In this paper, a quadruple-potential waveform was investigated and optimized for the determination of gentamicin by reversed phase ion-pair chromatography. Instead of a relatively high positive potential, a negative p...In this paper, a quadruple-potential waveform was investigated and optimized for the determination of gentamicin by reversed phase ion-pair chromatography. Instead of a relatively high positive potential, a negative potential was adopted as a potential for the cleaning of gold working electrode. By this way, the formation of gold oxide resulting from the application of high positive potential during the analyte detection and electrode cleaning was greatly reduced, and therefore, the dissolution and recession of gold working electrode was also reduced. The good condition of gold working electrode achieved by this quadruple-potential waveform can help us to obtain a good reproducibility. In order to acquire signal-to-noise ratio as high as possible, several waveform parameters affecting the detection of gentamicin were carefully selected. The analytical method has been applied to the determination of two real gentamicin samples, and good results with low relative standard deviation not more than 4% were obtained.展开更多
基金Project supported by the Major State Basic Research Development Program (No. 2003CB415001) of China and the National Natural Science Foundation of China (No. 20475060).
文摘In this paper, a quadruple-potential waveform was investigated and optimized for the determination of gentamicin by reversed phase ion-pair chromatography. Instead of a relatively high positive potential, a negative potential was adopted as a potential for the cleaning of gold working electrode. By this way, the formation of gold oxide resulting from the application of high positive potential during the analyte detection and electrode cleaning was greatly reduced, and therefore, the dissolution and recession of gold working electrode was also reduced. The good condition of gold working electrode achieved by this quadruple-potential waveform can help us to obtain a good reproducibility. In order to acquire signal-to-noise ratio as high as possible, several waveform parameters affecting the detection of gentamicin were carefully selected. The analytical method has been applied to the determination of two real gentamicin samples, and good results with low relative standard deviation not more than 4% were obtained.