BACKGROUND Mucosal healing(MH)is the major therapeutic target for Crohn's disease(CD).As the most commonly involved intestinal segment,small bowel(SB)assessment is crucial for CD patients.Yet,it poses a significan...BACKGROUND Mucosal healing(MH)is the major therapeutic target for Crohn's disease(CD).As the most commonly involved intestinal segment,small bowel(SB)assessment is crucial for CD patients.Yet,it poses a significant challenge due to its limited accessibility through conventional endoscopic methods.AIM To establish a noninvasive radiomic model based on computed tomography enterography(CTE)for MH assessment in SBCD patients.METHODS Seventy-three patients diagnosed with SBCD were included and divided into a training cohort(n=55)and a test cohort(n=18).Radiomic features were obtained from CTE images to establish a radiomic model.Patient demographics were analysed to establish a clinical model.A radiomic-clinical nomogram was constructed by combining significant clinical and radiomic features.The diagnostic efficacy and clinical benefit were evaluated via receiver operating characteristic(ROC)curve analysis and decision curve analysis(DCA),respectively.RESULTS Of the 73 patients enrolled,25 patients achieved MH.The radiomic-clinical nomogram had an area under the ROC curve of 0.961(95%confidence interval:0.886-1.000)in the training cohort and 0.958(0.877-1.000)in the test cohort and provided superior clinical benefit to either the clinical or radiomic models alone,as demonstrated by DCA.CONCLUSION These results indicate that the CTE-based radiomic-clinical nomogram is a promising imaging biomarker for MH and serves as a potential noninvasive alternative to enteroscopy for MH assessment in SBCD patients.展开更多
BACKGROUND Diabetic foot ulcers(DFUs)are a significant contributor to disability and mortality in diabetic patients.Macrophage polarization and functional regulation are promising areas of research and show therapeuti...BACKGROUND Diabetic foot ulcers(DFUs)are a significant contributor to disability and mortality in diabetic patients.Macrophage polarization and functional regulation are promising areas of research and show therapeutic potential in the field of DFU healing.However,the complex mechanism,the difficulty in clinical translation,and the large heterogeneity present significant challenges.Hence,this study was to comprehensively analyze the publication status and trends of studies on macrophage polarization and DFU healing.AIM To examine the relevant literature on macrophage polarization in DFU healing.METHODS A bibliometric analysis was conducted using the Web of Science database.Relevant literature was retrieved from the Web of Science Core Collection database between 2013 to 2023 using literature visualization and analysis software(VOSviewer and CiteSpace)and bibliometric online platforms.The obtained literature was then subjected to visualization and analysis of different countries/regions,institutions,journals,authors,and keywords to reveal the research’s major trends and focus.RESULTS The number of publications on the role of macrophage polarization in DFU healing increased rapidly from 2013 to 2023,especially in the latter period.Chinese researchers were the most prolific in this field,with 217 publications,while American researchers had been engaged in this field for a longer period.Qian Tan of Nanjing Drum Tower Hospital and Qian Ding of Nanjing University were the first to publish in this field.Shanghai Jiao Tong University was the institution with the most publications(27).The keywords“bone marrow”,“adjustment,replacement,response,tissue repair”,and“activation,repair,differentiation”appeared more frequently.The study of macrophage polarization in DFU healing focused on the regulatory mechanism,gene expression,and other aspects.CONCLUSION This study through the bibliometric method reveals the research trends and development trends in this field of macrophage polarization in DFU healing from 2013 to 2023 in the Web of Science Core Collection database.The key hotspots in this field mainly include the regulation of macrophage activation,gene expression,wound tissue repair,and new wound materials.This study provides references for future research directions.展开更多
BACKGROUND Complicated crown–root fracture (CRF) involves severe injury to the crown, root,and pulp, and may be accompanied by multiple root fractures. The loss of a toothhas lifelong consequences for children and te...BACKGROUND Complicated crown–root fracture (CRF) involves severe injury to the crown, root,and pulp, and may be accompanied by multiple root fractures. The loss of a toothhas lifelong consequences for children and teenagers, but the maintenance of pulphealth and the calcific healing of multiple root fractures are rarely reported in theliterature.CASE SUMMARY This case reports healing of a permanent tooth with complicated crown–root andadditional root fractures, in which pulp health was maintained. A 10-year-old girlfell and fractured the root of her maxillary left central incisor at the cervical level.After the coronal fragment was repositioned, the tooth was splinted until thetooth was no longer mobile, 2 years later. Eight years after treatment, the toothhas remained asymptomatic with vital pulp and localized gingival overgrowth.Cone-beam computed tomography revealed not only calcified healing of the CRFbut also spontaneous healing in an additional undiagnosed root fracture. Thefracture line on the enamel could not be healed by hard tissue and formed agroove in the cervical crown. It was speculated that the groove was related to thelocalized gingival overgrowth.CONCLUSION This case provides a clinical perspective of the treatment of a tooth with acomplicated CRF and an additional root fracture.展开更多
Managing inflammatory bowel disease(IBD)is becoming increasingly complex and personalized,considering the advent of new advanced therapies with distinct mechanisms of action.Achieving mucosal healing(MH)is a pivotal t...Managing inflammatory bowel disease(IBD)is becoming increasingly complex and personalized,considering the advent of new advanced therapies with distinct mechanisms of action.Achieving mucosal healing(MH)is a pivotal therapeutic goal in IBD management and can prevent IBD progression and reduce flares,hospitalization,surgery,intestinal damage,and colorectal cancer.Employing proactive disease and therapy assessment is essential to achieve better control of intestinal inflammation,even if subclinical,to alter the natural course of IBD.Periodic monitoring of fecal calprotectin(FC)levels and interval endoscopic evaluations are cornerstones for evaluating response/remission to advanced therapies targeting IBD,assessing MH,and detecting subclinical recurrence.Here,we comment on the article by Ishida et al Moreover,this editorial aimed to review the role of FC and endoscopic scores in predicting MH in patients with IBD.Furthermore,we intend to present some evidence on the role of these markers in future targets,such as histological and transmural healing.Additional prospective multicenter studies with a stricter MH criterion,standardized endoscopic and histopathological analyses,and virtual chromoscopy,potentially including artificial intelligence and other biomarkers,are desired.展开更多
Diabetic patients who underwent long-term dialysis may increase the prevalence of foot ulceration. In addition, diabetic foot ulcer (DFUs) patients with end-stage renal disease (ESRD) do not heal well, and the amputat...Diabetic patients who underwent long-term dialysis may increase the prevalence of foot ulceration. In addition, diabetic foot ulcer (DFUs) patients with end-stage renal disease (ESRD) do not heal well, and the amputation rate is 6.5 - 10 times higher compared to the non-nephropathic diabetic population. Thus, a suitable therapeutic agent was needed. ON101 is a topical cream that promotes diabetic wound healing through a unique macrophage-regulating ability. In this case series, we included 5 diabetes patients (mean age 54.6 ± 8.7 years, 4 mal) with ESRD (mean eGFR 7.4 ± 3.35 mL/min/1.73m<sup>2</sup>) and had experienced dialysis for at least 4.5 years. These patients also have UT (University of Texas) grade 2A DFUs that have existed for at least 1.5 months (mean ulcer duration 8.3 ± 8.97 months). These subjects were applied ON101 twice daily for up to 20 weeks, and wound size was recorded during treatment. Among these subjects, three ulcers (patient No. 1, 2, and 3) completely healed within 10 weeks upon ON101 application, and one ulcer was 99% reduced at 20<sup>th</sup> weeks (patient No. 4). Only one ulcer didn’t show an obvious response that may due to poor compliance in wound care and glucose control. In summary, the overall healing rate was 60%, suggesting ON101 performed equivalence healing efficacy in dialysis patients compared with those who did not have dialysis.展开更多
Mechanical as well as durability properties are pivotal for any type of concrete which gets adversely affected due to cracks that may form due to loading beyond its capacity.Concrete has the intrinsic property to heal...Mechanical as well as durability properties are pivotal for any type of concrete which gets adversely affected due to cracks that may form due to loading beyond its capacity.Concrete has the intrinsic property to heal itself to some extent but not fully as the passive form of autogenous healing plays an inferior role for a complete repair of a cementitious material.The self-healing capabilities can be enhanced by adding chemical admixtures,polymers,and bacteria strains induced calcium carbonate precipitation,etc.In this paper,the advancements in the development and performance of self-healing concrete using chemical admixtures,polymers,and bacteria strains are reviewed.This systematic review includes the available experimental tests and methodologies investigating self-healing efficiency over the last decade.Further,this review focussed on self-healing materials,the ideology,and opinions of those in the construction field on the direction of self-healing concrete for future applications.It is yet not possible to predict the most appropriate technique,however,a generalized opinion about the effectiveness of the different approaches has been illustrated.展开更多
Skin is one of the most vulnerable tissues,but there is a lack of injectable bioactive hydrogel dressings,which possess high strength,antiswelling capacity,and wet tissue adhesiveness,but also a rapid gelling process ...Skin is one of the most vulnerable tissues,but there is a lack of injectable bioactive hydrogel dressings,which possess high strength,antiswelling capacity,and wet tissue adhesiveness,but also a rapid gelling process to enable rapid hemostasis,sutureless wound closure,and scarless healing of infected skin wounds[1e5].A new injectable,antibacterial,and multifunctional hydrogel dressings based on poly(citric acid-co-polyethylene glycol)-g-dopamine(PCPD)and amino-terminated Pluronic F127(APF)mi-celles loaded with astragaloside IV(AS)was developed for this pur-pose,as shown in Fig.1A[6].展开更多
Skeletal stem/progenitor cell(SSPC)senescence is a major cause of decreased bone regenerative potential with aging,but the causes of SSPC senescence remain unclear.In this study,we revealed that macrophages in calluse...Skeletal stem/progenitor cell(SSPC)senescence is a major cause of decreased bone regenerative potential with aging,but the causes of SSPC senescence remain unclear.In this study,we revealed that macrophages in calluses secrete prosenescent factors,including grancalcin(GCA),during aging,which triggers SSPC senescence and impairs fracture healing.Local injection of human rGCA in young mice induced SSPC senescence and delayed fracture repair.Genetic deletion of Gca in monocytes/macrophages was sufficient to rejuvenate fracture repair in aged mice and alleviate SSPC senescence.Mechanistically,GCA binds to the plexin-B2 receptor and activates Arg2-mediated mitochondrial dysfunction,resulting in cellular senescence.Depletion of Plxnb2 in SSPCs impaired fracture healing.Administration of GCA-neutralizing antibody enhanced fracture healing in aged mice.Thus,our study revealed that senescent macrophages within calluses secrete GCA to trigger SSPC secondary senescence,and GCA neutralization represents a promising therapy for nonunion or delayed union in elderly individuals.展开更多
The thermoregulating function of skin that is capable of maintaining body temperature within a thermostatic state is critical.However,patients suffering from skin damage are struggling with the surrounding scene and s...The thermoregulating function of skin that is capable of maintaining body temperature within a thermostatic state is critical.However,patients suffering from skin damage are struggling with the surrounding scene and situational awareness.Here,we report an interactive self-regulation electronic system by mimicking the human thermos-reception system.The skin-inspired self-adaptive system is composed of two highly sensitive thermistors(thermal-response composite materials),and a low-power temperature control unit(Laserinduced graphene array).The biomimetic skin can realize self-adjusting in the range of 35–42℃,which is around physiological temperature.This thermoregulation system also contributed to skin barrier formation and wound healing.Across wound models,the treatment group healed~10%more rapidly compared with the control group,and showed reduced inflammation,thus enhancing skin tissue regeneration.The skin-inspired self-adaptive system holds substantial promise for nextgeneration robotic and medical devices.展开更多
AIM:To evaluate if topical use of αB-crystallin minipeptides supports corneal healing following flap surgery.METHODS:Cultured corneal cells were treated with fluorescent taggedαB-crystallin mini-peptides to assess i...AIM:To evaluate if topical use of αB-crystallin minipeptides supports corneal healing following flap surgery.METHODS:Cultured corneal cells were treated with fluorescent taggedαB-crystallin mini-peptides to assess its internalization.Cultured corneal cells pre-treated with or without the mini-peptides were exposed to H_(2)O_(2) and cell viability was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assay.Elongation of neurites of cultured trigeminal neurones was examined following treatment either withαB-crystallin mini-peptides or protein.Cultured trigeminal neurones were pre-treated either with αB-crystallin mini-peptides or crystallin protein and exposed to H_(2)O_(2) and presence of beading in the dendrites and axons was assessed.Corneal flap surgery was conducted on rabbit cornea and treated topically either withαB-crystallin peptide(0.5 mg/mL thrice daily for 14d)or phosphate-buffered saline(PBS).Corneal healing was evaluated under slit-lamp biomicroscope,mRNA expression of inflammatory cytokines were assessed and the corneas were evaluated by histopathology.RESULTS:Internalization ofαB-crystallin mini-peptides was ascertained by the detection of fluorescence within the corneal cells.The MTT assay revealed that treatment withαB-crystallin mini-peptide reduced cell death induced by H_(2)O_(2) treatment.The mini-peptides did not influence the elongation of trigeminal neurites,but significantly(P<0.05)reduced beading in the neurites.In rabbit eye,the treated corneas showed reduced hyper-reflective zones(P<0.05)and suppression in the expression of inflammatory cytokines.Histopathological examination also revealed reduction of inflammatory response in treated corneas.CONCLUSION:TheαB-crystallin mini-peptides restrict the damage to corneal cells and neurons and aids in corneal healing.展开更多
Objective:To assess the antimicrobial,antibiofilm,anti-inflammatory,angiogenic,and wound healing activities of zinc nanoparticles(ZNPs)green synthesized using Ferula macrecolea extract.Methods:The green synthesis was ...Objective:To assess the antimicrobial,antibiofilm,anti-inflammatory,angiogenic,and wound healing activities of zinc nanoparticles(ZNPs)green synthesized using Ferula macrecolea extract.Methods:The green synthesis was conducted using the precipitation method.Then,the minimum inhibitory concentration(MIC),minimum bactericidal concentration(MBC),and minimum biofilm inhibition concentration 50%(MBIC50)of ZNPs against Staphylococcus aureus(S.aureus)and Pseudomonas aeruginosa(P.aeruginosa)were evaluated.The effects of ZNPs on the gene expressions of Staphylococcus spp.[intracellular adhesion A(icaA)and D(icaD)]and P.aeruginosa(rhlI and rhlR)were investigated using quantitative real-time PCR.In addition,the effects of ZNPs on wound healing,angiogenesis,and anti-inflammatory markers were assessed.Results:The green-synthesized ZNPs demonstrated significant antimicrobial efficacy against S.aureus and P.aeruginosa.The biofilm formation in S.aureus and P.aeruginosa was also inhibited by ZNPs with MBIC50 values of 3.30μg/mL and 2.08μg/mL,respectively.Additionally,ZNPs downregulated the expression of biofilm-related genes icaA,icaD,rhlI,and rhlR in the tested bacteria.They also demonstrated promising in vitro wound healing effects by promoting fibroblast cell proliferation and wound closure in a dose-dependent manner.A significant increase in the expression of HLA-G5 and VEGF-A genes as well as a marked decrease in the expression of NF-κB,IL-1β,and TNF-αgenes were observed in cells treated with ZNPs compared to the control group(P<0.05).Conclusions:ZNPs display promising antibacterial effects against S.aureus and P.aeruginosa and wound-healing effects by inhibiting biofilm formation,inducing angiogenesis,and reducing inflammation.However,further studies must be conducted to specify the accurate mechanisms of action and toxicity of ZNPs.展开更多
Delayed and nonhealing of diabetic wounds imposes substantial economic burdens and physical pain on patients.Mesenchymal stem cells(MSCs)promote diabetic wound healing.Particularly when MSCs aggregate into multicellul...Delayed and nonhealing of diabetic wounds imposes substantial economic burdens and physical pain on patients.Mesenchymal stem cells(MSCs)promote diabetic wound healing.Particularly when MSCs aggregate into multicellular spheroids,their therapeutic effect is enhanced.However,traditional culture platforms are inadequate for the efficient preparation and delivery of MSC spheroids,resulting in inefficiencies and inconveniences in MSC spheroid therapy.In this study,a three-dimensional porous nanofibrous dressing(NFD)is prepared using a combination of electrospinning and homogeneous freeze-drying.Using thermal crosslinking,the NFD not only achieves satisfactory elasticity but also maintains notable cytocompatibility.Through the design of its structure and chemical composition,the NFD allows MSCs to spontaneously form MSC spheroids with controllable sizes,serving as MSC spheroid delivery systems for diabetic wound sites.Most importantly,MSC spheroids cultured on the NFD exhibit improved secretion of vascular endothelial growth factor,basic fibroblast growth factor,and hepatocyte growth factor,thereby accelerating diabetic wound healing.The NFD provides a competitive strategy for MSC spheroid formation and delivery to promote diabetic wound healing.展开更多
Wound dressing management is critical in healthcare,and frequent dressing changes for full-thickness skin wounds can hinder healing.Nanofiber dressings that resemble the extracellular matrix,have gained popularity in ...Wound dressing management is critical in healthcare,and frequent dressing changes for full-thickness skin wounds can hinder healing.Nanofiber dressings that resemble the extracellular matrix,have gained popularity in wound repair,however,it is challenging to explore how to frequently change it without affecting healing processing and avoiding secondary damage.Here,we developed a self-adhesive and detachable nanofiber dressing inspired by Andrias davidianus.Our asymmetric nanofiber dressing exhibits strong adhesion(26 kPa),to the wound at high temperature(approximately 25°C)to the wound surface and can be easily detached(4 kPa)at low temperature(below 8°C),enabling painless dressing changes that minimize secondary injuries.The dressing comprises an outer layer of polylactic acid which provides mechanical property,support,and pollution resistance,with an inner layer of nanofibrous membrane,composed of gelatin and Andrias davidianus skin secretions,which promotes cellular migration,enhances wound healing and possesses inherent antimicrobial properties.Furthermore,the all-natural nanofiber dressings can be prepared on a large scale and offer favorable biocompatibility to meet the basic requirements of wound dressings.These findings demonstrate the potential applicability of our multilayer nanofiber dressing for advancing wound healing practices.展开更多
Diabetic foot ulcers are a prevalent complication that can significantly impact quality of life and necessitate high-level amputations. Hence, early diagnosis and treatment, elucidation of pathogenesis, and targeted c...Diabetic foot ulcers are a prevalent complication that can significantly impact quality of life and necessitate high-level amputations. Hence, early diagnosis and treatment, elucidation of pathogenesis, and targeted countermeasures assume paramount importance. Wound healing entails a complex process wherein various components such as inflammatory cells, extracellular matrix, and immune cells intricately interact with each other. Due to the vulnerability of the skin to damage, inadequate or impaired wound healing has emerged as an urgent clinical challenge requiring resolution. This paper provides a comprehensive overview of the pathogenesis, diagnosis, and treatment of diabetic foot ulcers in order to offer theoretical guidance for specific interventions.展开更多
Developing novel antibacterial dressing protecting skin injuries from infection is essential for wound healing.In this study,sericin,a bio-waste produced during the degumming of silk cocoons,is utilized to exfoliate M...Developing novel antibacterial dressing protecting skin injuries from infection is essential for wound healing.In this study,sericin,a bio-waste produced during the degumming of silk cocoons,is utilized to exfoliate MoS_(2)layers and improve the dispersity and stability of MoS_(2)nanosheets(MoS_(2)-NSs).Moreover,owing to its ability to promote oxygen permeability and cell growth and its good biocompatibility,MoS_(2)-NS/Sericin maintains its photothermal property under an 808 nm light source for a strong antibacterial activity as well as improves the fibroblast migration,which accelerates wound healing.Fur-thermore,the in vitro experiments indicates that MoS_(2)-NS/Sericin can also scavenge reactive oxygen species(ROS)at an inflammatory stage of wound healing and transform classical activated macrophages(M1-type)into alternatively activated macrophages(M2-type),which is beneficial for wound recovery.Based on these results observed in vitro,full-thickness skin wound experiments are conducted on rats,and the corresponding results show that MoS_(2)/Sericin under 808 nm irradiation exhibits the best performance in promoting wound healing.Overall,MoS_(2)-NS/Sericin exhibits a high potential for bacteria-infected wound healing.展开更多
Graft healing involves a series of cytological and molecular events including wound responses, callus formation and vascular bundle remodelling. Hormones are important signalling molecules regulating plant development...Graft healing involves a series of cytological and molecular events including wound responses, callus formation and vascular bundle remodelling. Hormones are important signalling molecules regulating plant development and responses to environmental stimuli. However,the detailed dynamics of phytohormones in graft healing remain elusive. In this research, internodes above and below the graft site were harvested from 0 to 168 h after grafting(HAG), and liquid chromatography tandem mass spectrometry(LC-MS/MS) was used to determinate jasmonic acid, auxin, cytokinin, ethylene, salicylic acid, abscisic acid and gibberellin levels during the graft healing process. Uniform manifold approximation and projection(UMAP) and k-means analyses were performed to explore hormone spatio-temporal dynamics. We found the stage-specific and asymmetric accumulation of phytohormones in the tomato graft healing process. At the early healing stage(before vascular bundle reconnection), IAA, cZ, ABA, JA and SA mainly accumulated above the graft site, while tZ and ACC mainly accumulated below the graft site. MEIAA, ICAld and IP mainly accumulated at the later stage. Comminated with the healing process, we suggested that JA is mainly involved in wound responses, IAA is beneficial to the formation of callus and vascular cell development, tZ promotes cell division, and IP is linked to vascular bundle remodelling. In addition, expression of JA-related genes SlMYC2 and SlJAZ2, IAA-related gene SlIAA1, tZ-related genes SlHP2 and SlRR8, and IP-related gene SlRR9 correlated with hormone accumulation. The findings provide important information about the hormones and genes involved in the tomato graft healing process.展开更多
The main goal of the article is the creation and study of thermosensitive and wound-healing gelatin-alginate bio-polymer hydrogels modified with humic acids.Their rheological properties,swelling and contraction behavi...The main goal of the article is the creation and study of thermosensitive and wound-healing gelatin-alginate bio-polymer hydrogels modified with humic acids.Their rheological properties,swelling and contraction behavior were experimentally investigated,elucidated using Fourier transform infrared spectroscopy and used to achieve the physiological melting point,which is necessary for successful drug delivery.It has been shown that in the gelatin-alginate-humic acid biopolymer hydrogels systems,it is possible to obtain a gel-sol transition temperature close to the physiological temperature of 37℃,which is important for drug delivery in the treatment of wounds.By changing the type and concentration of humic acids in the gelatin-alginate hydrogel,it turned out to be achiev-able to regulate the softening time of the gel on the human body in the range from 6 to 20 min,which provides the possibility of controlled prolonged delivery of drugs.Based on the study of the influence of calcium ions on the properties of humic acids and ion exchange,as well as the interaction of humic acids,sodium alginate and gelatin with the formation of tighter gel networks,approaches to regulate the rate of softening of hydrogels at physiological temperature and their swelling,which simulates the absorption of exudate,were proposed and implemented.In addition,low shrinkage of the hydrogel surface due to cross-linking of gelatin-alginate networks when modified with humic acids was experimentally confirmed,which is important for avoiding problems of wound contracture and contour deformations when using dressings for wound healing.Thus,the developed opti-mized innovative biopolymer hydrogels synergistically combine the outstanding properties of natural molecular polymers and humic acids and are promising for the creation of effective medicines for wound healing.展开更多
In this editorial,we discuss the article by Wen et al published.Diabetic foot ulcers are prevalent and serious complications of diabetes,significantly impacting patients’quality of life and often leading to disabilit...In this editorial,we discuss the article by Wen et al published.Diabetic foot ulcers are prevalent and serious complications of diabetes,significantly impacting patients’quality of life and often leading to disability or death,thereby placing a heavy burden on society.Effective diabetic wound healing is hindered by an imbalance in macrophage polarization;many macrophages fail to transition from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype,which is crucial for tissue remodelling and repair.The wound healing process is both dynamic and complex.Healthy M1 macrophages,which have strong phagocytic abilities,are vital during the inflammatory phase of diabetic wound healing.However,the failure to transition to M2 macrophages during the proliferative phase hinders wound healing.We anticipate the development of new therapies that can repair damaged M1 macrophages during the inflammatory phase and promote M2 macrophage polarization during the proliferative phase,thereby enhancing the overall healing process.展开更多
Infected wounds pose a significant global health challenge due to the persistence of bacterial biofilms and limited tissue self-repair.Nitric oxide(NO)functions as a potent antimicrobial agent,demonstrating a dual cap...Infected wounds pose a significant global health challenge due to the persistence of bacterial biofilms and limited tissue self-repair.Nitric oxide(NO)functions as a potent antimicrobial agent,demonstrating a dual capacity for both antimicrobial action and tissue rejuvenation across varying concentrations.However,achieving controlled NO release at distinct stages of infected wound progression,simultaneously targeting biofilm removal and wound recovery,remains a formidable challenge.In this work,we introduce a smart electrospun fibrous membrane,featuring an interior laden with NO-loaded HKUST-1 particles and a porous external surface.Notably,the results reveal the photothermal property of HKUST-1 when exposed to near-infrared(NIR)light,enabling precise management of NO release contingent upon light conditions.During the initial phase of infection treatment,a significant NO release is triggered by near-infrared photothermal stimulation,synergistically complementing photothermal therapy to effectively eliminate bacterial biofilms.Subsequently,in the wound-healing phase,NO is released from the degrading fibrous membrane in a controlled and gradual manner,synergizing with trace amounts of copper ions released during MOF degradation.This collaborative mechanism accelerates the formation of blood vessels within the wound,thereby facilitating the healing process.This study suggests a promising and innovative approach for the effective treatment of infected wounds.展开更多
This comprehensive review explores the intricate dynamics between psychosocial factors and chronic wound healing processes, specifically focusing on prevalent conditions such as pressure ulcers, diabetic foot ulcers, ...This comprehensive review explores the intricate dynamics between psychosocial factors and chronic wound healing processes, specifically focusing on prevalent conditions such as pressure ulcers, diabetic foot ulcers, and venous leg ulcers. By examining the roles of psychiatric conditions, including depression, anxiety, and post-traumatic stress disorder (PTSD), this paper illuminates how these factors intricately influence wound healing dynamics, including mechanisms of pain perception and inflammatory responses. Furthermore, we evaluate the effectiveness of integrated biopsychosocial interventions, which encompass a holistic approach to wound care, thereby enhancing healing outcomes for dermatology patients. Future studies should focus on investigating the specific psychosocial determinants that significantly influence wound healing, exploring novel therapeutic strategies, and implementing personalized interventions to meet the unique needs of each patient. Such endeavors hold promise in advancing the fields of psychodermatology and wound management, fostering a deeper understanding and application of psychosocial considerations in dermatological care.展开更多
基金Supported by Natural Science Foundation of Anhui Medical University,No.2023xkj130.
文摘BACKGROUND Mucosal healing(MH)is the major therapeutic target for Crohn's disease(CD).As the most commonly involved intestinal segment,small bowel(SB)assessment is crucial for CD patients.Yet,it poses a significant challenge due to its limited accessibility through conventional endoscopic methods.AIM To establish a noninvasive radiomic model based on computed tomography enterography(CTE)for MH assessment in SBCD patients.METHODS Seventy-three patients diagnosed with SBCD were included and divided into a training cohort(n=55)and a test cohort(n=18).Radiomic features were obtained from CTE images to establish a radiomic model.Patient demographics were analysed to establish a clinical model.A radiomic-clinical nomogram was constructed by combining significant clinical and radiomic features.The diagnostic efficacy and clinical benefit were evaluated via receiver operating characteristic(ROC)curve analysis and decision curve analysis(DCA),respectively.RESULTS Of the 73 patients enrolled,25 patients achieved MH.The radiomic-clinical nomogram had an area under the ROC curve of 0.961(95%confidence interval:0.886-1.000)in the training cohort and 0.958(0.877-1.000)in the test cohort and provided superior clinical benefit to either the clinical or radiomic models alone,as demonstrated by DCA.CONCLUSION These results indicate that the CTE-based radiomic-clinical nomogram is a promising imaging biomarker for MH and serves as a potential noninvasive alternative to enteroscopy for MH assessment in SBCD patients.
基金Supported by the Qilu Medical School Traditional Chinese Medicine Academic School Inheritance Project,No.93 LW[2022]Construction Project of the Inheritance Studio of National Famous Traditional Chinese Medicine Experts,Traditional Chinese Medicine Teaching Letter No.75[2022]Qilu Health and Fitness Talents in 2019,No.3 LWRZ[2020].
文摘BACKGROUND Diabetic foot ulcers(DFUs)are a significant contributor to disability and mortality in diabetic patients.Macrophage polarization and functional regulation are promising areas of research and show therapeutic potential in the field of DFU healing.However,the complex mechanism,the difficulty in clinical translation,and the large heterogeneity present significant challenges.Hence,this study was to comprehensively analyze the publication status and trends of studies on macrophage polarization and DFU healing.AIM To examine the relevant literature on macrophage polarization in DFU healing.METHODS A bibliometric analysis was conducted using the Web of Science database.Relevant literature was retrieved from the Web of Science Core Collection database between 2013 to 2023 using literature visualization and analysis software(VOSviewer and CiteSpace)and bibliometric online platforms.The obtained literature was then subjected to visualization and analysis of different countries/regions,institutions,journals,authors,and keywords to reveal the research’s major trends and focus.RESULTS The number of publications on the role of macrophage polarization in DFU healing increased rapidly from 2013 to 2023,especially in the latter period.Chinese researchers were the most prolific in this field,with 217 publications,while American researchers had been engaged in this field for a longer period.Qian Tan of Nanjing Drum Tower Hospital and Qian Ding of Nanjing University were the first to publish in this field.Shanghai Jiao Tong University was the institution with the most publications(27).The keywords“bone marrow”,“adjustment,replacement,response,tissue repair”,and“activation,repair,differentiation”appeared more frequently.The study of macrophage polarization in DFU healing focused on the regulatory mechanism,gene expression,and other aspects.CONCLUSION This study through the bibliometric method reveals the research trends and development trends in this field of macrophage polarization in DFU healing from 2013 to 2023 in the Web of Science Core Collection database.The key hotspots in this field mainly include the regulation of macrophage activation,gene expression,wound tissue repair,and new wound materials.This study provides references for future research directions.
基金Supported by 2021 Disciplinary Construction Project in School of Dentistry,Anhui Medical University,No.2021kqxkFY05.
文摘BACKGROUND Complicated crown–root fracture (CRF) involves severe injury to the crown, root,and pulp, and may be accompanied by multiple root fractures. The loss of a toothhas lifelong consequences for children and teenagers, but the maintenance of pulphealth and the calcific healing of multiple root fractures are rarely reported in theliterature.CASE SUMMARY This case reports healing of a permanent tooth with complicated crown–root andadditional root fractures, in which pulp health was maintained. A 10-year-old girlfell and fractured the root of her maxillary left central incisor at the cervical level.After the coronal fragment was repositioned, the tooth was splinted until thetooth was no longer mobile, 2 years later. Eight years after treatment, the toothhas remained asymptomatic with vital pulp and localized gingival overgrowth.Cone-beam computed tomography revealed not only calcified healing of the CRFbut also spontaneous healing in an additional undiagnosed root fracture. Thefracture line on the enamel could not be healed by hard tissue and formed agroove in the cervical crown. It was speculated that the groove was related to thelocalized gingival overgrowth.CONCLUSION This case provides a clinical perspective of the treatment of a tooth with acomplicated CRF and an additional root fracture.
文摘Managing inflammatory bowel disease(IBD)is becoming increasingly complex and personalized,considering the advent of new advanced therapies with distinct mechanisms of action.Achieving mucosal healing(MH)is a pivotal therapeutic goal in IBD management and can prevent IBD progression and reduce flares,hospitalization,surgery,intestinal damage,and colorectal cancer.Employing proactive disease and therapy assessment is essential to achieve better control of intestinal inflammation,even if subclinical,to alter the natural course of IBD.Periodic monitoring of fecal calprotectin(FC)levels and interval endoscopic evaluations are cornerstones for evaluating response/remission to advanced therapies targeting IBD,assessing MH,and detecting subclinical recurrence.Here,we comment on the article by Ishida et al Moreover,this editorial aimed to review the role of FC and endoscopic scores in predicting MH in patients with IBD.Furthermore,we intend to present some evidence on the role of these markers in future targets,such as histological and transmural healing.Additional prospective multicenter studies with a stricter MH criterion,standardized endoscopic and histopathological analyses,and virtual chromoscopy,potentially including artificial intelligence and other biomarkers,are desired.
文摘Diabetic patients who underwent long-term dialysis may increase the prevalence of foot ulceration. In addition, diabetic foot ulcer (DFUs) patients with end-stage renal disease (ESRD) do not heal well, and the amputation rate is 6.5 - 10 times higher compared to the non-nephropathic diabetic population. Thus, a suitable therapeutic agent was needed. ON101 is a topical cream that promotes diabetic wound healing through a unique macrophage-regulating ability. In this case series, we included 5 diabetes patients (mean age 54.6 ± 8.7 years, 4 mal) with ESRD (mean eGFR 7.4 ± 3.35 mL/min/1.73m<sup>2</sup>) and had experienced dialysis for at least 4.5 years. These patients also have UT (University of Texas) grade 2A DFUs that have existed for at least 1.5 months (mean ulcer duration 8.3 ± 8.97 months). These subjects were applied ON101 twice daily for up to 20 weeks, and wound size was recorded during treatment. Among these subjects, three ulcers (patient No. 1, 2, and 3) completely healed within 10 weeks upon ON101 application, and one ulcer was 99% reduced at 20<sup>th</sup> weeks (patient No. 4). Only one ulcer didn’t show an obvious response that may due to poor compliance in wound care and glucose control. In summary, the overall healing rate was 60%, suggesting ON101 performed equivalence healing efficacy in dialysis patients compared with those who did not have dialysis.
文摘Mechanical as well as durability properties are pivotal for any type of concrete which gets adversely affected due to cracks that may form due to loading beyond its capacity.Concrete has the intrinsic property to heal itself to some extent but not fully as the passive form of autogenous healing plays an inferior role for a complete repair of a cementitious material.The self-healing capabilities can be enhanced by adding chemical admixtures,polymers,and bacteria strains induced calcium carbonate precipitation,etc.In this paper,the advancements in the development and performance of self-healing concrete using chemical admixtures,polymers,and bacteria strains are reviewed.This systematic review includes the available experimental tests and methodologies investigating self-healing efficiency over the last decade.Further,this review focussed on self-healing materials,the ideology,and opinions of those in the construction field on the direction of self-healing concrete for future applications.It is yet not possible to predict the most appropriate technique,however,a generalized opinion about the effectiveness of the different approaches has been illustrated.
文摘Skin is one of the most vulnerable tissues,but there is a lack of injectable bioactive hydrogel dressings,which possess high strength,antiswelling capacity,and wet tissue adhesiveness,but also a rapid gelling process to enable rapid hemostasis,sutureless wound closure,and scarless healing of infected skin wounds[1e5].A new injectable,antibacterial,and multifunctional hydrogel dressings based on poly(citric acid-co-polyethylene glycol)-g-dopamine(PCPD)and amino-terminated Pluronic F127(APF)mi-celles loaded with astragaloside IV(AS)was developed for this pur-pose,as shown in Fig.1A[6].
基金This work was supported by the National Key R&D Program of China(Project No.2019YFA0111900 to C.J.L.and Y.J.,2022YFC3601900 to G.H.L.,2022YFC3601903 to X.H.L.,and 2022YFC3601905)the National Natural Science Foundation of China(Grant Nos.82261160397,82272560,81922017 to C.J.L.and 81930022,91749105 to X.H.L.)+3 种基金the NSFC/RGC Joint Research Scheme,the Research Grants Council(UGC)of the Hong Kong Special Administrative Region and the National Natural Science Foundation of China(NSFC/RGC Project No.N_CUHK483/22 to Y.J.)the Hunan Provincial Science and Technology Department(2023JJ30896 to C.J.L.)the Key Research and Development Program of Hunan Province(2022SK2023 to C.J.L.)the Science and Technology Innovation Program of Hunan Province(2023RC1027 to C.J.L.,2022RC1009 to J.W,and 2022RC3075 to C.Z.).
文摘Skeletal stem/progenitor cell(SSPC)senescence is a major cause of decreased bone regenerative potential with aging,but the causes of SSPC senescence remain unclear.In this study,we revealed that macrophages in calluses secrete prosenescent factors,including grancalcin(GCA),during aging,which triggers SSPC senescence and impairs fracture healing.Local injection of human rGCA in young mice induced SSPC senescence and delayed fracture repair.Genetic deletion of Gca in monocytes/macrophages was sufficient to rejuvenate fracture repair in aged mice and alleviate SSPC senescence.Mechanistically,GCA binds to the plexin-B2 receptor and activates Arg2-mediated mitochondrial dysfunction,resulting in cellular senescence.Depletion of Plxnb2 in SSPCs impaired fracture healing.Administration of GCA-neutralizing antibody enhanced fracture healing in aged mice.Thus,our study revealed that senescent macrophages within calluses secrete GCA to trigger SSPC secondary senescence,and GCA neutralization represents a promising therapy for nonunion or delayed union in elderly individuals.
基金financially supported by the National Key Research and Development Program of China(2021YFA1201304/2021YFA1201300)the National Natural Science Foundation of China(52103298).
文摘The thermoregulating function of skin that is capable of maintaining body temperature within a thermostatic state is critical.However,patients suffering from skin damage are struggling with the surrounding scene and situational awareness.Here,we report an interactive self-regulation electronic system by mimicking the human thermos-reception system.The skin-inspired self-adaptive system is composed of two highly sensitive thermistors(thermal-response composite materials),and a low-power temperature control unit(Laserinduced graphene array).The biomimetic skin can realize self-adjusting in the range of 35–42℃,which is around physiological temperature.This thermoregulation system also contributed to skin barrier formation and wound healing.Across wound models,the treatment group healed~10%more rapidly compared with the control group,and showed reduced inflammation,thus enhancing skin tissue regeneration.The skin-inspired self-adaptive system holds substantial promise for nextgeneration robotic and medical devices.
基金Supported by the DST Nano-mission,Govt of India,Grant No DST No.SR/NM/NS-1067/2016Facilities were provided by the West Bengal University of Animal&Fishery Sciences and CSIR-IICB for conducting this research。
文摘AIM:To evaluate if topical use of αB-crystallin minipeptides supports corneal healing following flap surgery.METHODS:Cultured corneal cells were treated with fluorescent taggedαB-crystallin mini-peptides to assess its internalization.Cultured corneal cells pre-treated with or without the mini-peptides were exposed to H_(2)O_(2) and cell viability was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assay.Elongation of neurites of cultured trigeminal neurones was examined following treatment either withαB-crystallin mini-peptides or protein.Cultured trigeminal neurones were pre-treated either with αB-crystallin mini-peptides or crystallin protein and exposed to H_(2)O_(2) and presence of beading in the dendrites and axons was assessed.Corneal flap surgery was conducted on rabbit cornea and treated topically either withαB-crystallin peptide(0.5 mg/mL thrice daily for 14d)or phosphate-buffered saline(PBS).Corneal healing was evaluated under slit-lamp biomicroscope,mRNA expression of inflammatory cytokines were assessed and the corneas were evaluated by histopathology.RESULTS:Internalization ofαB-crystallin mini-peptides was ascertained by the detection of fluorescence within the corneal cells.The MTT assay revealed that treatment withαB-crystallin mini-peptide reduced cell death induced by H_(2)O_(2) treatment.The mini-peptides did not influence the elongation of trigeminal neurites,but significantly(P<0.05)reduced beading in the neurites.In rabbit eye,the treated corneas showed reduced hyper-reflective zones(P<0.05)and suppression in the expression of inflammatory cytokines.Histopathological examination also revealed reduction of inflammatory response in treated corneas.CONCLUSION:TheαB-crystallin mini-peptides restrict the damage to corneal cells and neurons and aids in corneal healing.
文摘Objective:To assess the antimicrobial,antibiofilm,anti-inflammatory,angiogenic,and wound healing activities of zinc nanoparticles(ZNPs)green synthesized using Ferula macrecolea extract.Methods:The green synthesis was conducted using the precipitation method.Then,the minimum inhibitory concentration(MIC),minimum bactericidal concentration(MBC),and minimum biofilm inhibition concentration 50%(MBIC50)of ZNPs against Staphylococcus aureus(S.aureus)and Pseudomonas aeruginosa(P.aeruginosa)were evaluated.The effects of ZNPs on the gene expressions of Staphylococcus spp.[intracellular adhesion A(icaA)and D(icaD)]and P.aeruginosa(rhlI and rhlR)were investigated using quantitative real-time PCR.In addition,the effects of ZNPs on wound healing,angiogenesis,and anti-inflammatory markers were assessed.Results:The green-synthesized ZNPs demonstrated significant antimicrobial efficacy against S.aureus and P.aeruginosa.The biofilm formation in S.aureus and P.aeruginosa was also inhibited by ZNPs with MBIC50 values of 3.30μg/mL and 2.08μg/mL,respectively.Additionally,ZNPs downregulated the expression of biofilm-related genes icaA,icaD,rhlI,and rhlR in the tested bacteria.They also demonstrated promising in vitro wound healing effects by promoting fibroblast cell proliferation and wound closure in a dose-dependent manner.A significant increase in the expression of HLA-G5 and VEGF-A genes as well as a marked decrease in the expression of NF-κB,IL-1β,and TNF-αgenes were observed in cells treated with ZNPs compared to the control group(P<0.05).Conclusions:ZNPs display promising antibacterial effects against S.aureus and P.aeruginosa and wound-healing effects by inhibiting biofilm formation,inducing angiogenesis,and reducing inflammation.However,further studies must be conducted to specify the accurate mechanisms of action and toxicity of ZNPs.
基金supported by Fundamental Research Program of Shanxi Province(202203021222199)the Taiyuan University of Science and Technology Scientific Research Initial Funding(20222090)the National Natural Science Foundation of China(21975019).
文摘Delayed and nonhealing of diabetic wounds imposes substantial economic burdens and physical pain on patients.Mesenchymal stem cells(MSCs)promote diabetic wound healing.Particularly when MSCs aggregate into multicellular spheroids,their therapeutic effect is enhanced.However,traditional culture platforms are inadequate for the efficient preparation and delivery of MSC spheroids,resulting in inefficiencies and inconveniences in MSC spheroid therapy.In this study,a three-dimensional porous nanofibrous dressing(NFD)is prepared using a combination of electrospinning and homogeneous freeze-drying.Using thermal crosslinking,the NFD not only achieves satisfactory elasticity but also maintains notable cytocompatibility.Through the design of its structure and chemical composition,the NFD allows MSCs to spontaneously form MSC spheroids with controllable sizes,serving as MSC spheroid delivery systems for diabetic wound sites.Most importantly,MSC spheroids cultured on the NFD exhibit improved secretion of vascular endothelial growth factor,basic fibroblast growth factor,and hepatocyte growth factor,thereby accelerating diabetic wound healing.The NFD provides a competitive strategy for MSC spheroid formation and delivery to promote diabetic wound healing.
基金supported by the National Natural Science Foundation of China(52273120,21975019,T2222029,and U21A20396)CAS Project for Young Scientists in Basic Research(YSBR-012)+3 种基金Incubation Foundation of Beijing Institute for Stem Cell and Regenerative Medicine(2022FH125,2023FH122)and,the China Scholarship Council(No.202206465017)the Fundamental Research Funds for the Central Universities(FRFTP-20-019A2,FRF-BR-20-03B)the Project was supported by the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing(Yantai)(AMGM2023F04)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA16020802).
文摘Wound dressing management is critical in healthcare,and frequent dressing changes for full-thickness skin wounds can hinder healing.Nanofiber dressings that resemble the extracellular matrix,have gained popularity in wound repair,however,it is challenging to explore how to frequently change it without affecting healing processing and avoiding secondary damage.Here,we developed a self-adhesive and detachable nanofiber dressing inspired by Andrias davidianus.Our asymmetric nanofiber dressing exhibits strong adhesion(26 kPa),to the wound at high temperature(approximately 25°C)to the wound surface and can be easily detached(4 kPa)at low temperature(below 8°C),enabling painless dressing changes that minimize secondary injuries.The dressing comprises an outer layer of polylactic acid which provides mechanical property,support,and pollution resistance,with an inner layer of nanofibrous membrane,composed of gelatin and Andrias davidianus skin secretions,which promotes cellular migration,enhances wound healing and possesses inherent antimicrobial properties.Furthermore,the all-natural nanofiber dressings can be prepared on a large scale and offer favorable biocompatibility to meet the basic requirements of wound dressings.These findings demonstrate the potential applicability of our multilayer nanofiber dressing for advancing wound healing practices.
文摘Diabetic foot ulcers are a prevalent complication that can significantly impact quality of life and necessitate high-level amputations. Hence, early diagnosis and treatment, elucidation of pathogenesis, and targeted countermeasures assume paramount importance. Wound healing entails a complex process wherein various components such as inflammatory cells, extracellular matrix, and immune cells intricately interact with each other. Due to the vulnerability of the skin to damage, inadequate or impaired wound healing has emerged as an urgent clinical challenge requiring resolution. This paper provides a comprehensive overview of the pathogenesis, diagnosis, and treatment of diabetic foot ulcers in order to offer theoretical guidance for specific interventions.
基金supported by the National Natural Science Foundation of China(No.22008201)Natural Science Foundation Innovation and Development Joint Fund Project of Chongqing(No.CSTB2023NSCQ-LZX0028)+2 种基金Fundamental Research Funds for the Central Universities(No.SWU-KW22004)Special Program Project(No.2022-JCJQ-ZD-224-12)Open Project Program of the Ministry of Education of the Key Laboratory of Textile Fiber and Products(No.Fzxw2021001).
文摘Developing novel antibacterial dressing protecting skin injuries from infection is essential for wound healing.In this study,sericin,a bio-waste produced during the degumming of silk cocoons,is utilized to exfoliate MoS_(2)layers and improve the dispersity and stability of MoS_(2)nanosheets(MoS_(2)-NSs).Moreover,owing to its ability to promote oxygen permeability and cell growth and its good biocompatibility,MoS_(2)-NS/Sericin maintains its photothermal property under an 808 nm light source for a strong antibacterial activity as well as improves the fibroblast migration,which accelerates wound healing.Fur-thermore,the in vitro experiments indicates that MoS_(2)-NS/Sericin can also scavenge reactive oxygen species(ROS)at an inflammatory stage of wound healing and transform classical activated macrophages(M1-type)into alternatively activated macrophages(M2-type),which is beneficial for wound recovery.Based on these results observed in vitro,full-thickness skin wound experiments are conducted on rats,and the corresponding results show that MoS_(2)/Sericin under 808 nm irradiation exhibits the best performance in promoting wound healing.Overall,MoS_(2)-NS/Sericin exhibits a high potential for bacteria-infected wound healing.
基金supported by the National Key Research and Development Program of China (Grant No.2020YFD1000300)the earmarked fund for CARS (Grant No.CARS-23-B10)+2 种基金the Key Research and Development Program of Hainan Province (Grant No.ZDKJ2021005)the Key Research and Development Program of Shandong Province (Grant No.LJNY202106)the Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences (Grant No.CAAS-ASTIP-IVFCAAS)。
文摘Graft healing involves a series of cytological and molecular events including wound responses, callus formation and vascular bundle remodelling. Hormones are important signalling molecules regulating plant development and responses to environmental stimuli. However,the detailed dynamics of phytohormones in graft healing remain elusive. In this research, internodes above and below the graft site were harvested from 0 to 168 h after grafting(HAG), and liquid chromatography tandem mass spectrometry(LC-MS/MS) was used to determinate jasmonic acid, auxin, cytokinin, ethylene, salicylic acid, abscisic acid and gibberellin levels during the graft healing process. Uniform manifold approximation and projection(UMAP) and k-means analyses were performed to explore hormone spatio-temporal dynamics. We found the stage-specific and asymmetric accumulation of phytohormones in the tomato graft healing process. At the early healing stage(before vascular bundle reconnection), IAA, cZ, ABA, JA and SA mainly accumulated above the graft site, while tZ and ACC mainly accumulated below the graft site. MEIAA, ICAld and IP mainly accumulated at the later stage. Comminated with the healing process, we suggested that JA is mainly involved in wound responses, IAA is beneficial to the formation of callus and vascular cell development, tZ promotes cell division, and IP is linked to vascular bundle remodelling. In addition, expression of JA-related genes SlMYC2 and SlJAZ2, IAA-related gene SlIAA1, tZ-related genes SlHP2 and SlRR8, and IP-related gene SlRR9 correlated with hormone accumulation. The findings provide important information about the hormones and genes involved in the tomato graft healing process.
文摘The main goal of the article is the creation and study of thermosensitive and wound-healing gelatin-alginate bio-polymer hydrogels modified with humic acids.Their rheological properties,swelling and contraction behavior were experimentally investigated,elucidated using Fourier transform infrared spectroscopy and used to achieve the physiological melting point,which is necessary for successful drug delivery.It has been shown that in the gelatin-alginate-humic acid biopolymer hydrogels systems,it is possible to obtain a gel-sol transition temperature close to the physiological temperature of 37℃,which is important for drug delivery in the treatment of wounds.By changing the type and concentration of humic acids in the gelatin-alginate hydrogel,it turned out to be achiev-able to regulate the softening time of the gel on the human body in the range from 6 to 20 min,which provides the possibility of controlled prolonged delivery of drugs.Based on the study of the influence of calcium ions on the properties of humic acids and ion exchange,as well as the interaction of humic acids,sodium alginate and gelatin with the formation of tighter gel networks,approaches to regulate the rate of softening of hydrogels at physiological temperature and their swelling,which simulates the absorption of exudate,were proposed and implemented.In addition,low shrinkage of the hydrogel surface due to cross-linking of gelatin-alginate networks when modified with humic acids was experimentally confirmed,which is important for avoiding problems of wound contracture and contour deformations when using dressings for wound healing.Thus,the developed opti-mized innovative biopolymer hydrogels synergistically combine the outstanding properties of natural molecular polymers and humic acids and are promising for the creation of effective medicines for wound healing.
基金Supported by Key Project of the Huzhou City Science and Technology Plan,No.2023GZ83.
文摘In this editorial,we discuss the article by Wen et al published.Diabetic foot ulcers are prevalent and serious complications of diabetes,significantly impacting patients’quality of life and often leading to disability or death,thereby placing a heavy burden on society.Effective diabetic wound healing is hindered by an imbalance in macrophage polarization;many macrophages fail to transition from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype,which is crucial for tissue remodelling and repair.The wound healing process is both dynamic and complex.Healthy M1 macrophages,which have strong phagocytic abilities,are vital during the inflammatory phase of diabetic wound healing.However,the failure to transition to M2 macrophages during the proliferative phase hinders wound healing.We anticipate the development of new therapies that can repair damaged M1 macrophages during the inflammatory phase and promote M2 macrophage polarization during the proliferative phase,thereby enhancing the overall healing process.
基金supported by the National Natural Science Foundation of China(Grant No.32271386)Zhejiang Engineering Research Center for Tissue Repair Materials(Grant No:WIUCASZZXF21001)+4 种基金Wenzhou Science and Technology Major Project(ZY2022028)Wenzhou Science and Technology Project(Y20220142)the seed grants from the Wenzhou Institute,University of Chinese Academy of Sciences(WIUCASQD2020013,WIUCASQD2021030)the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure(Grant Nos:SKL-202112SIC,SKL202213SIC)the founding from First Affiliated Hospital of Wenzhou Medical University.
文摘Infected wounds pose a significant global health challenge due to the persistence of bacterial biofilms and limited tissue self-repair.Nitric oxide(NO)functions as a potent antimicrobial agent,demonstrating a dual capacity for both antimicrobial action and tissue rejuvenation across varying concentrations.However,achieving controlled NO release at distinct stages of infected wound progression,simultaneously targeting biofilm removal and wound recovery,remains a formidable challenge.In this work,we introduce a smart electrospun fibrous membrane,featuring an interior laden with NO-loaded HKUST-1 particles and a porous external surface.Notably,the results reveal the photothermal property of HKUST-1 when exposed to near-infrared(NIR)light,enabling precise management of NO release contingent upon light conditions.During the initial phase of infection treatment,a significant NO release is triggered by near-infrared photothermal stimulation,synergistically complementing photothermal therapy to effectively eliminate bacterial biofilms.Subsequently,in the wound-healing phase,NO is released from the degrading fibrous membrane in a controlled and gradual manner,synergizing with trace amounts of copper ions released during MOF degradation.This collaborative mechanism accelerates the formation of blood vessels within the wound,thereby facilitating the healing process.This study suggests a promising and innovative approach for the effective treatment of infected wounds.
文摘This comprehensive review explores the intricate dynamics between psychosocial factors and chronic wound healing processes, specifically focusing on prevalent conditions such as pressure ulcers, diabetic foot ulcers, and venous leg ulcers. By examining the roles of psychiatric conditions, including depression, anxiety, and post-traumatic stress disorder (PTSD), this paper illuminates how these factors intricately influence wound healing dynamics, including mechanisms of pain perception and inflammatory responses. Furthermore, we evaluate the effectiveness of integrated biopsychosocial interventions, which encompass a holistic approach to wound care, thereby enhancing healing outcomes for dermatology patients. Future studies should focus on investigating the specific psychosocial determinants that significantly influence wound healing, exploring novel therapeutic strategies, and implementing personalized interventions to meet the unique needs of each patient. Such endeavors hold promise in advancing the fields of psychodermatology and wound management, fostering a deeper understanding and application of psychosocial considerations in dermatological care.