increased unneeessary impact burdens on consumptions of Chinese families...Recently the phenomenon of disposable schoolbook in China not only has wasted so many resources that produce unfavorable influence, but also has increased unneeessary impact burdens on consumptions of Chinese families. The paper analyzes value of the reuse of schoolbooks and main obstacles, introduces the concept of servicizing, discusses the problem of the reuse of schoolbooks from construction of product-service system, and puts forward that realization of the reuse of sChoolbooks depends on innovation of present system and model. Construction of Schoolbook-service system needs shifl from value to consumption habits and behaviors and active participation of every Social class.展开更多
A water quality model for water reuse was made by mathematics induction. The relationship among the reuse rate of treated wastewater(R), pollutant concentration of reused water( Cs ), pollutant concentration of in...A water quality model for water reuse was made by mathematics induction. The relationship among the reuse rate of treated wastewater(R), pollutant concentration of reused water( Cs ), pollutant concentration of influent( C0), removal efficiency of pollutant in wastewater( E), and the standard of reuse water were discussed in this study. According to the experiment result of a toilet wastewater treatment and reuse with membrane bioreactors, R would be set at less than 40%, on which all the concerned parameters could meet with the reuse water standards. To raise R of reuse water in the toilet, an important way was to improve color removal of the wastewater.展开更多
Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The ...Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The printing quality and performance of L-PBF alloys are infuenced by numerous variables consisting of feedstock powders, manufacturing process,and post-treatment. As the starting materials, metallic powders play a critical role in infuencing the fabrication cost, printing consistency, and properties. Given their deterministic roles, the present review aims to retrospect the recent progress on metallic powders for L-PBF including characterization, preparation, and reuse. The powder characterization mainly serves for printing consistency while powder preparation and reuse are introduced to reduce the fabrication costs.Various powder characterization and preparation methods are presented in the beginning by analyzing the measurement principles, advantages, and limitations. Subsequently, the effect of powder reuse on the powder characteristics and mechanical performance of L-PBF parts is analyzed, focusing on steels, nickel-based superalloys, titanium and titanium alloys, and aluminum alloys. The evolution trends of powders and L-PBF parts vary depending on specific alloy systems, which makes the proposal of a unified reuse protocol infeasible. Finally,perspectives are presented to cater to the increased applications of L-PBF technologies for future investigations. The present state-of-the-art work can pave the way for the broad industrial applications of L-PBF by enhancing printing consistency and reducing the total costs from the perspective of powders.展开更多
In the microalgae harvesting process,which includes a step for dewatering the algal suspension,directly reusing extracted water in situ would decrease the freshwater footprint of cultivation systems.Among various alga...In the microalgae harvesting process,which includes a step for dewatering the algal suspension,directly reusing extracted water in situ would decrease the freshwater footprint of cultivation systems.Among various algae harvesting techniques,membrane-based filtration has shown numerous advantages.This study evaluated the reuse of permeate streams derived from Scenedesmus obliquus(S.obliquus)biomass filtration under bench-scale and pilot-scale conditions.In particular,this study identified a series of challenges and mechanisms that influence the water reuse potential and the robustness of the membrane harvesting system.In a preliminary phase of this investigation,the health status of the initial biomass was found to have important implications for the harvesting performance and quality of the permeate stream to be reused;healthy biomass ensured better dewatering performance(i.e.,higher water fluxes)and higher quality of the permeate water streams.A series of bench-scale filtration experiments with different combinations of cross-flow velocity and pressure values were performed to identify the operative conditions that would maximize water productivity.The selected conditions,2.4 m·s^(-1)and 1.4 bar(1 bar=105 Pa),respectively,were then applied to drive pilot-scale microfiltration tests to reuse the collected permeate as a new cultivation medium for S.obliquus growth in a pilot-scale photobioreactor.The investigation revealed key differences between the behavior of the membrane systems at the two scales(bench and pilot).It indicated the potential for beneficial reuse of the permeate stream as the pilot-scale experiments ensured high harvesting performance and growth rates of biomass in permeate water that were highly similar to those recorded in the ideal cultivation medium.Finally,different nutrient reintegration protocols were investigated,revealing that both macro-and micro-nutrient levels are critical for the success of the reuse approach.展开更多
Flotation is the most common method to obtain concentrate through the selective adsorption of collectors on target minerals to make them hydrophobic and floatable.In the hydrometallurgy of concentrate,collectors adsor...Flotation is the most common method to obtain concentrate through the selective adsorption of collectors on target minerals to make them hydrophobic and floatable.In the hydrometallurgy of concentrate,collectors adsorbed on concentrate can damage ion-exchange resin and increase the chemical oxygen demand(COD)value of wastewater.In this work,we proposed a new scheme,i.e.,desorbing the collectors from concentrate in ore dressing plant and reusing them in flotation flowsheet.Lead nitrate and benzohydroxamic acid(Pb-BHA)complex is a common collector in scheelite flotation.In this study,different physical(stirring or ultrasonic waves)and chemical(strong acid or alkali environment)methods for facilitating the desorption of Pb-BHA collector from scheelite concentrate were explored.Single-mineral desorption tests showed that under the condition of pulp pH 13 and ultrasonic treatment for 15 min,the highest desorption rates of Pb and BHA from the scheelite concentrate were 90.48%and 63.75%,respectively.Run-of-mine ore flotation tests revealed that the reuse of desorbed Pb and BHA reduced the collector dosage by 30%for BHA and 25%for Pb.The strong alkali environment broke the chemical bonds between Pb and BHA.The cavitation effect of ultrasonic waves effectively reduced the interaction intensity between Pb-BHA collector and scheelite surfaces.This method combining ultrasonic waves and strong alkali environment can effectively desorb the collectors from concentrate and provide“clean”scheelite concentrate for metallurgic plants;the reuse of desorbed collector in flotation flowsheet can reduce reagent cost for ore dressing plants.展开更多
A significant portion of the national water supply can be attributed to de facto or unplanned potable reuse, though the extent of its contribution is difficult to estimate. Fortunately, the contribution of Water Resou...A significant portion of the national water supply can be attributed to de facto or unplanned potable reuse, though the extent of its contribution is difficult to estimate. Fortunately, the contribution of Water Resource Recovery Facility (WRRF) effluent to waters that supply drinking water treatment plants has been documented by some communities. In the United States (US), among the top 25 most impacted drinking water treatment plants by upstream WRRF, 16% of the influent flow to the drinking water treatment plant under average streamflow and up to 100% under low-flow conditions is WRRF effluent. Currently, the full extent of de facto reuse in the US may be much higher because of population growth. The scenario is no different for Beaufort-Jasper Water and Sewer Authority (BJWSA) in South Carolina, US, with contributions to the Savannah River originating from numerous WRRF and other upstream dischargers. South Carolina coastal utilities such as BJSWA are considering direct and indirect potable reuse options, driven by disposal limitations and challenges. Currently, South Carolina does not have a framework, guidelines, or regulations for reuse, but discussions have started among the regulated community. In addition to understanding the extent of de facto reuse, the state will need to develop standards and best practices to enable future adoption of planned potable reuse solutions to water resources challenges. Such guidance should address human health risk management and technical considerations regarding treatment in addition to other factors, including source control, storage, fail-safe operation, monitoring, non-cost factors, and public acceptance. This study conducted a mapping assessment specific to BJWSA, sampled at four locations on Savannah River, and observed that de facto reuse is approximately 4.6% to 5.9% during low-flow months and is within the range generally observed nationwide. When coupled with evidence that planned potable reuse can improve human health and environmental risks, this practice is a meaningful option in the water supply portfolio for many utilities.展开更多
With an emphasis on the religious component of reuse potentiality,this study investigates the crucial nexus between spatial development and the conservation model for religious practice with socio-communal dimensions....With an emphasis on the religious component of reuse potentiality,this study investigates the crucial nexus between spatial development and the conservation model for religious practice with socio-communal dimensions.Adaptive reuse is a critical tactic for global preservation and revitalization to elevate heritage sites in culturally significant locations but provides contemporary functions to them simultaneously.This study examines the various facets of adaptive reuse concerning the religious cultural heritage of suppressed minorities,stressing its insight and importance including the inherent cultural worth of ancient structures and difficulties through creative solutions to modify the temple with modern purposes.The research methodology approaches through an extensive analysis of the literature and case studies and ends with design interventions.It looks into the socioeconomic advantages of adaptive reuse in religious practice,such as the promotion of pilgrimage tourism,community revitalization,and sustainable development.The possible findings will emphasize the conversation on sustainable heritage management by combining theoretical frameworks with practical discoveries as an architectural project with certain concepts.展开更多
The mountainous abandoned mine land is often distributed in the fomi of fragmented patches. Therefore, it can greatly promote the reuse value of abandoned mine land and relieve the pressure of land demand to realize t...The mountainous abandoned mine land is often distributed in the fomi of fragmented patches. Therefore, it can greatly promote the reuse value of abandoned mine land and relieve the pressure of land demand to realize the rational reuse of abandoned mine land based on the future land use structure and spatial layout of mountainous area. In this paper, optimization of the spatial structure of mountainous abandoned mine land reuse is realized through the system dynamics model and CLUE-S model. Mentougou district, Beijing, China is selected as the research area. System dynamics model with feedback functions is constructed to simulate land use structure from 2011 to 2025, which is taken as the quanfiiative constraint on spatial structure optimization. CLUE-S model with neighborhood analysis function is applied to simulate future land use spatial structure. The simulation result layer is superimposed with the abandoned mine land distribution layer and the optimized spatial structure of abandoned mine land reuse then is determined, checked by reuse suitability evaluation. The result shows that abandoned mine land can be fully optimized as other land use types according to demand, and the reuse directions are water conservancy facilities land, urban land, rural residential land, tourism land, garden land, woodland and grassland. The trend of abandoned mine land reuse tend to be consistent with land use types of neighboring patches. This study can provide theoretical reference for the practices of mountainous abandoned mine land reuse.展开更多
Sustainable production of clean water is a global challenge.While we firmly believe that membrane technologies are one of the most promising solutions to tackle the global water challenges,one must reduce their energy...Sustainable production of clean water is a global challenge.While we firmly believe that membrane technologies are one of the most promising solutions to tackle the global water challenges,one must reduce their energy consumption and fouling propensity for broad sustainable applications.In addition,different membranes face various challenges in their specific applications during long-term operations.In this short review,we will summarize the recent progresses in emerging membrane technologies and system integration to advance and sustain water reuse and desalination with discussion on their challenges and perspectives.展开更多
Multi-beam satellite communication systems can improve the resource utilization and system capacity effectively.However,the inter-beam interference,especially for the satellite system with full frequency reuse,will de...Multi-beam satellite communication systems can improve the resource utilization and system capacity effectively.However,the inter-beam interference,especially for the satellite system with full frequency reuse,will degrade the system performance greatly due to the characteristics of multi-beam satellite antennas.In this article,the user scheduling and resource allocation of a multi-beam satellite system with full frequency reuse are jointly studied,in which all beams can use the full bandwidth.With the strong inter-beam interference,we aim to minimize the system latency experienced by the users during the process of data downloading.To solve this problem,deep reinforcement learning is used to schedule users and allocate bandwidth and power resources to mitigate the inter-beam interference.The simulation results are compared with other reference algorithms to verify the effectiveness of the proposed algorithm.展开更多
A sequential three-step programming method is proposed for determining the minimum flowrate of fresh water and corresponding regenerated water in water-using system of single contaminant with regeneration reuse. In st...A sequential three-step programming method is proposed for determining the minimum flowrate of fresh water and corresponding regenerated water in water-using system of single contaminant with regeneration reuse. In step 1, a programming with the objective of min fws is used to determine the minimum flowrate of fresh water, in which the mathematical representation is a mixed integer nonlinear programming (MINLP1). Then under the same constraints with step 1, a programming with the objective of min freg in step 2 and a programming with the objective of min Cr in step 3 are subsequently used to determine the minimum flowrate of regenerated water and the minimum inlet concentration to regeneration process corresponding to the minimum flowrate of fresh water based on step 1. The method is easy to apply because we only need to change the objective function but keep the constraints constant to go along the following steps after step 1. In addition, the relationship between the fresh water flowrate required, fws and inlet concentration to regeneration process, Cr, is investigated. It is found that there exist three relationships between fws and Cr, which indicate three possibilities for C\>: below the pinch, above the pinch or at the pinch. Therefore, a new conclusion is drawn, which differs from that 'regeneration of water at pinch minimizes fresh water flowrate' derived in literature and indicates that in some cases, regeneration at other point also minimizes fresh water flowrate.展开更多
The renovated water in the rapid infiltration system (RI) as area for fish and duck farming is feasible. The flesh of fish and duck is edible. The farming of fish for 5 months and duck for 120 - 130 days can be accept...The renovated water in the rapid infiltration system (RI) as area for fish and duck farming is feasible. The flesh of fish and duck is edible. The farming of fish for 5 months and duck for 120 - 130 days can be accepted. It is beneficial to environment and economy, especially in developing countries. The production of fish and duck can make up for the cost of wastewater treatment.展开更多
Most large-scale systems including self-adaptive systems utilize feature models(FMs)to represent their complex architectures and benefit from the reuse of commonalities and variability information.Self-adaptive system...Most large-scale systems including self-adaptive systems utilize feature models(FMs)to represent their complex architectures and benefit from the reuse of commonalities and variability information.Self-adaptive systems(SASs)are capable of reconfiguring themselves during the run time to satisfy the scenarios of the requisite contexts.However,reconfiguration of SASs corresponding to each adaptation of the system requires significant computational time and resources.The process of configuration reuse can be a better alternative to some contexts to reduce computational time,effort and error-prone.Nevertheless,systems’complexity can be reduced while the development process of systems by reusing elements or components.FMs are considered one of the new ways of reuse process that are able to introduce new opportunities for the reuse process beyond the conventional system components.While current FM-based modelling techniques represent,manage,and reuse elementary features to model SASs concepts,modeling and reusing configurations have not yet been considered.In this context,this study presents an extension to FMs by introducing and managing configuration features and their reuse process.Evaluation results demonstrate that reusing configuration features reduces the effort and time required by a reconfiguration process during the run time to meet the required scenario according to the current context.展开更多
An upsurge of interest in relay-augmented infrastructure-based networks has appeared in recent years.Radio resource management in such relay systems has great influence on the system performance.How to utilize the lim...An upsurge of interest in relay-augmented infrastructure-based networks has appeared in recent years.Radio resource management in such relay systems has great influence on the system performance.How to utilize the limited frequency resources efficiently in the system is a hot research topic.In this paper,performance of frequency reuse schemes has been studied in fixed relay systems.A novel scheme is achieved by modifying an existing one.Theoretical model is proposed for the performance analysis of two schemes.Both the theoretical analysis and simulation results show that the modified scheme outperforms the existing one not only in power consumption of mobile stations but also in cell carrier-to-interference ratio coverage.展开更多
The biofouling of RO (Reverse Osmosis) system is one of the most common problems in highly contaminated demineralization and wastewater reuse system. The biological fouling occurs due to the bacteria growth and prol...The biofouling of RO (Reverse Osmosis) system is one of the most common problems in highly contaminated demineralization and wastewater reuse system. The biological fouling occurs due to the bacteria growth and proliferation under nutritive environment, resulting in a dramatic increase of dP (differential pressure) in the RO system, which requires frequent system shutdown for cleaning. This paper discusses the effectiveness of low-dP RO element and periodic flushing on the biofouling scheme of industrial steel mill wastewater reuse system. The low-dP RO element is able to provide low RO system dP, which is expressed to be lower biofouling starting point during the industrial system operation. However, the periodic flushing utilizes fresh water to remove the biofilm deposit along with feed channel. The long term operation performance demonstrated strong caustic is effective in removing the biofilm and recovering RO system performance. It is experimentally validated that, in the case of a high biofouling environment, low-dP RO element and periodic flushing is able to extend the cleaning cycles by 36.6% and 11.4%, respectively. Meanwhile, a joint application of both methods is proven to improve the biofouling control and extend the cleaning cycle by 62.5%, as compared to standard RO technology.展开更多
Knowledge reuse is a process for designing new product based on the embedded design knowledge and experience of existing products. In order to improve quality and efficiency of product design, a method to extract rela...Knowledge reuse is a process for designing new product based on the embedded design knowledge and experience of existing products. In order to improve quality and efficiency of product design, a method to extract related knowledge from using standard parts in product design is introduced. Based on the characteristics of standard parts and their application, knowledge reusable standard parts library was built up through analysis of key techniques of standard part modeling such as knowledge expression, knowledge reuse and knowledge searching.展开更多
The paper analyzes the definite place of industrial building in the history of urban development. Due to the development of urban economy and the transition of the traditional industrial structure, many historic citie...The paper analyzes the definite place of industrial building in the history of urban development. Due to the development of urban economy and the transition of the traditional industrial structure, many historic cities and towns both at home and abroad have witnessed a large scale "demolition" and abandonment of industrial buildings in urban renewal during last 30 years. Consequently, it has been leading to the discontinuity of urban cultural and historic context. The paper discusses and expounds the clas...展开更多
Due to the fact that the existing web service description methods cannot address the issue of service reuse of various levels of granularity, the concept of service component is introduced, which packages together web...Due to the fact that the existing web service description methods cannot address the issue of service reuse of various levels of granularity, the concept of service component is introduced, which packages together web services and choreography, and their operations and properties are presented in a consistent and uniform manner. Service components are published externally as normal web services and can thus be employed by webbased applications. In order to improve reusability and testability of service components, the concept of composition pattern is also proposed, which presents the relationships among service components. The relationships and relationship compositions have a rigorous semantic, so that composite components can be validated at the configuration stage. The composition patterns support to integrate service components of various levels of granularity. Experience indicates that the application assembly can effectively be conducted by understanding, selecting, and reusing components easily.展开更多
Due to the diversity and unpredictability of changes in malicious code,studying the traceability of variant families remains challenging.In this paper,we propose a GAN-EfficientNetV2-based method for tracing families ...Due to the diversity and unpredictability of changes in malicious code,studying the traceability of variant families remains challenging.In this paper,we propose a GAN-EfficientNetV2-based method for tracing families of malicious code variants.This method leverages the similarity in layouts and textures between images of malicious code variants from the same source and their original family of malicious code images.The method includes a lightweight classifier and a simulator.The classifier utilizes the enhanced EfficientNetV2 to categorize malicious code images and can be easily deployed on mobile,embedded,and other devices.The simulator utilizes an enhanced generative adversarial network to simulate different variants of malicious code and generates datasets to validate the model’s performance.This process helps identify model vulnerabilities and security risks,facilitating model enhancement and development.The classifier achieves 98.61%and 97.59%accuracy on the MMCC dataset and Malevis dataset,respectively.The simulator’s generated image of malicious code variants has an FID value of 155.44 and an IS value of 1.72±0.42.The classifier’s accuracy for tracing the family of malicious code variants is as high as 90.29%,surpassing that of mainstream neural network models.This meets the current demand for high generalization and anti-obfuscation abilities in malicious code classification models due to the rapid evolution of malicious code.展开更多
Different drillingfluid systems are designed according to mineral composition,lithology and wellbore stability of different strata.In the present study,the conversion of a non-dispersed polymer drillingfluid into a low ...Different drillingfluid systems are designed according to mineral composition,lithology and wellbore stability of different strata.In the present study,the conversion of a non-dispersed polymer drillingfluid into a low potas-sium anti-collapsing drillingfluid is investigated.Since the two drillingfluids belong to completely different types,the key to this conversion is represented by new inhibitors,dispersants and water-loss agents by which a non-dispersed drillingfluid can be turned into a dispersed drillingfluid while ensuring wellbore stability and reason-able rheology(carrying sand—inhibiting cuttings dispersion).In particular,the(QYZ-1)inhibitors and(FSJSS-2)dispersants are used.The former can inhibit the hydration expansion capacity of clay,reduce the dynamic shear force and weaken the viscosity;the latter can improve the sealing effect and reduce thefiltrate loss.The results have shown that after adding a reasonable proportion of these substances(QYZ-1:FSJSS-2)to the non-dispersed polymer drillingfluid,while the apparent viscosity,plastic viscosity,structural viscosity andfluidity index under-went almost negligible changes,the dynamic plastic ratio increased,and thefiltration loss decreased significantly,thereby indicating good compatibility.According to the tests(conducted in the Leijia area),the density was 1.293 g/cm3,and after standing for 24 h,the SF(static settlement factor)was 0.51.Moreover,thefiltration loss was reduced to 4.0 mL,the rolling recovery rate reached 96.92%,with excellent plugging and anti-collapse performances.展开更多
文摘Recently the phenomenon of disposable schoolbook in China not only has wasted so many resources that produce unfavorable influence, but also has increased unneeessary impact burdens on consumptions of Chinese families. The paper analyzes value of the reuse of schoolbooks and main obstacles, introduces the concept of servicizing, discusses the problem of the reuse of schoolbooks from construction of product-service system, and puts forward that realization of the reuse of sChoolbooks depends on innovation of present system and model. Construction of Schoolbook-service system needs shifl from value to consumption habits and behaviors and active participation of every Social class.
基金The Hi_Tech Research and Development Program(863) of China(No:2002AA601220)
文摘A water quality model for water reuse was made by mathematics induction. The relationship among the reuse rate of treated wastewater(R), pollutant concentration of reused water( Cs ), pollutant concentration of influent( C0), removal efficiency of pollutant in wastewater( E), and the standard of reuse water were discussed in this study. According to the experiment result of a toilet wastewater treatment and reuse with membrane bioreactors, R would be set at less than 40%, on which all the concerned parameters could meet with the reuse water standards. To raise R of reuse water in the toilet, an important way was to improve color removal of the wastewater.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. AE89991/403)National Natural Science Foundation of China (Grant No. 52005262)+1 种基金Natural Science Foundation of Jiangsu Province (BK20202007)National Key Research and Development Program of China (2022YFB4600800)。
文摘Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The printing quality and performance of L-PBF alloys are infuenced by numerous variables consisting of feedstock powders, manufacturing process,and post-treatment. As the starting materials, metallic powders play a critical role in infuencing the fabrication cost, printing consistency, and properties. Given their deterministic roles, the present review aims to retrospect the recent progress on metallic powders for L-PBF including characterization, preparation, and reuse. The powder characterization mainly serves for printing consistency while powder preparation and reuse are introduced to reduce the fabrication costs.Various powder characterization and preparation methods are presented in the beginning by analyzing the measurement principles, advantages, and limitations. Subsequently, the effect of powder reuse on the powder characteristics and mechanical performance of L-PBF parts is analyzed, focusing on steels, nickel-based superalloys, titanium and titanium alloys, and aluminum alloys. The evolution trends of powders and L-PBF parts vary depending on specific alloy systems, which makes the proposal of a unified reuse protocol infeasible. Finally,perspectives are presented to cater to the increased applications of L-PBF technologies for future investigations. The present state-of-the-art work can pave the way for the broad industrial applications of L-PBF by enhancing printing consistency and reducing the total costs from the perspective of powders.
基金supported by the Politecnico di Torino and the CleanWaterCenter@PoliTo(58_DIM20TIRALB,58_DIM22TIRALB,and 01_TRIN_CI_CWC).
文摘In the microalgae harvesting process,which includes a step for dewatering the algal suspension,directly reusing extracted water in situ would decrease the freshwater footprint of cultivation systems.Among various algae harvesting techniques,membrane-based filtration has shown numerous advantages.This study evaluated the reuse of permeate streams derived from Scenedesmus obliquus(S.obliquus)biomass filtration under bench-scale and pilot-scale conditions.In particular,this study identified a series of challenges and mechanisms that influence the water reuse potential and the robustness of the membrane harvesting system.In a preliminary phase of this investigation,the health status of the initial biomass was found to have important implications for the harvesting performance and quality of the permeate stream to be reused;healthy biomass ensured better dewatering performance(i.e.,higher water fluxes)and higher quality of the permeate water streams.A series of bench-scale filtration experiments with different combinations of cross-flow velocity and pressure values were performed to identify the operative conditions that would maximize water productivity.The selected conditions,2.4 m·s^(-1)and 1.4 bar(1 bar=105 Pa),respectively,were then applied to drive pilot-scale microfiltration tests to reuse the collected permeate as a new cultivation medium for S.obliquus growth in a pilot-scale photobioreactor.The investigation revealed key differences between the behavior of the membrane systems at the two scales(bench and pilot).It indicated the potential for beneficial reuse of the permeate stream as the pilot-scale experiments ensured high harvesting performance and growth rates of biomass in permeate water that were highly similar to those recorded in the ideal cultivation medium.Finally,different nutrient reintegration protocols were investigated,revealing that both macro-and micro-nutrient levels are critical for the success of the reuse approach.
基金financially supported by the National Natural Science Foundation of China(Nos.52304314 and U23A20602)the Leading Talents of S&T Innovation of Hunan Province,China(No.2021RC4002)+2 种基金the Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2024-16)the Open Foundation of Key Laboratory of Green Separation and Enrichment of Strategic Metal Mineral Resources(No.2023-02)the Fundamental Research Funds for the Central Universities of Central South University(No.2024ZZTS0008).
文摘Flotation is the most common method to obtain concentrate through the selective adsorption of collectors on target minerals to make them hydrophobic and floatable.In the hydrometallurgy of concentrate,collectors adsorbed on concentrate can damage ion-exchange resin and increase the chemical oxygen demand(COD)value of wastewater.In this work,we proposed a new scheme,i.e.,desorbing the collectors from concentrate in ore dressing plant and reusing them in flotation flowsheet.Lead nitrate and benzohydroxamic acid(Pb-BHA)complex is a common collector in scheelite flotation.In this study,different physical(stirring or ultrasonic waves)and chemical(strong acid or alkali environment)methods for facilitating the desorption of Pb-BHA collector from scheelite concentrate were explored.Single-mineral desorption tests showed that under the condition of pulp pH 13 and ultrasonic treatment for 15 min,the highest desorption rates of Pb and BHA from the scheelite concentrate were 90.48%and 63.75%,respectively.Run-of-mine ore flotation tests revealed that the reuse of desorbed Pb and BHA reduced the collector dosage by 30%for BHA and 25%for Pb.The strong alkali environment broke the chemical bonds between Pb and BHA.The cavitation effect of ultrasonic waves effectively reduced the interaction intensity between Pb-BHA collector and scheelite surfaces.This method combining ultrasonic waves and strong alkali environment can effectively desorb the collectors from concentrate and provide“clean”scheelite concentrate for metallurgic plants;the reuse of desorbed collector in flotation flowsheet can reduce reagent cost for ore dressing plants.
文摘A significant portion of the national water supply can be attributed to de facto or unplanned potable reuse, though the extent of its contribution is difficult to estimate. Fortunately, the contribution of Water Resource Recovery Facility (WRRF) effluent to waters that supply drinking water treatment plants has been documented by some communities. In the United States (US), among the top 25 most impacted drinking water treatment plants by upstream WRRF, 16% of the influent flow to the drinking water treatment plant under average streamflow and up to 100% under low-flow conditions is WRRF effluent. Currently, the full extent of de facto reuse in the US may be much higher because of population growth. The scenario is no different for Beaufort-Jasper Water and Sewer Authority (BJWSA) in South Carolina, US, with contributions to the Savannah River originating from numerous WRRF and other upstream dischargers. South Carolina coastal utilities such as BJSWA are considering direct and indirect potable reuse options, driven by disposal limitations and challenges. Currently, South Carolina does not have a framework, guidelines, or regulations for reuse, but discussions have started among the regulated community. In addition to understanding the extent of de facto reuse, the state will need to develop standards and best practices to enable future adoption of planned potable reuse solutions to water resources challenges. Such guidance should address human health risk management and technical considerations regarding treatment in addition to other factors, including source control, storage, fail-safe operation, monitoring, non-cost factors, and public acceptance. This study conducted a mapping assessment specific to BJWSA, sampled at four locations on Savannah River, and observed that de facto reuse is approximately 4.6% to 5.9% during low-flow months and is within the range generally observed nationwide. When coupled with evidence that planned potable reuse can improve human health and environmental risks, this practice is a meaningful option in the water supply portfolio for many utilities.
文摘With an emphasis on the religious component of reuse potentiality,this study investigates the crucial nexus between spatial development and the conservation model for religious practice with socio-communal dimensions.Adaptive reuse is a critical tactic for global preservation and revitalization to elevate heritage sites in culturally significant locations but provides contemporary functions to them simultaneously.This study examines the various facets of adaptive reuse concerning the religious cultural heritage of suppressed minorities,stressing its insight and importance including the inherent cultural worth of ancient structures and difficulties through creative solutions to modify the temple with modern purposes.The research methodology approaches through an extensive analysis of the literature and case studies and ends with design interventions.It looks into the socioeconomic advantages of adaptive reuse in religious practice,such as the promotion of pilgrimage tourism,community revitalization,and sustainable development.The possible findings will emphasize the conversation on sustainable heritage management by combining theoretical frameworks with practical discoveries as an architectural project with certain concepts.
基金the National Natural Science Foundation of China (41877533)Beijing Social Science Foundation (18GLB014).
文摘The mountainous abandoned mine land is often distributed in the fomi of fragmented patches. Therefore, it can greatly promote the reuse value of abandoned mine land and relieve the pressure of land demand to realize the rational reuse of abandoned mine land based on the future land use structure and spatial layout of mountainous area. In this paper, optimization of the spatial structure of mountainous abandoned mine land reuse is realized through the system dynamics model and CLUE-S model. Mentougou district, Beijing, China is selected as the research area. System dynamics model with feedback functions is constructed to simulate land use structure from 2011 to 2025, which is taken as the quanfiiative constraint on spatial structure optimization. CLUE-S model with neighborhood analysis function is applied to simulate future land use spatial structure. The simulation result layer is superimposed with the abandoned mine land distribution layer and the optimized spatial structure of abandoned mine land reuse then is determined, checked by reuse suitability evaluation. The result shows that abandoned mine land can be fully optimized as other land use types according to demand, and the reuse directions are water conservancy facilities land, urban land, rural residential land, tourism land, garden land, woodland and grassland. The trend of abandoned mine land reuse tend to be consistent with land use types of neighboring patches. This study can provide theoretical reference for the practices of mountainous abandoned mine land reuse.
基金supported by PUB, Singapore’s National Water Agency under the project ‘‘Development of 8 inch Novel High Efficiency Pressure-Retarded Osmosis (PRO) Membrane Modules towards Potential Pilot Testing and Field Validation” with NUS grant No. R-279-000-555-592Singapore National Research Foundation for supporting the project entitled, ‘‘Using Cold Energy from Regasification of Liquefied Natural Gas (LNG) for Novel Hybrid Seawater Desalination Technologies” (Grant number: R-279-000-456-279)BASF SE, Germany for partially funding this project with a grant number of R-279-000-363-597
文摘Sustainable production of clean water is a global challenge.While we firmly believe that membrane technologies are one of the most promising solutions to tackle the global water challenges,one must reduce their energy consumption and fouling propensity for broad sustainable applications.In addition,different membranes face various challenges in their specific applications during long-term operations.In this short review,we will summarize the recent progresses in emerging membrane technologies and system integration to advance and sustain water reuse and desalination with discussion on their challenges and perspectives.
基金supported in part by the National Natural Science Foundation of China under Grant 62171052,Grant 61971054Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory Foundation under Grant HHX21641X002。
文摘Multi-beam satellite communication systems can improve the resource utilization and system capacity effectively.However,the inter-beam interference,especially for the satellite system with full frequency reuse,will degrade the system performance greatly due to the characteristics of multi-beam satellite antennas.In this article,the user scheduling and resource allocation of a multi-beam satellite system with full frequency reuse are jointly studied,in which all beams can use the full bandwidth.With the strong inter-beam interference,we aim to minimize the system latency experienced by the users during the process of data downloading.To solve this problem,deep reinforcement learning is used to schedule users and allocate bandwidth and power resources to mitigate the inter-beam interference.The simulation results are compared with other reference algorithms to verify the effectiveness of the proposed algorithm.
基金Supported by the National Fundamental Research Development Program of China(No.2000026308).
文摘A sequential three-step programming method is proposed for determining the minimum flowrate of fresh water and corresponding regenerated water in water-using system of single contaminant with regeneration reuse. In step 1, a programming with the objective of min fws is used to determine the minimum flowrate of fresh water, in which the mathematical representation is a mixed integer nonlinear programming (MINLP1). Then under the same constraints with step 1, a programming with the objective of min freg in step 2 and a programming with the objective of min Cr in step 3 are subsequently used to determine the minimum flowrate of regenerated water and the minimum inlet concentration to regeneration process corresponding to the minimum flowrate of fresh water based on step 1. The method is easy to apply because we only need to change the objective function but keep the constraints constant to go along the following steps after step 1. In addition, the relationship between the fresh water flowrate required, fws and inlet concentration to regeneration process, Cr, is investigated. It is found that there exist three relationships between fws and Cr, which indicate three possibilities for C\>: below the pinch, above the pinch or at the pinch. Therefore, a new conclusion is drawn, which differs from that 'regeneration of water at pinch minimizes fresh water flowrate' derived in literature and indicates that in some cases, regeneration at other point also minimizes fresh water flowrate.
文摘The renovated water in the rapid infiltration system (RI) as area for fish and duck farming is feasible. The flesh of fish and duck is edible. The farming of fish for 5 months and duck for 120 - 130 days can be accepted. It is beneficial to environment and economy, especially in developing countries. The production of fish and duck can make up for the cost of wastewater treatment.
文摘Most large-scale systems including self-adaptive systems utilize feature models(FMs)to represent their complex architectures and benefit from the reuse of commonalities and variability information.Self-adaptive systems(SASs)are capable of reconfiguring themselves during the run time to satisfy the scenarios of the requisite contexts.However,reconfiguration of SASs corresponding to each adaptation of the system requires significant computational time and resources.The process of configuration reuse can be a better alternative to some contexts to reduce computational time,effort and error-prone.Nevertheless,systems’complexity can be reduced while the development process of systems by reusing elements or components.FMs are considered one of the new ways of reuse process that are able to introduce new opportunities for the reuse process beyond the conventional system components.While current FM-based modelling techniques represent,manage,and reuse elementary features to model SASs concepts,modeling and reusing configurations have not yet been considered.In this context,this study presents an extension to FMs by introducing and managing configuration features and their reuse process.Evaluation results demonstrate that reusing configuration features reduces the effort and time required by a reconfiguration process during the run time to meet the required scenario according to the current context.
基金National Science Fund for Creative Research Groups(No.60521002)Chinese NationalKey Technology R&D Program(No.2005BA908B02)Science Foundation ofShanghai Municipal Commission of Scienceand Technology,Chinese(No.05dz05802)
文摘An upsurge of interest in relay-augmented infrastructure-based networks has appeared in recent years.Radio resource management in such relay systems has great influence on the system performance.How to utilize the limited frequency resources efficiently in the system is a hot research topic.In this paper,performance of frequency reuse schemes has been studied in fixed relay systems.A novel scheme is achieved by modifying an existing one.Theoretical model is proposed for the performance analysis of two schemes.Both the theoretical analysis and simulation results show that the modified scheme outperforms the existing one not only in power consumption of mobile stations but also in cell carrier-to-interference ratio coverage.
文摘The biofouling of RO (Reverse Osmosis) system is one of the most common problems in highly contaminated demineralization and wastewater reuse system. The biological fouling occurs due to the bacteria growth and proliferation under nutritive environment, resulting in a dramatic increase of dP (differential pressure) in the RO system, which requires frequent system shutdown for cleaning. This paper discusses the effectiveness of low-dP RO element and periodic flushing on the biofouling scheme of industrial steel mill wastewater reuse system. The low-dP RO element is able to provide low RO system dP, which is expressed to be lower biofouling starting point during the industrial system operation. However, the periodic flushing utilizes fresh water to remove the biofilm deposit along with feed channel. The long term operation performance demonstrated strong caustic is effective in removing the biofilm and recovering RO system performance. It is experimentally validated that, in the case of a high biofouling environment, low-dP RO element and periodic flushing is able to extend the cleaning cycles by 36.6% and 11.4%, respectively. Meanwhile, a joint application of both methods is proven to improve the biofouling control and extend the cleaning cycle by 62.5%, as compared to standard RO technology.
基金National Scientific and Technological Support Plan (2006BAF01A43)
文摘Knowledge reuse is a process for designing new product based on the embedded design knowledge and experience of existing products. In order to improve quality and efficiency of product design, a method to extract related knowledge from using standard parts in product design is introduced. Based on the characteristics of standard parts and their application, knowledge reusable standard parts library was built up through analysis of key techniques of standard part modeling such as knowledge expression, knowledge reuse and knowledge searching.
文摘The paper analyzes the definite place of industrial building in the history of urban development. Due to the development of urban economy and the transition of the traditional industrial structure, many historic cities and towns both at home and abroad have witnessed a large scale "demolition" and abandonment of industrial buildings in urban renewal during last 30 years. Consequently, it has been leading to the discontinuity of urban cultural and historic context. The paper discusses and expounds the clas...
基金The National Basic Research Program of China (973Program) (No.1999032710).
文摘Due to the fact that the existing web service description methods cannot address the issue of service reuse of various levels of granularity, the concept of service component is introduced, which packages together web services and choreography, and their operations and properties are presented in a consistent and uniform manner. Service components are published externally as normal web services and can thus be employed by webbased applications. In order to improve reusability and testability of service components, the concept of composition pattern is also proposed, which presents the relationships among service components. The relationships and relationship compositions have a rigorous semantic, so that composite components can be validated at the configuration stage. The composition patterns support to integrate service components of various levels of granularity. Experience indicates that the application assembly can effectively be conducted by understanding, selecting, and reusing components easily.
基金support this work is the Key Research and Development Program of Heilongjiang Province,specifically Grant Number 2023ZX02C10.
文摘Due to the diversity and unpredictability of changes in malicious code,studying the traceability of variant families remains challenging.In this paper,we propose a GAN-EfficientNetV2-based method for tracing families of malicious code variants.This method leverages the similarity in layouts and textures between images of malicious code variants from the same source and their original family of malicious code images.The method includes a lightweight classifier and a simulator.The classifier utilizes the enhanced EfficientNetV2 to categorize malicious code images and can be easily deployed on mobile,embedded,and other devices.The simulator utilizes an enhanced generative adversarial network to simulate different variants of malicious code and generates datasets to validate the model’s performance.This process helps identify model vulnerabilities and security risks,facilitating model enhancement and development.The classifier achieves 98.61%and 97.59%accuracy on the MMCC dataset and Malevis dataset,respectively.The simulator’s generated image of malicious code variants has an FID value of 155.44 and an IS value of 1.72±0.42.The classifier’s accuracy for tracing the family of malicious code variants is as high as 90.29%,surpassing that of mainstream neural network models.This meets the current demand for high generalization and anti-obfuscation abilities in malicious code classification models due to the rapid evolution of malicious code.
文摘Different drillingfluid systems are designed according to mineral composition,lithology and wellbore stability of different strata.In the present study,the conversion of a non-dispersed polymer drillingfluid into a low potas-sium anti-collapsing drillingfluid is investigated.Since the two drillingfluids belong to completely different types,the key to this conversion is represented by new inhibitors,dispersants and water-loss agents by which a non-dispersed drillingfluid can be turned into a dispersed drillingfluid while ensuring wellbore stability and reason-able rheology(carrying sand—inhibiting cuttings dispersion).In particular,the(QYZ-1)inhibitors and(FSJSS-2)dispersants are used.The former can inhibit the hydration expansion capacity of clay,reduce the dynamic shear force and weaken the viscosity;the latter can improve the sealing effect and reduce thefiltrate loss.The results have shown that after adding a reasonable proportion of these substances(QYZ-1:FSJSS-2)to the non-dispersed polymer drillingfluid,while the apparent viscosity,plastic viscosity,structural viscosity andfluidity index under-went almost negligible changes,the dynamic plastic ratio increased,and thefiltration loss decreased significantly,thereby indicating good compatibility.According to the tests(conducted in the Leijia area),the density was 1.293 g/cm3,and after standing for 24 h,the SF(static settlement factor)was 0.51.Moreover,thefiltration loss was reduced to 4.0 mL,the rolling recovery rate reached 96.92%,with excellent plugging and anti-collapse performances.