In the domain of autonomous industrial manipulators,precise positioning and appropriate posture selection in path planning are pivotal for tasks involving obstacle avoidance,such as handling,heat sealing,and stacking....In the domain of autonomous industrial manipulators,precise positioning and appropriate posture selection in path planning are pivotal for tasks involving obstacle avoidance,such as handling,heat sealing,and stacking.While Multi-Degree-of-Freedom(MDOF)manipulators offer kinematic redundancy,aiding in the derivation of optimal inverse kinematic solutions to meet position and posture requisites,their path planning entails intricate multiobjective optimization,encompassing path,posture,and joint motion optimization.Achieving satisfactory results in practical scenarios remains challenging.In response,this study introduces a novel Reverse Path Planning(RPP)methodology tailored for industrial manipulators.The approach commences by conceptualizing the manipulator’s end-effector as an agent within a reinforcement learning(RL)framework,wherein the state space,action set,and reward function are precisely defined to expedite the search for an initial collision-free path.To enhance convergence speed,the Q-learning algorithm in RL is augmented with Dyna-Q.Additionally,we formulate the cylindrical bounding box of the manipulator based on its Denavit-Hartenberg(DH)parameters and propose a swift collision detection technique.Furthermore,the motion performance of the end-effector is refined through a bidirectional search,and joint weighting coefficients are introduced to mitigate motion in high-power joints.The efficacy of the proposed RPP methodology is rigorously examined through extensive simulations conducted on a six-degree-of-freedom(6-DOF)manipulator encountering two distinct obstacle configurations and target positions.Experimental results substantiate that the RPP method adeptly orchestrates the computation of the shortest collision-free path while adhering to specific posture constraints at the target point.Moreover,itminimizes both posture angle deviations and joint motion,showcasing its prowess in enhancing the operational performance of MDOF industrial manipulators.展开更多
A new type of vehicle routing problem (VRP), multiple vehicle routing problem integrated reverse logistics (MVRPRL), is studied. In this problem, there is delivery or pickup (or both) and uncertain features in t...A new type of vehicle routing problem (VRP), multiple vehicle routing problem integrated reverse logistics (MVRPRL), is studied. In this problem, there is delivery or pickup (or both) and uncertain features in the demands of the clients. The deliveries of every client as uncertain parameters are expressed as triangular fuzzy numbers. In order to describe MVRPRL, a multi-objective fuzzy programming model with credibility measure theory is constructed. Then the simulationbased tabu search algorithm combining inter-route and intra-route neighborhoods and embedded restarts are designed to solve it. Computational results show that the tabu search algorithm developed is superior to sweep algorithms and that compared with handling each on separate routes, the transportation costs can be reduced by 43% through combining pickups with deliveries.展开更多
A global optimization algorithm (GOA) for parallel Chien search circuit in Reed-Solomon (RS) (255,239) decoder is presented. By finding out the common modulo 2 additions within groups of Galois field (GF) mult...A global optimization algorithm (GOA) for parallel Chien search circuit in Reed-Solomon (RS) (255,239) decoder is presented. By finding out the common modulo 2 additions within groups of Galois field (GF) multipliers and pre-computing the common items, the GOA can reduce the number of XOR gates efficiently and thus reduce the circuit area. Different from other local optimization algorithms, the GOA is a global one. When there are more than one maximum matches at a time, the best match choice in the GOA has the least impact on the final result by only choosing the pair with the smallest relational value instead of choosing a pair randomly. The results show that the area of parallel Chien search circuits can be reduced by 51% compared to the direct implementation when the group-based GOA is used for GF multipliers and by 26% if applying the GOA to GF multipliers separately. This optimization scheme can be widely used in general parallel architecture in which many GF multipliers are involved.展开更多
针对快速扩展随机树(rapidly exploring random tree,RRT)算法在移动机器人路径规划过程中存在盲目搜索、内存计算量大和冗余点较多等问题,提出了改进的RRT算法。首先,随机点进行扩展时引入动态目标采样率,引导随机点向目标点方向扩展;...针对快速扩展随机树(rapidly exploring random tree,RRT)算法在移动机器人路径规划过程中存在盲目搜索、内存计算量大和冗余点较多等问题,提出了改进的RRT算法。首先,随机点进行扩展时引入动态目标采样率,引导随机点向目标点方向扩展;其次,融合A*算法中代价函数策略,在加入不同权重因子之后,选取代价值合适的节点作为待扩展节点;然后,针对初始路径过长并存在过多冗余点的问题,提出反向搜索剪枝方法,对裁剪后的路径进行三次样条插值平滑处理来改善路径质量;最后,利用Pycharm对改进的RRT算法进行仿真验证。仿真结果表明,改进的RRT算法相较于传统RRT算法、RRT*算法和基于概率P的RRT算法(P-RRT),在路径的规划长度、规划时间和扩展节点数上都具有明显优势,提高了机器人的路径规划效率。展开更多
基金supported by the National Natural Science Foundation of China under Grant No.62001199Fujian Province Nature Science Foundation under Grant No.2023J01925.
文摘In the domain of autonomous industrial manipulators,precise positioning and appropriate posture selection in path planning are pivotal for tasks involving obstacle avoidance,such as handling,heat sealing,and stacking.While Multi-Degree-of-Freedom(MDOF)manipulators offer kinematic redundancy,aiding in the derivation of optimal inverse kinematic solutions to meet position and posture requisites,their path planning entails intricate multiobjective optimization,encompassing path,posture,and joint motion optimization.Achieving satisfactory results in practical scenarios remains challenging.In response,this study introduces a novel Reverse Path Planning(RPP)methodology tailored for industrial manipulators.The approach commences by conceptualizing the manipulator’s end-effector as an agent within a reinforcement learning(RL)framework,wherein the state space,action set,and reward function are precisely defined to expedite the search for an initial collision-free path.To enhance convergence speed,the Q-learning algorithm in RL is augmented with Dyna-Q.Additionally,we formulate the cylindrical bounding box of the manipulator based on its Denavit-Hartenberg(DH)parameters and propose a swift collision detection technique.Furthermore,the motion performance of the end-effector is refined through a bidirectional search,and joint weighting coefficients are introduced to mitigate motion in high-power joints.The efficacy of the proposed RPP methodology is rigorously examined through extensive simulations conducted on a six-degree-of-freedom(6-DOF)manipulator encountering two distinct obstacle configurations and target positions.Experimental results substantiate that the RPP method adeptly orchestrates the computation of the shortest collision-free path while adhering to specific posture constraints at the target point.Moreover,itminimizes both posture angle deviations and joint motion,showcasing its prowess in enhancing the operational performance of MDOF industrial manipulators.
基金The National Natural Science Foundation of China(No.70772059)Youth Science and Technology Innovation Foundation of Nanjing Agriculture University(No.KJ06029)
文摘A new type of vehicle routing problem (VRP), multiple vehicle routing problem integrated reverse logistics (MVRPRL), is studied. In this problem, there is delivery or pickup (or both) and uncertain features in the demands of the clients. The deliveries of every client as uncertain parameters are expressed as triangular fuzzy numbers. In order to describe MVRPRL, a multi-objective fuzzy programming model with credibility measure theory is constructed. Then the simulationbased tabu search algorithm combining inter-route and intra-route neighborhoods and embedded restarts are designed to solve it. Computational results show that the tabu search algorithm developed is superior to sweep algorithms and that compared with handling each on separate routes, the transportation costs can be reduced by 43% through combining pickups with deliveries.
文摘A global optimization algorithm (GOA) for parallel Chien search circuit in Reed-Solomon (RS) (255,239) decoder is presented. By finding out the common modulo 2 additions within groups of Galois field (GF) multipliers and pre-computing the common items, the GOA can reduce the number of XOR gates efficiently and thus reduce the circuit area. Different from other local optimization algorithms, the GOA is a global one. When there are more than one maximum matches at a time, the best match choice in the GOA has the least impact on the final result by only choosing the pair with the smallest relational value instead of choosing a pair randomly. The results show that the area of parallel Chien search circuits can be reduced by 51% compared to the direct implementation when the group-based GOA is used for GF multipliers and by 26% if applying the GOA to GF multipliers separately. This optimization scheme can be widely used in general parallel architecture in which many GF multipliers are involved.
文摘针对快速扩展随机树(rapidly exploring random tree,RRT)算法在移动机器人路径规划过程中存在盲目搜索、内存计算量大和冗余点较多等问题,提出了改进的RRT算法。首先,随机点进行扩展时引入动态目标采样率,引导随机点向目标点方向扩展;其次,融合A*算法中代价函数策略,在加入不同权重因子之后,选取代价值合适的节点作为待扩展节点;然后,针对初始路径过长并存在过多冗余点的问题,提出反向搜索剪枝方法,对裁剪后的路径进行三次样条插值平滑处理来改善路径质量;最后,利用Pycharm对改进的RRT算法进行仿真验证。仿真结果表明,改进的RRT算法相较于传统RRT算法、RRT*算法和基于概率P的RRT算法(P-RRT),在路径的规划长度、规划时间和扩展节点数上都具有明显优势,提高了机器人的路径规划效率。