Phase transition is common during (de)-intercalating layered sodium oxides, which directly affects the structural stability and electrochemical performance. However, the artificial control of phase transition to achie...Phase transition is common during (de)-intercalating layered sodium oxides, which directly affects the structural stability and electrochemical performance. However, the artificial control of phase transition to achieve advanced sodium-ion batteries is lacking, since the remarkably little is known about the influencing factor relative to the sliding process of transition-metal slabs upon sodium release and uptake of layered oxides. Herein, we for the first time demonstrate the manipulation of oxygen vacancy concentrations in multinary metallic oxides has a significant impact on the reversibility of phase transition, thereby determining the sodium storage performance of cathode materials. Results show that abundant oxygen vacancies intrigue the return of the already slide transition-metal slabs between O_(3) and P_(3) phase transition, in contrast to the few oxygen vacancies and resulted irreversibility. Additionally, the abundant oxygen vacancies enhance the electronic and ionic conductivity of the Na0.9Ni0.3Co0.15Mn0.05Ti0.5O2 electrode, delivering the high initial Coulombic efficiency of 97.1%, large reversible capacity of 112.7 mAh·g−1, superior rate capability upon 100 C and splendid cycling performance over 1,000 cycles. Our findings open up new horizons for artificially manipulating the structural evolution and electrochemical process of layered cathodes, and pave a way in designing advanced sodium-ion batteries.展开更多
Fe-Mn based layer oxides cathode materials have attracted widespread attention as a potential candidate for sodium-ion batteries(SIBs)owing to the earth abundance,cost-effectiveness and acceptable specific capacity.Ho...Fe-Mn based layer oxides cathode materials have attracted widespread attention as a potential candidate for sodium-ion batteries(SIBs)owing to the earth abundance,cost-effectiveness and acceptable specific capacity.However,the irreversible phase transition often brings rapid capacity decay,which seriously hinders the practical application in large-scale energy storage.Herein,we design a nickel-doped Na_(0.70)Fe_(0.10)Cu_(0.20)Ni_(0.05)Mn_(0.65)O_(2)(NFCNM-0.05)cathode material of SIBs with activated anionic redox reaction,and then inhibit the harmful phase transition.The ex-situ X-ray diffraction patterns demonstrate the NFCNM-0.05 always keeps the P2 phase during the sodiation/desodiation process,indicating a high structure stability.The ex-situ X-ray photoelectron spectroscopy implies the redox reactions between O2-and O-occur in the charging process,which offers extra specific capacity.Thus,the NFCNM-0.05 electrode delivers a high initial discharge capacity of 148 mA h g-1and remains a prominent cycling stability with an excellent capacity retention of 95.9%after 200 cycles at 1 C.In addition,the electrochemical impedance spectroscopy and galvanostatic intermittent titration technique show the NFCNM-0.05 electrode possesses fast ion diffusion ability,which is beneficial for the enhancement of rate performance.Even at 10 C,the NFCNM-0.05 can offer a reversible discharge capacity of 81 mA h g-1.DFT calculation demonstrates the doping of appropriate amount of Ni ions is benefit for the enhancement of the electrochemical performance of the layer oxides.This work provides an effective strategy to enhance the electrochemical performance of Fe-Mn based cathode materials of SIBs.展开更多
基金The financial is supported by the National Natural Science Foundation of China (Nos. 22075132, 51802149, and U1801251)the Fundamental Research Funds for the Central Universities, and Nanjing University Technology Innovation Fund Project. The authors are also grateful to the High Performance Computing Center (HPCC) of Nanjing University for doing the numerical calculations in this paper on its blade cluster system. W. K. P. is grateful to the financial support by the Australian Research Council through a Future Fellowship project (No. FT160100251)The operational support of ANSTO staffs, especially Dr. Vanessa Peterson and Dr. Christophe Didier, on the collection of neutron powder diffraction data of NaNCMT is highly appreciated. The neutron diffraction data were collected at ANSTO (Australia), CSNS (China), and NIST (USA).
文摘Phase transition is common during (de)-intercalating layered sodium oxides, which directly affects the structural stability and electrochemical performance. However, the artificial control of phase transition to achieve advanced sodium-ion batteries is lacking, since the remarkably little is known about the influencing factor relative to the sliding process of transition-metal slabs upon sodium release and uptake of layered oxides. Herein, we for the first time demonstrate the manipulation of oxygen vacancy concentrations in multinary metallic oxides has a significant impact on the reversibility of phase transition, thereby determining the sodium storage performance of cathode materials. Results show that abundant oxygen vacancies intrigue the return of the already slide transition-metal slabs between O_(3) and P_(3) phase transition, in contrast to the few oxygen vacancies and resulted irreversibility. Additionally, the abundant oxygen vacancies enhance the electronic and ionic conductivity of the Na0.9Ni0.3Co0.15Mn0.05Ti0.5O2 electrode, delivering the high initial Coulombic efficiency of 97.1%, large reversible capacity of 112.7 mAh·g−1, superior rate capability upon 100 C and splendid cycling performance over 1,000 cycles. Our findings open up new horizons for artificially manipulating the structural evolution and electrochemical process of layered cathodes, and pave a way in designing advanced sodium-ion batteries.
基金supported by the National Natural Science Foundation of China(U1960107)the Natural Science Foundation of Hebei Province(E2022501014)+3 种基金the “333”Talent Project of Hebei Province(A202005018)the Fundamental Research Funds for the Central Universities(N2123034)the Science and Technology Research Youth Fund Project of Higher Education Institutions of Hebei Province(QN2022196)the Performance subsidy fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province(22567627H)。
文摘Fe-Mn based layer oxides cathode materials have attracted widespread attention as a potential candidate for sodium-ion batteries(SIBs)owing to the earth abundance,cost-effectiveness and acceptable specific capacity.However,the irreversible phase transition often brings rapid capacity decay,which seriously hinders the practical application in large-scale energy storage.Herein,we design a nickel-doped Na_(0.70)Fe_(0.10)Cu_(0.20)Ni_(0.05)Mn_(0.65)O_(2)(NFCNM-0.05)cathode material of SIBs with activated anionic redox reaction,and then inhibit the harmful phase transition.The ex-situ X-ray diffraction patterns demonstrate the NFCNM-0.05 always keeps the P2 phase during the sodiation/desodiation process,indicating a high structure stability.The ex-situ X-ray photoelectron spectroscopy implies the redox reactions between O2-and O-occur in the charging process,which offers extra specific capacity.Thus,the NFCNM-0.05 electrode delivers a high initial discharge capacity of 148 mA h g-1and remains a prominent cycling stability with an excellent capacity retention of 95.9%after 200 cycles at 1 C.In addition,the electrochemical impedance spectroscopy and galvanostatic intermittent titration technique show the NFCNM-0.05 electrode possesses fast ion diffusion ability,which is beneficial for the enhancement of rate performance.Even at 10 C,the NFCNM-0.05 can offer a reversible discharge capacity of 81 mA h g-1.DFT calculation demonstrates the doping of appropriate amount of Ni ions is benefit for the enhancement of the electrochemical performance of the layer oxides.This work provides an effective strategy to enhance the electrochemical performance of Fe-Mn based cathode materials of SIBs.