The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities,influences the electronic structures of the supported metal,affects the adsorption...The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities,influences the electronic structures of the supported metal,affects the adsorption energies of reaction intermediates,and ultimately impacts the catalytic performance.In this study,we discovered a unique charge transfer reversal phenomenon in a metal/carbon nanohybrid system.Specifically,electrons were transferred from the metal-based species to N-doped carbon,while the carbon support reciprocally donated electrons to the metal domain upon the introduction of nickel.This led to the exceptional electrocatalytic performances of the resulting Ni-Fe/Mo_(2)C@nitrogen-doped carbon catalyst,with a half-wave potential of 0.91 V towards oxygen reduction reaction(ORR)and a low overpotential of 290 m V at 10 mA cm^(-2)towards oxygen evolution reaction(OER)under alkaline conditions.Additionally,the Fe-Ni/Mo_(2)C@carbon heterojunction catalyst demonstrated high specific capacity(794 mA h g_(Zn)~(-1))and excellent cycling stability(200 h)in a Zn-air battery.Theoretical calculations revealed that Mo_(2)C effectively inhibited charge transfer from Fe to the support,while secondary doping of Ni induced a charge transfer reversal,resulting in electron accumulation in the Fe-Ni alloy region.This local electronic structure modulation significantly reduced energy barriers in the oxygen catalysis process,enhancing the catalytic efficiency of both ORR and OER.Consequently,our findings underscore the potential of manipulating charge transfer reversal between the metal and support as a promising strategy for developing highly-active and durable bi-functional oxygen electrodes.展开更多
The B-cell lymphoma/leukemia 11A (BCL11A) gene is essential for normal lymphoid development and has been associated with hematological malignancies. In the current study, the relative expression level of BCL11A in m...The B-cell lymphoma/leukemia 11A (BCL11A) gene is essential for normal lymphoid development and has been associated with hematological malignancies. In the current study, the relative expression level of BCL11A in malignant hematological cell lines was evaluated through real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). METHODS The relative expression level of BCLllA mRNA in malignant hematological cell lines was determined through qRT- PCR using SYBR Green I dye. Glyceraldehyde-3-phosphate dehydro- genase was used as the reference gene to confirm the relative expression level of BCL11A gene mRNA. RESULTS The relative expression level of BCL11A mRNA in cell lines from B-cell malignancies was significantly higher compared with that from acute rnyeloid leukemia (P 〈 0.05). Different cell lines with malignant B-cells exhibited a wide range of BCL11A expressions ranging from 27.37 to 93.38. CONCLUSION The overexpression of BCL11A gene mRNA in malignant B-cells might play a role in B-cell lymphoma/leukemia.展开更多
The Ni-CeO2 catalysts with different Ni contents were prepared by a co-precipitation method and used for Reverse Water Gas Shift (RWGS) reaction. 2wt.%Ni-CeO2 showed excellent catalytic performance in terms of activ...The Ni-CeO2 catalysts with different Ni contents were prepared by a co-precipitation method and used for Reverse Water Gas Shift (RWGS) reaction. 2wt.%Ni-CeO2 showed excellent catalytic performance in terms of activity, selectivity, and stability for RWGS reaction. Characterizations of the catalyst samples were conducted by XRD and TPR. The results indicated that, in Ni-CeO2 catalysts, there were three kinds of nickel, nickel ions in ceria lattice, highly dispersed NiO and bulk NiO. Oxygen vacancies were formed in CeO2 lattice due to the incorporation of Ni^2+ ions into ceria lattice. Oxygen vacancies formed in ceria lattice and highly dispersed Ni were key active components for RWGS, and bulk Ni was key active component for methanation of CO2.展开更多
Objective: To detect circulating hepatocellular carcino-ma by demonstrating hepatocellular carcinoma cells orhepatocyte-associated mRNA in the nuclear cell com-ponent of peripheral blood (PBL).Methods: Peripheral bloo...Objective: To detect circulating hepatocellular carcino-ma by demonstrating hepatocellular carcinoma cells orhepatocyte-associated mRNA in the nuclear cell com-ponent of peripheral blood (PBL).Methods: Peripheral blood (5 ml) samples were ob-tained from 93 patients with hepatocellular carcinoma(HCC) and from 33 control subjects (9 with liver cir-rhosis after hepatitis B,14 with chronic hepatitis B,10with normal liver function). To identify HCC cells inperipheral blood, liver-specific human alpha-fetopro-tein (AFP) mRNA was amplified from total RNA ex-tracted from whole blood by reverse transcription-polymerase chain reaction.Results: AFPmRNA was detected in 50 blood samplesfrom the HCC patients (50/93, 53.8%). In contrast,there were no clinical control patients whose samplesshowed detectable AFPmRNA in PBL. The presence ofAFPmRNA in blood seemed to be correlated with thestage (by TNM classification) of HCC, the serum AFPvalue, and the presence of intrahepatic metastasis,portal vein thrombosis, tumor diameter and/or distantmetastasis. In addition, AFPmRNA was detected in theblood of 21 patients with metastasis at extrahepaticorgans (100%) in contrast to 29 (40.3%)of 72 pa-tients without metastasis.Conclusion: The presence of AFPmRNA in peripheralblood may be an indicator of malignant hepatocytes,which might predict hematogenous spreading metasta-sis of tumor cells in patients with HCC.展开更多
The catalytic conversion of CO2 to CO via a reverse water gas shift(RWGS)reaction followed by well-established synthesis gas conversion technologies may provide a potential approach to convert CO2 to valuable chemical...The catalytic conversion of CO2 to CO via a reverse water gas shift(RWGS)reaction followed by well-established synthesis gas conversion technologies may provide a potential approach to convert CO2 to valuable chemicals and fuels.However,this reaction is mildly endothermic and competed by a strongly exothermic CO2 methanation reaction at low temperatures.Therefore,the improvement in the low-temperature activities and selectivity of the RWGS reaction is a key challenge for catalyst designs.We reviewed recent advances in the design strategies of supported metal catalysts for enhancing the activity of CO2 conversion and its selectivity to CO.These strategies include varying support,tuning metal–support interactions,adding reducible transition metal oxide promoters,forming bimetallic alloys,adding alkali metals,and enveloping metal particles.These advances suggest that enhancing CO2 adsorption and facilitating CO desorption are key factors to enhance CO2 conversion and CO selectivity.This short review may provide insights into future RWGS catalyst designs and optimization.展开更多
In reverse water gas shift (RWGS) reaction COa is converted to CO which in turn can be used to pro- duce beneficial chemicals such as methanol. In the present study, Mo/AlaO3, Fe/AlaO3 and Fe-Mo/Al2O3 catalysts were...In reverse water gas shift (RWGS) reaction COa is converted to CO which in turn can be used to pro- duce beneficial chemicals such as methanol. In the present study, Mo/AlaO3, Fe/AlaO3 and Fe-Mo/Al2O3 catalysts were synthesised using impregnation method. The structures of catalysts were studied using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, inductively coupled plasma atomic emission spectrometer (ICP-AES), temperature programmed reduction (H2-TPR), CO chemisorption, energy dispersive X-ray (EDX) and scanning electron microscopy (SEM) techniques. Kinetic properties of all catalysts were investigated in a batch re- actor for RWGS reaction. The results indicated that Mo existence in structure of Fe-Mo/AlzO3 catalyst enhances its activity as compared to Fe/AlaO3. This enhancement is probably due to better Fe dispersion and smaller particle size of Fe species. Stability test of Fe-Mo/AlzO3 catalyst was carried out in a fixed bed reactor and a high CO yield for 60 h of time on stream was demonstrated. Fez(MoO4)3 phase was found in the structures of fresh and used catalysts. TPR results also indicate that Fez(MoO4)3 phase has low reducibility, therefore the Fe2(MoO4)3 phase significantly inhibits the reduction of the remaining Fe oxides in the catalyst, resulted in high stability of Fe-Mo/Al2O3 catalyst. Overall, this study introduces Fe-Mo/Al2O3 as a novel catalyst with high CO yield, almost no by-products and fairly stable for RWGS reaction.展开更多
Molybdenum carbides are highly active for CO2 conversion to CO via the reverse water-gas shift(RWGS)reaction, however the large grain size up to micrometers renders its relatively lower active sites utilization effici...Molybdenum carbides are highly active for CO2 conversion to CO via the reverse water-gas shift(RWGS)reaction, however the large grain size up to micrometers renders its relatively lower active sites utilization efficiency while generating CH4 as a by-product. In this work, a homogeneously dispersed molybdenum carbide hybrid catalyst with sub-nanosized cluster(the average size as small as 0.5 nm) is prepared via a facile carbothermal treatment for highly selective CO2-CO reduction. The partially disordered Mo2C clusters are characterized by synchrotron high-resolution XRD and atomic resolution HAADF-STEM analysis, for which the source cause of the disorder is pinpointed by XAFS analysis to be the nitrogen intercalants from the carbonaceous precursor. The partially disordered Mo2C clusters show a RWGS rate as high as 184.4 μmol gMo2C-1s-1 at 400 ℃ with a superior selectivity toward CO(> 99.5%). This work 2 highlights a facile strategy for fabricating highly dispersed and partially disordered Mo2C clusters at a sub-nano size with beneficial N-doping for delivering high catalytic activity and operational stability.展开更多
AIM: To study persistence and replication of hepatitis C virus (HCV) in patients' peripheral blood mononuclear cells (PBMC) cultured in vitro. METHODS: Epstein Barr virus (EBV) was used to transform the hepatitis ...AIM: To study persistence and replication of hepatitis C virus (HCV) in patients' peripheral blood mononuclear cells (PBMC) cultured in vitro. METHODS: Epstein Barr virus (EBV) was used to transform the hepatitis C virus from a HCV positive patient to permanent lymphoblastoid cell lines (LCL). Positive and negative HCV RNA strands of the cultured cells and growth media were detected by reverse transcriptase-polymerase chain reaction (RT-PCR) each month. Core and NS5 proteins of HCV were further tested using immunohistochemical SP method and in situ RT-PCR. RESULTS: HCV RNA positive strands were consistently detected the cultured cells for one year. The negative-strand RNA in LCL cells and the positive-strand RNA in supernatants were observed intermittently. Immunohistochemical results medicated expression of HCV NS3 and C proteins in LCL cytoplasm mostly. The positive signal of PCR product was dark blue and mainly localized to the LCL cytoplasm. The RT-PCR signal was eliminated by overnight RNase digestion but not DNase digestion. CONCLUSION: HCV may exist and remain functional in a cultured cell line for a long period.展开更多
Metal–N_(2) battery can be applied in both energy storage and electrochemical nitrogen reduction reaction(NRR);however,there has been only extraordinarily little study on metal–N_(2) battery since its electrochemica...Metal–N_(2) battery can be applied in both energy storage and electrochemical nitrogen reduction reaction(NRR);however,there has been only extraordinarily little study on metal–N_(2) battery since its electrochemical reversibility still needs further proofs.And its electrochemical performances also need to be enhanced.Herein,we investigated the discharge–charge reactions between Li anode and N_(2) cathode via designing an efficient catalyst of nanosized SnO_(2) particles dispersed on N-doped carbon nanosheets(SnO 2@NC)for the Li-N_(2) battery,with good cyclic stability and a high specific capacity of 0.25 mA h(~500 mA h g^(−1))at a large current density of 1000 mA g^(−1).The electrochemical reversibility of both NRR in the discharge process and nitrogen extraction reaction in the charge process for Li-N 2 battery is discussed.Time-of-flight secondary ion mass spectrometry results imply that the SnO_(2)@NC can effectively promote the adsorption of N_(2) and the activation of NRR in the discharge process.Furthermore,ex situ X-ray photoelectron spectroscopy and Fourier transform infrared tests are performed to study the electrochemical reversibility of Li-N_(2) battery.It can be proved that the formation and decomposition of discharging product Li_(3)N are electrochemical reversible during cycling in our deigned Li-N_(2) battery system with SnO_(2)@NC catalyst.展开更多
Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7...Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7−δ)(SF)exhibits superior proton uptake and rapid ionic conduction,boosting activity.However,excessive proton uptake during RePCC operation degrades SF’s crystal structure,impacting durability.This study introduces a novel A/B-sites co-substitution strategy for modifying air electrodes,incorporating Sr-deficiency and Nb-substitution to create Sr_(2.8)Fe_(1.8)Nb_(0.2)O_(7−δ)(D-SFN).Nb stabilizes SF’s crystal,curbing excessive phase formation,and Sr-deficiency boosts oxygen vacancy concentration,optimizing oxygen transport.The D-SFN electrode demonstrates outstanding activity and durability,achieving a peak power density of 596 mW cm^(−2)in fuel cell mode and a current density of−1.19 A cm^(−2)in electrolysis mode at 1.3 V,650℃,with excellent cycling durability.This approach holds the potential for advancing robust and efficient air electrodes in RePCCs for renewable energy storage.展开更多
Quantitative real-time reverse transcription-polymerase chain reaction (qPCR) is widely used to investigate transcriptional changes following experimental manipulations to the nervous system. Despite the widespread ...Quantitative real-time reverse transcription-polymerase chain reaction (qPCR) is widely used to investigate transcriptional changes following experimental manipulations to the nervous system. Despite the widespread utilization of qPCR, the interpretation of results is marred by the lack of a suitable reference gene due to the dynamic nature of endogenous transcription. To address this inherent deficiency, we investigated the use of an exogenous spike-in mRNA, luciferase, as an internal reference gene for the 2ct normalization method. To induce dynamic transcription, we systemically administered capsaicin, a neurotoxJn selective for C-type sensory neurons expressing the TRPV-1 receptor, to adult male Sprague-Dawley rats. We later isolated nodose ganglia for qPCR analysis with the reference being either exogenous luciferase mRNA or the commonly used endogenous reference 13-111 tubulin. The exogenous luciferase mRNA reference clearly demonstrated the dynamic expression of the endogenous reference. Furthermore, variability of the endogenous reference would lead to misinterpretation of other genes of interest. In conclusion, traditional reference genes are often unstable under physiologically normal situations, and certainly unstable following the damage to the nervous system. The use of exogenous spike-in reference provides a consistent and easily implemented alternative for the analysis of qPCR data.展开更多
Objective: The presence of lymph nodes and bone marrow micrometastases of patients with breast carcinoma by immunohistochemistry (IHC) methods has been strongly correlated to early recurrence and shorter overall survi...Objective: The presence of lymph nodes and bone marrow micrometastases of patients with breast carcinoma by immunohistochemistry (IHC) methods has been strongly correlated to early recurrence and shorter overall survival. The aim of this study was to detect micrometastases in matched sample pairs of lymph nodes and the bone marrow of primary breast cancer patients using a more sensitive method, and compare with other clinical parameters. Methods: Cytokeratin 19 (CK-19) gene mRNA expression was detected by reverse transcriptase-polymerase chain reaction (RT-PCR) and Southern blot hybridization. Human breast cancer cell line T47D was mixed with bone marrow cells at different proportions. The positive detection rate was compared among RT-PCR, Southern blotting and IHC methods. Results: Cytokeratin 19 gene was expressed in all 6 positive control samples, while the expression wasn’t seen in 18 negative control samples. CK-19 IHC positive cells were detected at a dilution of one T47D cell in 5×105 bone marrow cells, while the sensitivity detected by PCR and Southern blot hybridization was at 1:5×104 and 1:106, respectively. In the samples from the 35 patients, we found CK-19 positive cells in 2 cases (5.7%) by IHC. CK-19 gene expression signal was detected in 14/35 (40%) by RT-PCR, and 17/35 (48.6%) by southern blotting. Four cases were micrometastases positive both in lymph node and bone marrow (11.4%). There was no correlation between CK-19 detection and other clinical parameters. Conclusion: combined detection of micrometastases in lymph node and bone marrow by RT-PCR and Southern blotting, using CK-19 as a biological marker, is a highly sensitive method for breast cancer.展开更多
An environment friendly bio-surfactant of rhamnolipid(RL) was used as a solvent. The enzymatic reaction of oleic acid catalyzed by lipase and lignin peroxidase(lip) was evaluated. The optimum conditions of enzymatic r...An environment friendly bio-surfactant of rhamnolipid(RL) was used as a solvent. The enzymatic reaction of oleic acid catalyzed by lipase and lignin peroxidase(lip) was evaluated. The optimum conditions of enzymatic reaction catalyzed by lipase(lip) were water to amphiphile molar ratio of 30(20), RL of 60(60) critical micelle concentration(CMC), pH of 7.0(3.0) and temperature of 40(30) °C, respectively. The change of enzyme conformation indicates that, for catalytic of lipase, water content is the most important factor of the enzymatic reaction of oleic acid, and p H for lip. With individual optimum conditions, the enzymatic efficiency of oleic acid catalyzed by lipase is higher than that by lip. In the presence of ethanol, the enzymatic reaction of oleic acid catalyzed by lipase suits Ping-Pong Bi-Bi mechanism. As an alternative to chemical reversed micelles, the RL reversed micelles are promising methods to enzymatic reaction of oleic acid.展开更多
An easy and reliable method was developed for construction and quantification of competitive templates, which shared the same sequence as the amplified target DNA except for a 20 bp insertion in the middle by recombi...An easy and reliable method was developed for construction and quantification of competitive templates, which shared the same sequence as the amplified target DNA except for a 20 bp insertion in the middle by recombinant polymerase chain reaction (PCR). Among the advantages of competitive PCR is that any predictable or unpredictable variable that affects amplification has the same effect on both target and competitor species and that the final ratio of amplified products reflects exactly the initial targets. The utilization of a thermostable reverse transcriptase in the RT step was proposed to overcome the problem of the efficiency of target cDNA synthesis. In addition, to obtain reliable measurements, it was recommended to perform four PCR with amounts of competitive template flanking the concentration of the target mRNA.展开更多
BACKGROUND Coronavirus disease 2019(COVID-19)has spread around the globe.On February 28,2020,the World Health Organization adjusted the risk of spread and impact of COVID-19 to“very high”at the global level.Studies ...BACKGROUND Coronavirus disease 2019(COVID-19)has spread around the globe.On February 28,2020,the World Health Organization adjusted the risk of spread and impact of COVID-19 to“very high”at the global level.Studies have mainly focused on the etiology,epidemiology,and treatment of COVID-19 to limit further spread and the negative impact of the disease,while less attention has been devoted to the follow-up and reexamination of patients who recovered from COVID-19 or were released from quarantine.CASE SUMMARY This study reports two cases where patients who had negative reverse transcription-polymerase chain reaction(RT-PCR)test results and met the criteria for discharge subsequently had positive RT-PCR test results.The clinical manifestations and computed tomography(CT)findings of these patients were examined.The conversion of RT-PCR test results in these two patients may be related to false-negative and false-positive outcomes of the test.CT images helped track improvement of pulmonary lesions.CONCLUSION The timing of discharge of COVID-19 patients should be determined by comprehensive analysis of CT images and RT-PCR test results.展开更多
Thermal decomposition of formic acid on SiO2, CeO2 and γ-Al2O3 was studied as an elementary step of reverse water–gas shit reaction(RWGS) over supported Au catalysts. γ-Al2O3 showed the highest CO selectivity amo...Thermal decomposition of formic acid on SiO2, CeO2 and γ-Al2O3 was studied as an elementary step of reverse water–gas shit reaction(RWGS) over supported Au catalysts. γ-Al2O3 showed the highest CO selectivity among the tested oxides in the decomposition of formic acid. Infrared spectroscopy showed the formation of four formate species on γ-Al2O3: three η~1-type and one μ~2-type species, and these formates decomposed to CO at 473 K or higher. Au-loaded γ-Al2O3 samples were prepared by a depositionprecipitation method and used as catalysts for RWGS. The supported Au catalyst gave CO with high selectivity over 99% from CO2 and H2, which is attributed to the formation of formates on Au and subsequent decomposition to CO on γ-Al2O3.展开更多
Objective: The aim of this study was to detect micrometastases in bone marrow of primary breast cancer patients, and compare with other clinical parameters. Methods: Cytokeratin 19 (CK-19) gene mRNA expression was det...Objective: The aim of this study was to detect micrometastases in bone marrow of primary breast cancer patients, and compare with other clinical parameters. Methods: Cytokeratin 19 (CK-19) gene mRNA expression was detected by reverse transcriptase-polymerase chain reaction (RT-PCR) and Southern blot hybridization. Human breast cancer cell line T47D was mixed with bone marrow cells in different proportions. The positive detection rate was compared among RT-PCR, Southern blotting and immunohistochemistry (IHC) methods. Results: Cytokeratin 19 gene was expressed in all 6 positive control samples while the expression was not seen in 8 negative control samples. In all 54 patients 14 cases were CK-19 positive (25.9%) by RT-PCR, another positive signal was obtained in 5/54 (9.3%) of bone marrow samples by Southern blotting. The total positive cases are 19/54 (35.2%). CK-19 IHC+ cells were detected at a dilution of one T47D cell in 5×104 bone marrow cells, while the sensitivity detected by PCR and Southern blot hybridization was at 1∶5×105 and 1∶1×106, respectively. This demonstrates that RT-PCR and Southern blotting was at least 20 times more sensitive than the IHC method. The micrometastases positive rate of the larger tumor size group (>5.0 cm) was significantly (P<0.05) greater than that of the smaller tumor size group (0–2.0 cm). Conclusion: detection of micrometastases in bone marrow by RT-PCR and Southern blotting, using CK-19 as a biological marker, is highly sensitive and it is a method to be used for anticipating the prognosis of breast cancer patients.展开更多
In order to detect circulating cells of hepatocellular carcinoma(HCC) in the peripheral blood with reverse transcripition polymerase chain reaction (RT-PCR ), alpha-fetoprotein (AFP ) mRNA was tested in the blood samp...In order to detect circulating cells of hepatocellular carcinoma(HCC) in the peripheral blood with reverse transcripition polymerase chain reaction (RT-PCR ), alpha-fetoprotein (AFP ) mRNA was tested in the blood samples of 113 cases of HCC and 69 controls (including 30 cases of liver cirrhosis, 9 cases of metastatic liver cancer and 30 normal subjects). 20/43 (46. 5% ) cases of HCC and 2/30 (6. 7% ) cases of liver cirrhosis are positive and the cases of nletastatic liver cancer and normal controls were negative for human AFP(hAFP) rnRNA. The presence of hAFP mRNA in the peripheral blood seems to be correlated with intrahepatic and distant nletastasls of HCC and portal vein thrombosis. It is concluded that the presence of hAFP mRNA in the peripheral hloocl is an indicator of circulating HCC cells and can be used to diagnose the rnetastasisof HCC through henlatogenous route and RT-PCR amplification of hAFP mRNA is a sensitive and specificprocedure for detecting circulating cells of HCC.展开更多
The construction of synergistic catalysis of single atom catalysts(SACs)and oxygen vacancies(OV)on supports is crucial for the enhancement of heterogeneous catalytic efficiency,yet presents considerable challenges.Her...The construction of synergistic catalysis of single atom catalysts(SACs)and oxygen vacancies(OV)on supports is crucial for the enhancement of heterogeneous catalytic efficiency,yet presents considerable challenges.Herein,we have developed an amine-molecule-assisted in-situ anchoring strategy that effectively stabilizes Pt SACs on OV sites of reduced TiO_(2)(TiO_(2)–x)by controlling the interaction of amine with Pt species and TiO_(2)–x.Direct evidence indicates that Pt SACs are anchored on the OV with forming Ptδ+–OV–Ti3+sites and strong metal-support interaction,which not only prevents the sintering of Pt SACs under high-temperature reduction treatments,but also enhances the hydrogen spillover process to facilitate the formation of more OV sites.During the reverse water-gas shift(RWGS)reaction,the enhanced amount of OV sites can increase CO_(2)adsorption,while the Pt SACs can efficiently promote the activation and spillover of hydrogen.Their combined synergistic effects greatly improve its catalytic performance with a high turnover frequency(TOF)of 9289 h−1 at 330℃ and notable stability for over 200 h,surpassing those of Pt clusters and nanoparticles on TiO_(2)–x.This work provides a new avenue for the controllable synthesis of synergistic catalysts with SACs and OV,significantly advancing catalytic efficiency.展开更多
Taking into consideration the gas compressibility and chemical reaction reversibility, a model was developed to study the interactions between gas flow and chemical reaction in porous media and resolved by the finite ...Taking into consideration the gas compressibility and chemical reaction reversibility, a model was developed to study the interactions between gas flow and chemical reaction in porous media and resolved by the finite volume method on the basis of the gas-solid reaction aA(g)+bB(s)cC(g)+dD(s).The numerical analysis shows that the equilibrium constant is an important factor influencing the process of gas-solid reaction. The stoichiometric coefficients, molar masses of reactant gas, product gas and inert gas are the main factors influencing the density of gas mixture. The equilibrium constant influences the gas flow in porous media obviously when the stoichiometric coefficients satisfy a/c≠1.展开更多
基金financially supported by the Outstanding Youth Scientific Research Project for Colleges and Universities of Anhui Province of China (2022AH020054)the Anhui Provincial Natural Science Foundation (2208085Y06)+2 种基金the National Natural Science Foundation of China (Nos.21975001 and U2002213)the Support Program of Excellent Young Talents in Anhui Provincial Colleges and Universities (gxyq ZD2022034)the Double Tops Joint Fund of the Yunnan Science and Technology Bureau and Yunnan University (2019FY003025)。
文摘The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities,influences the electronic structures of the supported metal,affects the adsorption energies of reaction intermediates,and ultimately impacts the catalytic performance.In this study,we discovered a unique charge transfer reversal phenomenon in a metal/carbon nanohybrid system.Specifically,electrons were transferred from the metal-based species to N-doped carbon,while the carbon support reciprocally donated electrons to the metal domain upon the introduction of nickel.This led to the exceptional electrocatalytic performances of the resulting Ni-Fe/Mo_(2)C@nitrogen-doped carbon catalyst,with a half-wave potential of 0.91 V towards oxygen reduction reaction(ORR)and a low overpotential of 290 m V at 10 mA cm^(-2)towards oxygen evolution reaction(OER)under alkaline conditions.Additionally,the Fe-Ni/Mo_(2)C@carbon heterojunction catalyst demonstrated high specific capacity(794 mA h g_(Zn)~(-1))and excellent cycling stability(200 h)in a Zn-air battery.Theoretical calculations revealed that Mo_(2)C effectively inhibited charge transfer from Fe to the support,while secondary doping of Ni induced a charge transfer reversal,resulting in electron accumulation in the Fe-Ni alloy region.This local electronic structure modulation significantly reduced energy barriers in the oxygen catalysis process,enhancing the catalytic efficiency of both ORR and OER.Consequently,our findings underscore the potential of manipulating charge transfer reversal between the metal and support as a promising strategy for developing highly-active and durable bi-functional oxygen electrodes.
文摘The B-cell lymphoma/leukemia 11A (BCL11A) gene is essential for normal lymphoid development and has been associated with hematological malignancies. In the current study, the relative expression level of BCL11A in malignant hematological cell lines was evaluated through real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). METHODS The relative expression level of BCLllA mRNA in malignant hematological cell lines was determined through qRT- PCR using SYBR Green I dye. Glyceraldehyde-3-phosphate dehydro- genase was used as the reference gene to confirm the relative expression level of BCL11A gene mRNA. RESULTS The relative expression level of BCL11A mRNA in cell lines from B-cell malignancies was significantly higher compared with that from acute rnyeloid leukemia (P 〈 0.05). Different cell lines with malignant B-cells exhibited a wide range of BCL11A expressions ranging from 27.37 to 93.38. CONCLUSION The overexpression of BCL11A gene mRNA in malignant B-cells might play a role in B-cell lymphoma/leukemia.
基金Project supported by the National Natural Science Foundation of China (20476079)
文摘The Ni-CeO2 catalysts with different Ni contents were prepared by a co-precipitation method and used for Reverse Water Gas Shift (RWGS) reaction. 2wt.%Ni-CeO2 showed excellent catalytic performance in terms of activity, selectivity, and stability for RWGS reaction. Characterizations of the catalyst samples were conducted by XRD and TPR. The results indicated that, in Ni-CeO2 catalysts, there were three kinds of nickel, nickel ions in ceria lattice, highly dispersed NiO and bulk NiO. Oxygen vacancies were formed in CeO2 lattice due to the incorporation of Ni^2+ ions into ceria lattice. Oxygen vacancies formed in ceria lattice and highly dispersed Ni were key active components for RWGS, and bulk Ni was key active component for methanation of CO2.
文摘Objective: To detect circulating hepatocellular carcino-ma by demonstrating hepatocellular carcinoma cells orhepatocyte-associated mRNA in the nuclear cell com-ponent of peripheral blood (PBL).Methods: Peripheral blood (5 ml) samples were ob-tained from 93 patients with hepatocellular carcinoma(HCC) and from 33 control subjects (9 with liver cir-rhosis after hepatitis B,14 with chronic hepatitis B,10with normal liver function). To identify HCC cells inperipheral blood, liver-specific human alpha-fetopro-tein (AFP) mRNA was amplified from total RNA ex-tracted from whole blood by reverse transcription-polymerase chain reaction.Results: AFPmRNA was detected in 50 blood samplesfrom the HCC patients (50/93, 53.8%). In contrast,there were no clinical control patients whose samplesshowed detectable AFPmRNA in PBL. The presence ofAFPmRNA in blood seemed to be correlated with thestage (by TNM classification) of HCC, the serum AFPvalue, and the presence of intrahepatic metastasis,portal vein thrombosis, tumor diameter and/or distantmetastasis. In addition, AFPmRNA was detected in theblood of 21 patients with metastasis at extrahepaticorgans (100%) in contrast to 29 (40.3%)of 72 pa-tients without metastasis.Conclusion: The presence of AFPmRNA in peripheralblood may be an indicator of malignant hepatocytes,which might predict hematogenous spreading metasta-sis of tumor cells in patients with HCC.
基金the National Key Research and Development Program of China(No.2016YFB0600900)the National Natural Science Foundation of China(Nos.21676194 and 21873067)for their support。
文摘The catalytic conversion of CO2 to CO via a reverse water gas shift(RWGS)reaction followed by well-established synthesis gas conversion technologies may provide a potential approach to convert CO2 to valuable chemicals and fuels.However,this reaction is mildly endothermic and competed by a strongly exothermic CO2 methanation reaction at low temperatures.Therefore,the improvement in the low-temperature activities and selectivity of the RWGS reaction is a key challenge for catalyst designs.We reviewed recent advances in the design strategies of supported metal catalysts for enhancing the activity of CO2 conversion and its selectivity to CO.These strategies include varying support,tuning metal–support interactions,adding reducible transition metal oxide promoters,forming bimetallic alloys,adding alkali metals,and enveloping metal particles.These advances suggest that enhancing CO2 adsorption and facilitating CO desorption are key factors to enhance CO2 conversion and CO selectivity.This short review may provide insights into future RWGS catalyst designs and optimization.
基金Supported by the Iranian Nano Technology Initiative Council and Petroleum University of Technology
文摘In reverse water gas shift (RWGS) reaction COa is converted to CO which in turn can be used to pro- duce beneficial chemicals such as methanol. In the present study, Mo/AlaO3, Fe/AlaO3 and Fe-Mo/Al2O3 catalysts were synthesised using impregnation method. The structures of catalysts were studied using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, inductively coupled plasma atomic emission spectrometer (ICP-AES), temperature programmed reduction (H2-TPR), CO chemisorption, energy dispersive X-ray (EDX) and scanning electron microscopy (SEM) techniques. Kinetic properties of all catalysts were investigated in a batch re- actor for RWGS reaction. The results indicated that Mo existence in structure of Fe-Mo/AlzO3 catalyst enhances its activity as compared to Fe/AlaO3. This enhancement is probably due to better Fe dispersion and smaller particle size of Fe species. Stability test of Fe-Mo/AlzO3 catalyst was carried out in a fixed bed reactor and a high CO yield for 60 h of time on stream was demonstrated. Fez(MoO4)3 phase was found in the structures of fresh and used catalysts. TPR results also indicate that Fez(MoO4)3 phase has low reducibility, therefore the Fe2(MoO4)3 phase significantly inhibits the reduction of the remaining Fe oxides in the catalyst, resulted in high stability of Fe-Mo/Al2O3 catalyst. Overall, this study introduces Fe-Mo/Al2O3 as a novel catalyst with high CO yield, almost no by-products and fairly stable for RWGS reaction.
基金the National Natural Science Foundation of China(21872144,21972140 and 91645117)Liaoning Revitalization Talents Program(XLYC1907053)+2 种基金CAS Youth Innovation Promotion Association(2018220)Talents Innovation Project of Dalian City(2017RQ032 and 2016RD04)China Postdoctoral Science Foundation(2019TQ0314,2018M641726 and 2019M661146)。
文摘Molybdenum carbides are highly active for CO2 conversion to CO via the reverse water-gas shift(RWGS)reaction, however the large grain size up to micrometers renders its relatively lower active sites utilization efficiency while generating CH4 as a by-product. In this work, a homogeneously dispersed molybdenum carbide hybrid catalyst with sub-nanosized cluster(the average size as small as 0.5 nm) is prepared via a facile carbothermal treatment for highly selective CO2-CO reduction. The partially disordered Mo2C clusters are characterized by synchrotron high-resolution XRD and atomic resolution HAADF-STEM analysis, for which the source cause of the disorder is pinpointed by XAFS analysis to be the nitrogen intercalants from the carbonaceous precursor. The partially disordered Mo2C clusters show a RWGS rate as high as 184.4 μmol gMo2C-1s-1 at 400 ℃ with a superior selectivity toward CO(> 99.5%). This work 2 highlights a facile strategy for fabricating highly dispersed and partially disordered Mo2C clusters at a sub-nano size with beneficial N-doping for delivering high catalytic activity and operational stability.
基金The paper was support by a grant from the Ministry Youth Research of China,No.98-1-269
文摘AIM: To study persistence and replication of hepatitis C virus (HCV) in patients' peripheral blood mononuclear cells (PBMC) cultured in vitro. METHODS: Epstein Barr virus (EBV) was used to transform the hepatitis C virus from a HCV positive patient to permanent lymphoblastoid cell lines (LCL). Positive and negative HCV RNA strands of the cultured cells and growth media were detected by reverse transcriptase-polymerase chain reaction (RT-PCR) each month. Core and NS5 proteins of HCV were further tested using immunohistochemical SP method and in situ RT-PCR. RESULTS: HCV RNA positive strands were consistently detected the cultured cells for one year. The negative-strand RNA in LCL cells and the positive-strand RNA in supernatants were observed intermittently. Immunohistochemical results medicated expression of HCV NS3 and C proteins in LCL cytoplasm mostly. The positive signal of PCR product was dark blue and mainly localized to the LCL cytoplasm. The RT-PCR signal was eliminated by overnight RNase digestion but not DNase digestion. CONCLUSION: HCV may exist and remain functional in a cultured cell line for a long period.
基金This work was financially supported by the National Natural Science Foundation of China (52071144,51621001,and 51822104).
文摘Metal–N_(2) battery can be applied in both energy storage and electrochemical nitrogen reduction reaction(NRR);however,there has been only extraordinarily little study on metal–N_(2) battery since its electrochemical reversibility still needs further proofs.And its electrochemical performances also need to be enhanced.Herein,we investigated the discharge–charge reactions between Li anode and N_(2) cathode via designing an efficient catalyst of nanosized SnO_(2) particles dispersed on N-doped carbon nanosheets(SnO 2@NC)for the Li-N_(2) battery,with good cyclic stability and a high specific capacity of 0.25 mA h(~500 mA h g^(−1))at a large current density of 1000 mA g^(−1).The electrochemical reversibility of both NRR in the discharge process and nitrogen extraction reaction in the charge process for Li-N 2 battery is discussed.Time-of-flight secondary ion mass spectrometry results imply that the SnO_(2)@NC can effectively promote the adsorption of N_(2) and the activation of NRR in the discharge process.Furthermore,ex situ X-ray photoelectron spectroscopy and Fourier transform infrared tests are performed to study the electrochemical reversibility of Li-N_(2) battery.It can be proved that the formation and decomposition of discharging product Li_(3)N are electrochemical reversible during cycling in our deigned Li-N_(2) battery system with SnO_(2)@NC catalyst.
基金supported by the Research Grants Council,University Grants Committee,Hong Kong SAR(Project Number:N_PolyU552/20)supported by the National Nature Science Foundation of China(22209138)Guangdong Basic and Applied Basic Research Foundation(2021A1515110464).
文摘Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7−δ)(SF)exhibits superior proton uptake and rapid ionic conduction,boosting activity.However,excessive proton uptake during RePCC operation degrades SF’s crystal structure,impacting durability.This study introduces a novel A/B-sites co-substitution strategy for modifying air electrodes,incorporating Sr-deficiency and Nb-substitution to create Sr_(2.8)Fe_(1.8)Nb_(0.2)O_(7−δ)(D-SFN).Nb stabilizes SF’s crystal,curbing excessive phase formation,and Sr-deficiency boosts oxygen vacancy concentration,optimizing oxygen transport.The D-SFN electrode demonstrates outstanding activity and durability,achieving a peak power density of 596 mW cm^(−2)in fuel cell mode and a current density of−1.19 A cm^(−2)in electrolysis mode at 1.3 V,650℃,with excellent cycling durability.This approach holds the potential for advancing robust and efficient air electrodes in RePCCs for renewable energy storage.
基金This project was supported by the Washington State University Start-up Funds, George W. Bagby Research Fund
文摘Quantitative real-time reverse transcription-polymerase chain reaction (qPCR) is widely used to investigate transcriptional changes following experimental manipulations to the nervous system. Despite the widespread utilization of qPCR, the interpretation of results is marred by the lack of a suitable reference gene due to the dynamic nature of endogenous transcription. To address this inherent deficiency, we investigated the use of an exogenous spike-in mRNA, luciferase, as an internal reference gene for the 2ct normalization method. To induce dynamic transcription, we systemically administered capsaicin, a neurotoxJn selective for C-type sensory neurons expressing the TRPV-1 receptor, to adult male Sprague-Dawley rats. We later isolated nodose ganglia for qPCR analysis with the reference being either exogenous luciferase mRNA or the commonly used endogenous reference 13-111 tubulin. The exogenous luciferase mRNA reference clearly demonstrated the dynamic expression of the endogenous reference. Furthermore, variability of the endogenous reference would lead to misinterpretation of other genes of interest. In conclusion, traditional reference genes are often unstable under physiologically normal situations, and certainly unstable following the damage to the nervous system. The use of exogenous spike-in reference provides a consistent and easily implemented alternative for the analysis of qPCR data.
基金a grant from the key project of breast cancer of Beijing Science & Technology Committee.
文摘Objective: The presence of lymph nodes and bone marrow micrometastases of patients with breast carcinoma by immunohistochemistry (IHC) methods has been strongly correlated to early recurrence and shorter overall survival. The aim of this study was to detect micrometastases in matched sample pairs of lymph nodes and the bone marrow of primary breast cancer patients using a more sensitive method, and compare with other clinical parameters. Methods: Cytokeratin 19 (CK-19) gene mRNA expression was detected by reverse transcriptase-polymerase chain reaction (RT-PCR) and Southern blot hybridization. Human breast cancer cell line T47D was mixed with bone marrow cells at different proportions. The positive detection rate was compared among RT-PCR, Southern blotting and IHC methods. Results: Cytokeratin 19 gene was expressed in all 6 positive control samples, while the expression wasn’t seen in 18 negative control samples. CK-19 IHC positive cells were detected at a dilution of one T47D cell in 5×105 bone marrow cells, while the sensitivity detected by PCR and Southern blot hybridization was at 1:5×104 and 1:106, respectively. In the samples from the 35 patients, we found CK-19 positive cells in 2 cases (5.7%) by IHC. CK-19 gene expression signal was detected in 14/35 (40%) by RT-PCR, and 17/35 (48.6%) by southern blotting. Four cases were micrometastases positive both in lymph node and bone marrow (11.4%). There was no correlation between CK-19 detection and other clinical parameters. Conclusion: combined detection of micrometastases in lymph node and bone marrow by RT-PCR and Southern blotting, using CK-19 as a biological marker, is a highly sensitive method for breast cancer.
基金Projects(50978087,51009063,50978088)supported by the National Natural Science Foundation of China
文摘An environment friendly bio-surfactant of rhamnolipid(RL) was used as a solvent. The enzymatic reaction of oleic acid catalyzed by lipase and lignin peroxidase(lip) was evaluated. The optimum conditions of enzymatic reaction catalyzed by lipase(lip) were water to amphiphile molar ratio of 30(20), RL of 60(60) critical micelle concentration(CMC), pH of 7.0(3.0) and temperature of 40(30) °C, respectively. The change of enzyme conformation indicates that, for catalytic of lipase, water content is the most important factor of the enzymatic reaction of oleic acid, and p H for lip. With individual optimum conditions, the enzymatic efficiency of oleic acid catalyzed by lipase is higher than that by lip. In the presence of ethanol, the enzymatic reaction of oleic acid catalyzed by lipase suits Ping-Pong Bi-Bi mechanism. As an alternative to chemical reversed micelles, the RL reversed micelles are promising methods to enzymatic reaction of oleic acid.
文摘An easy and reliable method was developed for construction and quantification of competitive templates, which shared the same sequence as the amplified target DNA except for a 20 bp insertion in the middle by recombinant polymerase chain reaction (PCR). Among the advantages of competitive PCR is that any predictable or unpredictable variable that affects amplification has the same effect on both target and competitor species and that the final ratio of amplified products reflects exactly the initial targets. The utilization of a thermostable reverse transcriptase in the RT step was proposed to overcome the problem of the efficiency of target cDNA synthesis. In addition, to obtain reliable measurements, it was recommended to perform four PCR with amounts of competitive template flanking the concentration of the target mRNA.
文摘BACKGROUND Coronavirus disease 2019(COVID-19)has spread around the globe.On February 28,2020,the World Health Organization adjusted the risk of spread and impact of COVID-19 to“very high”at the global level.Studies have mainly focused on the etiology,epidemiology,and treatment of COVID-19 to limit further spread and the negative impact of the disease,while less attention has been devoted to the follow-up and reexamination of patients who recovered from COVID-19 or were released from quarantine.CASE SUMMARY This study reports two cases where patients who had negative reverse transcription-polymerase chain reaction(RT-PCR)test results and met the criteria for discharge subsequently had positive RT-PCR test results.The clinical manifestations and computed tomography(CT)findings of these patients were examined.The conversion of RT-PCR test results in these two patients may be related to false-negative and false-positive outcomes of the test.CT images helped track improvement of pulmonary lesions.CONCLUSION The timing of discharge of COVID-19 patients should be determined by comprehensive analysis of CT images and RT-PCR test results.
文摘Thermal decomposition of formic acid on SiO2, CeO2 and γ-Al2O3 was studied as an elementary step of reverse water–gas shit reaction(RWGS) over supported Au catalysts. γ-Al2O3 showed the highest CO selectivity among the tested oxides in the decomposition of formic acid. Infrared spectroscopy showed the formation of four formate species on γ-Al2O3: three η~1-type and one μ~2-type species, and these formates decomposed to CO at 473 K or higher. Au-loaded γ-Al2O3 samples were prepared by a depositionprecipitation method and used as catalysts for RWGS. The supported Au catalyst gave CO with high selectivity over 99% from CO2 and H2, which is attributed to the formation of formates on Au and subsequent decomposition to CO on γ-Al2O3.
文摘Objective: The aim of this study was to detect micrometastases in bone marrow of primary breast cancer patients, and compare with other clinical parameters. Methods: Cytokeratin 19 (CK-19) gene mRNA expression was detected by reverse transcriptase-polymerase chain reaction (RT-PCR) and Southern blot hybridization. Human breast cancer cell line T47D was mixed with bone marrow cells in different proportions. The positive detection rate was compared among RT-PCR, Southern blotting and immunohistochemistry (IHC) methods. Results: Cytokeratin 19 gene was expressed in all 6 positive control samples while the expression was not seen in 8 negative control samples. In all 54 patients 14 cases were CK-19 positive (25.9%) by RT-PCR, another positive signal was obtained in 5/54 (9.3%) of bone marrow samples by Southern blotting. The total positive cases are 19/54 (35.2%). CK-19 IHC+ cells were detected at a dilution of one T47D cell in 5×104 bone marrow cells, while the sensitivity detected by PCR and Southern blot hybridization was at 1∶5×105 and 1∶1×106, respectively. This demonstrates that RT-PCR and Southern blotting was at least 20 times more sensitive than the IHC method. The micrometastases positive rate of the larger tumor size group (>5.0 cm) was significantly (P<0.05) greater than that of the smaller tumor size group (0–2.0 cm). Conclusion: detection of micrometastases in bone marrow by RT-PCR and Southern blotting, using CK-19 as a biological marker, is highly sensitive and it is a method to be used for anticipating the prognosis of breast cancer patients.
文摘In order to detect circulating cells of hepatocellular carcinoma(HCC) in the peripheral blood with reverse transcripition polymerase chain reaction (RT-PCR ), alpha-fetoprotein (AFP ) mRNA was tested in the blood samples of 113 cases of HCC and 69 controls (including 30 cases of liver cirrhosis, 9 cases of metastatic liver cancer and 30 normal subjects). 20/43 (46. 5% ) cases of HCC and 2/30 (6. 7% ) cases of liver cirrhosis are positive and the cases of nletastatic liver cancer and normal controls were negative for human AFP(hAFP) rnRNA. The presence of hAFP mRNA in the peripheral blood seems to be correlated with intrahepatic and distant nletastasls of HCC and portal vein thrombosis. It is concluded that the presence of hAFP mRNA in the peripheral hloocl is an indicator of circulating HCC cells and can be used to diagnose the rnetastasisof HCC through henlatogenous route and RT-PCR amplification of hAFP mRNA is a sensitive and specificprocedure for detecting circulating cells of HCC.
基金supported by the National Key R&D Program of China(2022YFA1503003)the National Natural Science Foundation of China(U20A20250 and 22005078)+2 种基金the Natural Science Foundation of Heilongjiang Province(YQ2021B008)the Basic Research Fund of Heilongjiang University in Heilongjiang Province(2022-KYYWF-1036,2021KYYWF-0039,and 2022-KYYWF-1060)the Postdoctoral Science Foundation of Heilongjiang Province(LBH-Z22240)。
文摘The construction of synergistic catalysis of single atom catalysts(SACs)and oxygen vacancies(OV)on supports is crucial for the enhancement of heterogeneous catalytic efficiency,yet presents considerable challenges.Herein,we have developed an amine-molecule-assisted in-situ anchoring strategy that effectively stabilizes Pt SACs on OV sites of reduced TiO_(2)(TiO_(2)–x)by controlling the interaction of amine with Pt species and TiO_(2)–x.Direct evidence indicates that Pt SACs are anchored on the OV with forming Ptδ+–OV–Ti3+sites and strong metal-support interaction,which not only prevents the sintering of Pt SACs under high-temperature reduction treatments,but also enhances the hydrogen spillover process to facilitate the formation of more OV sites.During the reverse water-gas shift(RWGS)reaction,the enhanced amount of OV sites can increase CO_(2)adsorption,while the Pt SACs can efficiently promote the activation and spillover of hydrogen.Their combined synergistic effects greatly improve its catalytic performance with a high turnover frequency(TOF)of 9289 h−1 at 330℃ and notable stability for over 200 h,surpassing those of Pt clusters and nanoparticles on TiO_(2)–x.This work provides a new avenue for the controllable synthesis of synergistic catalysts with SACs and OV,significantly advancing catalytic efficiency.
基金Projects(51304035,50974030)supported by the National Natural Science Foundation of ChinaProject(20110491512)supported by the Postdoctoral Science Foundation of China+2 种基金Project(20130042120034)supported by the Specialized Research Fund for the Doctoral Program of Higher Education(New Teachers),ChinaProject(120401008)supported by the Fundamental Research Funds for Central Universities,ChinaProject(L20150173)supported by the Scientific Research Fund of Liaoning Provincial Education Department,China
文摘Taking into consideration the gas compressibility and chemical reaction reversibility, a model was developed to study the interactions between gas flow and chemical reaction in porous media and resolved by the finite volume method on the basis of the gas-solid reaction aA(g)+bB(s)cC(g)+dD(s).The numerical analysis shows that the equilibrium constant is an important factor influencing the process of gas-solid reaction. The stoichiometric coefficients, molar masses of reactant gas, product gas and inert gas are the main factors influencing the density of gas mixture. The equilibrium constant influences the gas flow in porous media obviously when the stoichiometric coefficients satisfy a/c≠1.