The reverse analysis provides a convenient method to determine four elastic-plastic parameters through an indentation curve such as Young s modulus E, hardness H, yield strength σy and strain hardening exponent n. In...The reverse analysis provides a convenient method to determine four elastic-plastic parameters through an indentation curve such as Young s modulus E, hardness H, yield strength σy and strain hardening exponent n. In this paper, mathematical analysis on a reverse algorithm from Dao model (Dao et al., Acta Mater., 2001, 49, 3899) was carried out, which thought that only when 20 ≤E*/σ0.033≤ 26 and 0.3n≤ 0.5, the reverse algorithm would yield two solutions of n by dimensionless function Π2. It is shown that, however, there are also two solutions of n when 20≤E*/σ0.033≤ 26 and 0≤n0.1. A unique n can be obtained by dimensionless function Π3 instead of Π2 in these two ranges. E and H can be uniquely determined by a full indentation curve, and σy can be determined if n is unique. Furthermore, sensitivity analysis on obtaining n from dimensionless function Π3 or Π2 has been made.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 11002121, 11002122,and 10828205)the Natural Science Foundation of Hu-nan Province for Innovation Group (No. 09JJ7004)+2 种基金the Key Special Program for Science and Technology of Hu-nan Province (No. 2009FJ1002)and the Natural Science Foundation of Xiangtan University (No. 09XZX04)One of the authors (C. Lu) is also grateful to the support from the Australian Research Council (No. DP0985450)
文摘The reverse analysis provides a convenient method to determine four elastic-plastic parameters through an indentation curve such as Young s modulus E, hardness H, yield strength σy and strain hardening exponent n. In this paper, mathematical analysis on a reverse algorithm from Dao model (Dao et al., Acta Mater., 2001, 49, 3899) was carried out, which thought that only when 20 ≤E*/σ0.033≤ 26 and 0.3n≤ 0.5, the reverse algorithm would yield two solutions of n by dimensionless function Π2. It is shown that, however, there are also two solutions of n when 20≤E*/σ0.033≤ 26 and 0≤n0.1. A unique n can be obtained by dimensionless function Π3 instead of Π2 in these two ranges. E and H can be uniquely determined by a full indentation curve, and σy can be determined if n is unique. Furthermore, sensitivity analysis on obtaining n from dimensionless function Π3 or Π2 has been made.