The infaunal polychaete Perinereis aibuhitensis Grube, distributes widelyalong Asian coasts and estuaries. In this research the particle reworking function of P.aibuhitensis was investigated in Beitang Estuary, Tianji...The infaunal polychaete Perinereis aibuhitensis Grube, distributes widelyalong Asian coasts and estuaries. In this research the particle reworking function of P.aibuhitensis was investigated in Beitang Estuary, Tianjin. The result showed that P.aibuhitensis displayed significant particle mixing function, in which small grain sizesediment particles were mixed more than the large size ones. Some small grain sizesediment particles could be ingested by P. aibuhitensis and egested with fecal pellets.展开更多
Intensive mid-Neoproterozoic magmatism is the salient feature of the Yangtze Block,preserving abundant information about crustal reworking and growth.Zircon U-Pb-Lu-Hf isotope analysis was performed on material from t...Intensive mid-Neoproterozoic magmatism is the salient feature of the Yangtze Block,preserving abundant information about crustal reworking and growth.Zircon U-Pb-Lu-Hf isotope analysis was performed on material from the Feidong Complex(FDC)and Zhangbaling Group(ZBLG)of the Zhangbaling Uplift,in order to determine the age and magmatic source of the Neoproterozoic igneous rocks as well as the detrital provenance for the sedimentary rocks,to further provide important data for understanding the mid-Neoproterozoic crustal evolution of the Northeast Yangtze Block.The amphibolite and gneissic granites in the Feidong Complex(FDC)gave similar protolith ages of 782-776 Ma.The synmagmatic zircons exhibited variable negativeεHf(t)values of-26.9 to-8.3.Early(ca.2.4 Ga)to late Paleoproterozoic(ca.2.0-1.9 Ga)inherited zircons were found in the gneissic monzogranite,with negativeεHf(t)values of-11.2 to-7.2,indicating strong reworking of the ancient crustal materials of the Northeast Yangtze Block.Whereas the amphibolites represent minor crustal growth through emplacement of continental rifting-related mafic magmas.The quartz-keratophyres in the Xileng Formation of the ZBLG in contrast systematically yield young protolith crystallization ages of 754-727 Ma with highεHf(t)values of-2.0 to+5.6,indicating their derivation from the reworking of juvenile crustal materials.The detrital zircons from the metasiltstone in the Beijiangjun Formation yield variable^(206)Pb/^(238)U ages(871-644 Ma)with a peak age at 741±11 Ma andεHf(t)values of-4.3 to+5.3,which is consistent with those of the Xileng Formation,but distinct from the FDC,indicating that the provenance of the metasiltstone is primarily the underlying Xileng Formation.The mid-Neoproterozoic igneous and sedimentary rocks of the Zhangbaling Uplift were products from continental rifting zones along the northern margin of the Yangtze Block,situated in different positions from the Susong Complex and the Haizhou Group.The transition from ancient to juvenile crustal sources for felsic magmatic rocks is attributed to gradually increased crustal extension during continental rifting.展开更多
The Central Asian Orogenic Belt(CAOB)is one of the largest Phanerozoic accretionary orogen.(Windley et al.,1990,2007;Jahn et al.,2000a,b,c;Yakubchuk,2002,2004;Xiao et al.,2003,2004).It is the optimal study area fo...The Central Asian Orogenic Belt(CAOB)is one of the largest Phanerozoic accretionary orogen.(Windley et al.,1990,2007;Jahn et al.,2000a,b,c;Yakubchuk,2002,2004;Xiao et al.,2003,2004).It is the optimal study area for revealing the accretion and reworking processes of the continental crust.The Khanka Massif is located in the most eastern part of the CAOB,and mainly crops out in the territory of Russia,with a small segment in NE China.In addition,a large number of multi-stage granitic rocks are formed in geological evolution in this area,recording amounts of information about crustal accretion and reworking processes(De Paolo et al.,1991;Rudnick,1995;Wu et al.,2011).In view of this,this paper uses the spatial-temporal variations of trace elements and zircon Hf isotopic compositions of phanerozoic granitoids within the Khanka Massif as a case to reveal the crustal accretion and reworking processes of micro continental massifs from the orogenic belt,further to understand the formation and evolution processes and mechanisms of the global continental crust.According to the statistics of zircon U-Pb ages of granitoids in the Khanka Massif,indicate that the granitic magmatisms in the Khanka Massif have eleven peaks:492 Ma,460 Ma,445Ma,430Ma,425Ma,302Ma,287Ma,258Ma,249 Ma,216Ma and 213Ma,it can be divided into eight main stages:Late Cambrian,Middle-Late Ordovician,Middle Silurian,Late Carboniferous,EarlyPermian,Middle-Late Permian—Early Triassic,Late Triassic-Early Jurassic,Early Cretaceous.The Phanerozoic granitoids in Khanka massif are selectedinthispaperasasuiteof granodiorite-monzogranite-syenogranite.TheSi O2contents of the Phanerozoic granitoids exceed 65%,and has high Al2O3,low Mg#,TFe2O3,Cr,Co and Ni contents.This suggests that mixture with mantle-derived magma did not occur,and it should be a typical crustal source(Lu and Xu,2011).Combined with evident characteristics of light rare-earth elements(LREEs)and large ion lithophile elements(LILEs)enrichment,and heavy rare-earth elements(HREEs)and high field-strength elements(HFSEs)loss,we suggest that the primary magma was derived by partial melting of lower crustal material(Xu et al.,2009),and geochemical properties of the Phanerozoic granitoids essentially reflect the nature of the magmatic source region.According to the temporal variation of zircon Hf isotopic data of Phanerozoic granitioids,zircon Hf isotopic compositions of Phanerozoic granitoids have a obvious correlation with age.With the decrease of formation time ofthePhanerozoicgranitoids(Late Cambrian;iddle-LateOrdovician;iddle Silurian;arlyPermian;iddle-LatePermian–Early Triassic;ate Triassic-Early Jurassic),εHf(t)values of zircons gradually increase,whereas their TDM2 ages gradually decrease(Paleoproterozoic–Neoproterozoic),suggesting that the generation of granitic magmas from the Khanka Massif could have experienced the change from the melting of the ancient crust to the juvenile crust during Paleozoic to Mesozoic.According to the sample location,it can be found thatεHf(t)values of Phanerozoic granitoids have the tendency to decrease with latitude increase,showing that components of the ancient continental crust gradually increase from south to north.However,at the same latitude range,theεHf(t)values of Phanerozoic granitoids also inconsistent.Taken together,these differences reveal the horizontal and vertical heterogeneity of the lower continental crust within the Khanka Massif.According to the relative probability of two-stage model(TDM2)ages of zircon Hf isotope from Phanerozoic granitoids within the Khanka massif,it could be divided into three stages:(1)Late Paleoproterozoic(2)Mesoproterozoic(3)Neoproterozoic.It reveals that the main part of the continental crust within the Khanka MassifwereformedinLate Paleoproterozoic–Neoproterozoic.The Phanerozoic granitoids in the Khanka Massif reworked from the source rockswithdifferent ages(Paleoproterozoic–Mesoproterozoic–Neoproterozoic).展开更多
The contribution of benthic foraminifera to sediment bioturbation has widely been overlooked despite their huge abundance in intertidal soft sediments. In this preliminary study, we specifically chose to focus on two ...The contribution of benthic foraminifera to sediment bioturbation has widely been overlooked despite their huge abundance in intertidal soft sediments. In this preliminary study, we specifically chose to focus on two key species of benthic foraminifera in temperate intertidal mudflats, <i><span style="font-size:12px;font-family:Verdana;">Quinqueloculina seminula</span></i><span style="font-size:12px;font-family:Verdana;"> and </span><i><span style="font-size:12px;font-family:Verdana;">Ammonia</span></i> <i><span style="font-size:12px;font-family:Verdana;">tepida</span></i><span style="font-size:12px;font-family:Verdana;">, and first experimentally investigated their individual movements at the sediment surface. We subsequently derived from these observations the individual-level surface sediment reworking rates, and used the actual abundance of these species to extrapolate these rates at the population level. Individual surface sediment reworking rates </span><i><span style="font-size:12px;font-family:Verdana;">SSRR</span><sub><span style="font-size:12px;font-family:Verdana;">i</span></sub></i><span style="font-size:12px;font-family:Verdana;"> ranged between 0.13 and 0.32 cm<sup>2</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;"><sup><span style="font-family:Verdana;"></span></sup></span><span style="font-size:12px;font-family:Verdana;">ind</span><span style="font-family:Verdana;font-size:8.33333px;"><sup>-1</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;font-family:Verdana;">day<sup>-1</sup></span> <span style="font-size:12px;font-family:Verdana;">for</span><span style="font-size:10pt;font-family:;" "=""> <i><span style="font-size:12px;font-family:Verdana;">Q. seminula</span></i><span style="font-size:12px;font-family:Verdana;">, and between 0.12 and 0.28 cm<sup>2</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;font-family:Verdana;">ind<sup>-1</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;font-family:Verdana;">day<sup>-1</sup></span><span style="font-size:12px;font-family:Verdana;"> for </span><i><span style="font-size:12px;font-family:Verdana;">A. tepida</span></i><span style="font-size:12px;font-family:Verdana;">. Population-level surface sediment reworking rates were subsequently estimated as ranging between 11,484 and 28,710 cm<sup>2</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;font-family:Verdana;">m<sup>-2</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;font-family:Verdana;">day<sup>-1</sup></span><span style="font-size:12px;font-family:Verdana;"> for </span><i><span style="font-size:12px;font-family:Verdana;">Q. seminula</span></i><span style="font-size:12px;font-family:Verdana;"> and 27,876 and 65,044 cm<sup>2</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;font-family:Verdana;">m<sup>-2</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;font-family:Verdana;">day<sup>-1</sup></span><span style="font-size:12px;font-family:Verdana;"> for </span><i><span style="font-size:12px;font-family:Verdana;">A. tepida</span></i><span style="font-size:12px;font-family:Verdana;">. Noticeably, these reworking rates are comparable to, and eventually even higher than, the rates reported in the literature for populations of intertidal macro-invertebrates, such as the annelid polychaete </span><i><span style="font-size:12px;font-family:Verdana;">Melinna palmata</span></i><span style="font-size:12px;font-family:Verdana;"> and the bivalve </span><i><span style="font-size:12px;font-family:Verdana;">Abra</span></i> <i><span style="font-size:12px;font-family:Verdana;">ovata</span></i><span style="font-size:12px;font-family:Verdana;">. Taken together these results suggest that despite their minute size intertidal benthic foraminifera are, thanks to their abundance, non-negligible contributors to the reworking of surface sediment, and may then play an unanticipated role in the benthic ecosystem functioning, through e.g. the enhancement of fluxes at the sediment-water interface.</span></span>展开更多
In intercontinental trade and economics goods are bought from a global supplier.On occasion,the expected lot may include a fraction of defective items.These imperfect items still have worth and can be sold to customer...In intercontinental trade and economics goods are bought from a global supplier.On occasion,the expected lot may include a fraction of defective items.These imperfect items still have worth and can be sold to customers after repair.It is cost-effective and sustainable to rework such items in nearby repair workshops rather than return them.The reworked items can be returned from the workshop to the buyer when shortages are equal to the quantity of imperfect items.In the meantime,the supplier correspondingly deals a multi-period delay-in-payments strategy with purchaser.The entire profit has been maximized with paybacks for interim financing.This study aims to develop a synergic inventory model to get the most profit by making an allowance for reworking,multi-period delay-in-payments policy,and shortages.The findings of the proposed model augment inventory management performance by monitoring cycle time as well as fraction of phase with optimistic inventory for a supply chain.The results demonstrate that profit is smaller if the permitted period given by supplier to buyer is equal to or greater than the cycle time,and profit is greater if the permitted period is smaller than the cycle time.The algebraic method is engaged to make a closed system optimum solution.The mathematical experiment of this study is constructed to provide management insights and tangible practices.展开更多
This paper develops an economic production quantity(EPQ)model for a singlemanufacturer multi-retailer(SMMR)production and reworking system with green and environmental sensitive customer demand.The minimum cost of the...This paper develops an economic production quantity(EPQ)model for a singlemanufacturer multi-retailer(SMMR)production and reworking system with green and environmental sensitive customer demand.The minimum cost of the manufacturer has obtained under carbon emissions(CE)policies and discrete ordering cost reduction.The model is used to optimize the total number of shipments,greening investment level,environmental measure,and lot size for productions and rework.This research work determines that the manufacturer’s and retailer’s profits will be increased after considering the environmental and green dependent demand of customers.Further,the development of green and environmental demand is proposed to minimize the CE and maximize the demand for the customers.In the existing literature,no discrete investment is developed for reducing the cost of ordering for the retailer/buyer.However,in this paper,we have introduced it.We provide numerical examples to explain the models and determine the significance of model parameters.展开更多
This paper summarizes the geochronological, geochemical and zircon Hf isotopic data for Mesozoic granitoids within the Erguna Massif, NE China, and discusses the spatial-temporal variation of zircon Hf isotopic compos...This paper summarizes the geochronological, geochemical and zircon Hf isotopic data for Mesozoic granitoids within the Erguna Massif, NE China, and discusses the spatial-temporal variation of zircon Hf isotopic compositions, with the aim of constraining the accretion and reworking processes of continental crust within the Erguna Massif, and shedding light on the crustal evolution of the eastern segment of the Central Asian Orogenic Belt. Based on the zircon U-Pb dating results, the Mesozoic granitic magmatisms within the Erguna Massif can be subdivided into five stages: Early-Middle Triassic(249–237 Ma), Late Triassic(229–201 Ma), Early-Middle Jurassic(199–171 Ma), Late Jurassic(155–149 Ma), and Early Cretaceous(145–125 Ma).The Triassic to Early-Middle Jurassic granitoids are mainly I-type granites and minor adakitic rocks, whereas the Late Jurassic to Early Cretaceous granitoids are mainly A-type granites. This change in magmatism is consistent with the southward subduction of the Mongol-Okhotsk oceanic plate and subsequent collision and crustal thickening, followed by post-collision extension. Zircon Hf isotopic data indicate that crustal accretion of the Erguna Massif occurred in the Mesoproterozoic and Neoproterozoic. ZirconεHf(t) values increase gradually over time, whereas two-stage model(TDM2) ages decrease throughout the Mesozoic. The latter result indicates a change in the source of granitic magmas from the melting of ancient crust to more juvenile crust. Zircon εHf(t)values also exhibit spatial variations, with values decreasing northwards, whereas TDM2 ages increase. This pattern suggests that,moving from south to north, there is an increasing component of ancient crustal material within the lower continental crust of the Erguna Massif. Even if at the same latitude, the zircon Hf isotopic compositions are also inconsistent. These results reveal lateral and vertical heterogeneities in the lower continental crust of the Erguna Massif during the Mesozoic, which we use as the basis of a structural and tectonic model for this region.展开更多
Transported by wind and water,the relatively old sediments can deposit in the terminal lake of an inland drainage basin.The reworking effect can affect the lake sediments 14 C dating and explanations for proxies.The Z...Transported by wind and water,the relatively old sediments can deposit in the terminal lake of an inland drainage basin.The reworking effect can affect the lake sediments 14 C dating and explanations for proxies.The Zhuye Lake is the terminal lake of the Shiyang River Basin.Previous studies indicated that sediments in different locations of the lake basin showed different climatic change patterns.And then,some radiocarbon dates were inverted for some Late Pleistocene sections.Whether this phenomenon is related with the reworking effect? The pollen concentrates 14 C dating can avoid the reservoir effect,which is an ideal method for studying the reworking effect.In this study,we used the pollen concentrates as dating materials and dated five Holocene sections in the Zhuye Lake Basin.Based on the 14 C dates comparison between the pollen concentrates,organic matter,and shells,the pollen concentrates dates are relatively older than other dating materials.Based on the result,the reworking effect worked in the Zhuye Lake Basin during the Holocene;however,in different locations of the lake basin the reworking effects were in different levels.Furthermore,the Holocene lacustrine deposits were formed mostly during the early and middle Holocene.This study provided clues for reworking effect studies of other lakes in arid China.展开更多
The Qinling Orogen resulted from the collision between the North and South China blocks in the Triassic.Mesozoic granitoids,ranging from the Triassic to the Cretaceous,are widely distributed in this orogen,and they pr...The Qinling Orogen resulted from the collision between the North and South China blocks in the Triassic.Mesozoic granitoids,ranging from the Triassic to the Cretaceous,are widely distributed in this orogen,and they provide excellent clues for understanding the crustal evolution and geodynamic evolution of the orogenic belt.The Triassic belt is mostly located in the South Qinling,whereas the Cretaceous belt is located mostly in the North Qinling.The Taibai complex pluton is located at the conjunction of the two belts.Here we present a data set comprising zircon U-Pb dating and elemental and Sr-Nd isotopic geochemistry for Late Mesozoic granite and microgranular enclaves(MME)exposed in the Taibai complex pluton.The granite and MME yield concordant U-Pb zircon ages of 124 to 118 Ma,indicating that they were products of roughly simultaneous magmatism in the Late Mesozoic.The granite rocks are high-K,calc-alkaline,and weakly peraluminous in compositions,and they are characterized by enrichment in large ion lithophile elements(e.g.,Rb,Ba),depletion in high field strength elements(e.g.,Nb,Ta,Zr,Ti),and variable Sr/Y ratios of 7.64 to 63.6.Low MgO,Cr,and Ni contents imply that the magma(s)were essentially crust-derived.Both the granite and the MME show relative depletion in Sr-Nd isotopic composition(initial ^(87)Sr/^(86)Sr of 0.7044 to 0.7067,initialε_(Nd) values of-3.4 to-2.6),suggesting that the magma(s)originated from juvenile crustal rocks.These Sr-Nd isotopic characteristics are significantly different from those of other Late Mesozoic granitoids exposed elsewhere in the Qinling orogenic belt,which formed from much older and enriched sources and with negligible contributions from mantle or juvenile crust.We propose a reworking event of the juvenile crust during the Late Mesozoic that was triggered by the tectonic extension and subsequent asthenospheric upwelling that occurred in eastern China.展开更多
This paper presents a synthesis and analysis of geochronological, geochemical, and zircon Hf isotopic data of Phanerozoic granitoids within the Khanka massif, with the aim of revealing the ac- cretion and reworking pr...This paper presents a synthesis and analysis of geochronological, geochemical, and zircon Hf isotopic data of Phanerozoic granitoids within the Khanka massif, with the aim of revealing the ac- cretion and reworking processes of continental crust within the massif. Zircon U-Pb dating indicates that Phanerozoie granitic magmafism within the Khanka massif can be subdivided into eight stages: Late Cambrian, Middle-Late Ordovieian, Middle Silurian, Late Carboniferous, Early Permian, Middle--Late Permian to Early Triassic, Late Triassic-Early Jurassic, and Early Cretaceous. The zircon Hf isotopic compositions reveal that crustal accretionary events took place mainly in the Mesoprotero- zoie and Neoproterozoic. Through time, the zircon eHf(t) values gradually increase, indicating that the Phanerozoie granitic magmas were derived from the melting of progressively less ancient and more ju- venile crust. The zircon eHdt) values exhibit a gradual decrease with the increases in latitude, which im- plies that the amounts of ancient crustal components within the lower continental crust of the Khanka massif increased from south to north. At the same latitude range, the zircon Hf isotopic compositions also display some variations. We conclude, therefore, that significant horizontal and vertical heteroge- neities existed in the lower continental crust of the Khanka massif during the Phanerozoic.展开更多
Clastic sedimentary rocks are natural samples of the exposed continental crust over large areas. The Hanjiang (汉江) River drains the northern Yangtze craton, including the South Qinling (秦岭) belt and the northe...Clastic sedimentary rocks are natural samples of the exposed continental crust over large areas. The Hanjiang (汉江) River drains the northern Yangtze craton, including the South Qinling (秦岭) belt and the northern parts of the Yangtze craton. Detrital zircons from this river thus provide an ideal sample for studying the formation and evolution of the northern Yangtze craton. Here we report laser ablation inductively coupled plasma mass spectrometer U-Pb ages of 122 detrital zircons from one sand sample of the Hanjiang River. The 110 concordant zircons reveal four major age groups of 768, 444, 212, and 124 Ma, which well correlate with known magmatic events in the northern Yangtze craton. A minor group is present at 1 536 Ma, which is less known in the study area. Only seven zircons have ages of 〉1 750 Ma. Our results show that the Early Paleozoic, Late Triassic, and Early Cretaceous are important episodes of zircon growth and crustal growth/reworking in addition to the previously documented Neoproterozoic event. Our results suggest very limited exposures of Paleoproterozoic and Archean rocks in the northern parts of the Yangtze craton.展开更多
Craton basins are a significant petroliferous provenance. Having undergone multiple open- dose tectonic cycles and strong reworking of the late Cenozoic tectonic movement, the craton basins in China are highly broken....Craton basins are a significant petroliferous provenance. Having undergone multiple open- dose tectonic cycles and strong reworking of the late Cenozoic tectonic movement, the craton basins in China are highly broken. This has resulted in multi-source and multiphase hydrocarbon generation and later hydrocarbon accumulation so that a complicated spatial assemblage of primary, paraprimary and secondary oil-gas pools has been formed. The primary factors controlling hydrocarbon accumulation include hydrocarbon-generating depressions, paleouplifts, paleoslopes, unconformity surfaces, paleo-karst, faults and fissure systems as well as the later conservation conditions. In consequence, the strategy of exploration for China's craton basins is to identify the effective source rocks, pay attention to the different effects of paleohighs and late reworking, enhance studies of the secondary storage space, attach importance to the exploration of lithologic oil-gas reservoirs and natural gas pools, and approach consciously from the secondary oil pools to the targets near the source rocks. At the same time, a complete system of technologies and techniques must be built up.展开更多
Black shales are marine sediments with argillaceous, silty and siliceous compositions and high contents of organic materials, disseminated pyrite and uranium. Uraniferous black shale has uranium content of more than 2...Black shales are marine sediments with argillaceous, silty and siliceous compositions and high contents of organic materials, disseminated pyrite and uranium. Uraniferous black shale has uranium content of more than 20 ppm.展开更多
基金supported by the Chinese Natural Science Foundation(Funding Numbers:41303070,21307045)
文摘The infaunal polychaete Perinereis aibuhitensis Grube, distributes widelyalong Asian coasts and estuaries. In this research the particle reworking function of P.aibuhitensis was investigated in Beitang Estuary, Tianjin. The result showed that P.aibuhitensis displayed significant particle mixing function, in which small grain sizesediment particles were mixed more than the large size ones. Some small grain sizesediment particles could be ingested by P. aibuhitensis and egested with fecal pellets.
基金supported by funds from the Natural Science Foundation of China(41772228)。
文摘Intensive mid-Neoproterozoic magmatism is the salient feature of the Yangtze Block,preserving abundant information about crustal reworking and growth.Zircon U-Pb-Lu-Hf isotope analysis was performed on material from the Feidong Complex(FDC)and Zhangbaling Group(ZBLG)of the Zhangbaling Uplift,in order to determine the age and magmatic source of the Neoproterozoic igneous rocks as well as the detrital provenance for the sedimentary rocks,to further provide important data for understanding the mid-Neoproterozoic crustal evolution of the Northeast Yangtze Block.The amphibolite and gneissic granites in the Feidong Complex(FDC)gave similar protolith ages of 782-776 Ma.The synmagmatic zircons exhibited variable negativeεHf(t)values of-26.9 to-8.3.Early(ca.2.4 Ga)to late Paleoproterozoic(ca.2.0-1.9 Ga)inherited zircons were found in the gneissic monzogranite,with negativeεHf(t)values of-11.2 to-7.2,indicating strong reworking of the ancient crustal materials of the Northeast Yangtze Block.Whereas the amphibolites represent minor crustal growth through emplacement of continental rifting-related mafic magmas.The quartz-keratophyres in the Xileng Formation of the ZBLG in contrast systematically yield young protolith crystallization ages of 754-727 Ma with highεHf(t)values of-2.0 to+5.6,indicating their derivation from the reworking of juvenile crustal materials.The detrital zircons from the metasiltstone in the Beijiangjun Formation yield variable^(206)Pb/^(238)U ages(871-644 Ma)with a peak age at 741±11 Ma andεHf(t)values of-4.3 to+5.3,which is consistent with those of the Xileng Formation,but distinct from the FDC,indicating that the provenance of the metasiltstone is primarily the underlying Xileng Formation.The mid-Neoproterozoic igneous and sedimentary rocks of the Zhangbaling Uplift were products from continental rifting zones along the northern margin of the Yangtze Block,situated in different positions from the Susong Complex and the Haizhou Group.The transition from ancient to juvenile crustal sources for felsic magmatic rocks is attributed to gradually increased crustal extension during continental rifting.
文摘The Central Asian Orogenic Belt(CAOB)is one of the largest Phanerozoic accretionary orogen.(Windley et al.,1990,2007;Jahn et al.,2000a,b,c;Yakubchuk,2002,2004;Xiao et al.,2003,2004).It is the optimal study area for revealing the accretion and reworking processes of the continental crust.The Khanka Massif is located in the most eastern part of the CAOB,and mainly crops out in the territory of Russia,with a small segment in NE China.In addition,a large number of multi-stage granitic rocks are formed in geological evolution in this area,recording amounts of information about crustal accretion and reworking processes(De Paolo et al.,1991;Rudnick,1995;Wu et al.,2011).In view of this,this paper uses the spatial-temporal variations of trace elements and zircon Hf isotopic compositions of phanerozoic granitoids within the Khanka Massif as a case to reveal the crustal accretion and reworking processes of micro continental massifs from the orogenic belt,further to understand the formation and evolution processes and mechanisms of the global continental crust.According to the statistics of zircon U-Pb ages of granitoids in the Khanka Massif,indicate that the granitic magmatisms in the Khanka Massif have eleven peaks:492 Ma,460 Ma,445Ma,430Ma,425Ma,302Ma,287Ma,258Ma,249 Ma,216Ma and 213Ma,it can be divided into eight main stages:Late Cambrian,Middle-Late Ordovician,Middle Silurian,Late Carboniferous,EarlyPermian,Middle-Late Permian—Early Triassic,Late Triassic-Early Jurassic,Early Cretaceous.The Phanerozoic granitoids in Khanka massif are selectedinthispaperasasuiteof granodiorite-monzogranite-syenogranite.TheSi O2contents of the Phanerozoic granitoids exceed 65%,and has high Al2O3,low Mg#,TFe2O3,Cr,Co and Ni contents.This suggests that mixture with mantle-derived magma did not occur,and it should be a typical crustal source(Lu and Xu,2011).Combined with evident characteristics of light rare-earth elements(LREEs)and large ion lithophile elements(LILEs)enrichment,and heavy rare-earth elements(HREEs)and high field-strength elements(HFSEs)loss,we suggest that the primary magma was derived by partial melting of lower crustal material(Xu et al.,2009),and geochemical properties of the Phanerozoic granitoids essentially reflect the nature of the magmatic source region.According to the temporal variation of zircon Hf isotopic data of Phanerozoic granitioids,zircon Hf isotopic compositions of Phanerozoic granitoids have a obvious correlation with age.With the decrease of formation time ofthePhanerozoicgranitoids(Late Cambrian;iddle-LateOrdovician;iddle Silurian;arlyPermian;iddle-LatePermian–Early Triassic;ate Triassic-Early Jurassic),εHf(t)values of zircons gradually increase,whereas their TDM2 ages gradually decrease(Paleoproterozoic–Neoproterozoic),suggesting that the generation of granitic magmas from the Khanka Massif could have experienced the change from the melting of the ancient crust to the juvenile crust during Paleozoic to Mesozoic.According to the sample location,it can be found thatεHf(t)values of Phanerozoic granitoids have the tendency to decrease with latitude increase,showing that components of the ancient continental crust gradually increase from south to north.However,at the same latitude range,theεHf(t)values of Phanerozoic granitoids also inconsistent.Taken together,these differences reveal the horizontal and vertical heterogeneity of the lower continental crust within the Khanka Massif.According to the relative probability of two-stage model(TDM2)ages of zircon Hf isotope from Phanerozoic granitoids within the Khanka massif,it could be divided into three stages:(1)Late Paleoproterozoic(2)Mesoproterozoic(3)Neoproterozoic.It reveals that the main part of the continental crust within the Khanka MassifwereformedinLate Paleoproterozoic–Neoproterozoic.The Phanerozoic granitoids in the Khanka Massif reworked from the source rockswithdifferent ages(Paleoproterozoic–Mesoproterozoic–Neoproterozoic).
文摘The contribution of benthic foraminifera to sediment bioturbation has widely been overlooked despite their huge abundance in intertidal soft sediments. In this preliminary study, we specifically chose to focus on two key species of benthic foraminifera in temperate intertidal mudflats, <i><span style="font-size:12px;font-family:Verdana;">Quinqueloculina seminula</span></i><span style="font-size:12px;font-family:Verdana;"> and </span><i><span style="font-size:12px;font-family:Verdana;">Ammonia</span></i> <i><span style="font-size:12px;font-family:Verdana;">tepida</span></i><span style="font-size:12px;font-family:Verdana;">, and first experimentally investigated their individual movements at the sediment surface. We subsequently derived from these observations the individual-level surface sediment reworking rates, and used the actual abundance of these species to extrapolate these rates at the population level. Individual surface sediment reworking rates </span><i><span style="font-size:12px;font-family:Verdana;">SSRR</span><sub><span style="font-size:12px;font-family:Verdana;">i</span></sub></i><span style="font-size:12px;font-family:Verdana;"> ranged between 0.13 and 0.32 cm<sup>2</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;"><sup><span style="font-family:Verdana;"></span></sup></span><span style="font-size:12px;font-family:Verdana;">ind</span><span style="font-family:Verdana;font-size:8.33333px;"><sup>-1</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;font-family:Verdana;">day<sup>-1</sup></span> <span style="font-size:12px;font-family:Verdana;">for</span><span style="font-size:10pt;font-family:;" "=""> <i><span style="font-size:12px;font-family:Verdana;">Q. seminula</span></i><span style="font-size:12px;font-family:Verdana;">, and between 0.12 and 0.28 cm<sup>2</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;font-family:Verdana;">ind<sup>-1</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;font-family:Verdana;">day<sup>-1</sup></span><span style="font-size:12px;font-family:Verdana;"> for </span><i><span style="font-size:12px;font-family:Verdana;">A. tepida</span></i><span style="font-size:12px;font-family:Verdana;">. Population-level surface sediment reworking rates were subsequently estimated as ranging between 11,484 and 28,710 cm<sup>2</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;font-family:Verdana;">m<sup>-2</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;font-family:Verdana;">day<sup>-1</sup></span><span style="font-size:12px;font-family:Verdana;"> for </span><i><span style="font-size:12px;font-family:Verdana;">Q. seminula</span></i><span style="font-size:12px;font-family:Verdana;"> and 27,876 and 65,044 cm<sup>2</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;font-family:Verdana;">m<sup>-2</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;font-family:Verdana;">day<sup>-1</sup></span><span style="font-size:12px;font-family:Verdana;"> for </span><i><span style="font-size:12px;font-family:Verdana;">A. tepida</span></i><span style="font-size:12px;font-family:Verdana;">. Noticeably, these reworking rates are comparable to, and eventually even higher than, the rates reported in the literature for populations of intertidal macro-invertebrates, such as the annelid polychaete </span><i><span style="font-size:12px;font-family:Verdana;">Melinna palmata</span></i><span style="font-size:12px;font-family:Verdana;"> and the bivalve </span><i><span style="font-size:12px;font-family:Verdana;">Abra</span></i> <i><span style="font-size:12px;font-family:Verdana;">ovata</span></i><span style="font-size:12px;font-family:Verdana;">. Taken together these results suggest that despite their minute size intertidal benthic foraminifera are, thanks to their abundance, non-negligible contributors to the reworking of surface sediment, and may then play an unanticipated role in the benthic ecosystem functioning, through e.g. the enhancement of fluxes at the sediment-water interface.</span></span>
文摘In intercontinental trade and economics goods are bought from a global supplier.On occasion,the expected lot may include a fraction of defective items.These imperfect items still have worth and can be sold to customers after repair.It is cost-effective and sustainable to rework such items in nearby repair workshops rather than return them.The reworked items can be returned from the workshop to the buyer when shortages are equal to the quantity of imperfect items.In the meantime,the supplier correspondingly deals a multi-period delay-in-payments strategy with purchaser.The entire profit has been maximized with paybacks for interim financing.This study aims to develop a synergic inventory model to get the most profit by making an allowance for reworking,multi-period delay-in-payments policy,and shortages.The findings of the proposed model augment inventory management performance by monitoring cycle time as well as fraction of phase with optimistic inventory for a supply chain.The results demonstrate that profit is smaller if the permitted period given by supplier to buyer is equal to or greater than the cycle time,and profit is greater if the permitted period is smaller than the cycle time.The algebraic method is engaged to make a closed system optimum solution.The mathematical experiment of this study is constructed to provide management insights and tangible practices.
基金supported by University Grants Commission–Special Assistance Program(DSA I)[grant number F.510/7/DSA-I/2015(SAP-I)],Government of India,New Delhi.
文摘This paper develops an economic production quantity(EPQ)model for a singlemanufacturer multi-retailer(SMMR)production and reworking system with green and environmental sensitive customer demand.The minimum cost of the manufacturer has obtained under carbon emissions(CE)policies and discrete ordering cost reduction.The model is used to optimize the total number of shipments,greening investment level,environmental measure,and lot size for productions and rework.This research work determines that the manufacturer’s and retailer’s profits will be increased after considering the environmental and green dependent demand of customers.Further,the development of green and environmental demand is proposed to minimize the CE and maximize the demand for the customers.In the existing literature,no discrete investment is developed for reducing the cost of ordering for the retailer/buyer.However,in this paper,we have introduced it.We provide numerical examples to explain the models and determine the significance of model parameters.
基金supported by the MOST of China (Grant No. 2016YFC0600403)the National Natural Science Foundation of China (Grant No. 41330206)
文摘This paper summarizes the geochronological, geochemical and zircon Hf isotopic data for Mesozoic granitoids within the Erguna Massif, NE China, and discusses the spatial-temporal variation of zircon Hf isotopic compositions, with the aim of constraining the accretion and reworking processes of continental crust within the Erguna Massif, and shedding light on the crustal evolution of the eastern segment of the Central Asian Orogenic Belt. Based on the zircon U-Pb dating results, the Mesozoic granitic magmatisms within the Erguna Massif can be subdivided into five stages: Early-Middle Triassic(249–237 Ma), Late Triassic(229–201 Ma), Early-Middle Jurassic(199–171 Ma), Late Jurassic(155–149 Ma), and Early Cretaceous(145–125 Ma).The Triassic to Early-Middle Jurassic granitoids are mainly I-type granites and minor adakitic rocks, whereas the Late Jurassic to Early Cretaceous granitoids are mainly A-type granites. This change in magmatism is consistent with the southward subduction of the Mongol-Okhotsk oceanic plate and subsequent collision and crustal thickening, followed by post-collision extension. Zircon Hf isotopic data indicate that crustal accretion of the Erguna Massif occurred in the Mesoproterozoic and Neoproterozoic. ZirconεHf(t) values increase gradually over time, whereas two-stage model(TDM2) ages decrease throughout the Mesozoic. The latter result indicates a change in the source of granitic magmas from the melting of ancient crust to more juvenile crust. Zircon εHf(t)values also exhibit spatial variations, with values decreasing northwards, whereas TDM2 ages increase. This pattern suggests that,moving from south to north, there is an increasing component of ancient crustal material within the lower continental crust of the Erguna Massif. Even if at the same latitude, the zircon Hf isotopic compositions are also inconsistent. These results reveal lateral and vertical heterogeneities in the lower continental crust of the Erguna Massif during the Mesozoic, which we use as the basis of a structural and tectonic model for this region.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41001116 and J1030519)the Fundamental Research Fund for the Central Universities (Grant No. LZUJBKY-2010-99)
文摘Transported by wind and water,the relatively old sediments can deposit in the terminal lake of an inland drainage basin.The reworking effect can affect the lake sediments 14 C dating and explanations for proxies.The Zhuye Lake is the terminal lake of the Shiyang River Basin.Previous studies indicated that sediments in different locations of the lake basin showed different climatic change patterns.And then,some radiocarbon dates were inverted for some Late Pleistocene sections.Whether this phenomenon is related with the reworking effect? The pollen concentrates 14 C dating can avoid the reservoir effect,which is an ideal method for studying the reworking effect.In this study,we used the pollen concentrates as dating materials and dated five Holocene sections in the Zhuye Lake Basin.Based on the 14 C dates comparison between the pollen concentrates,organic matter,and shells,the pollen concentrates dates are relatively older than other dating materials.Based on the result,the reworking effect worked in the Zhuye Lake Basin during the Holocene;however,in different locations of the lake basin the reworking effects were in different levels.Furthermore,the Holocene lacustrine deposits were formed mostly during the early and middle Holocene.This study provided clues for reworking effect studies of other lakes in arid China.
基金financially supported by the Ministry of Science and Technology of China (No.2016YFC0600404)the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB42020303)+1 种基金the National Natural Science Foundation of China (Nos.41872049,41372072,and 41903006)the partly supported by the China Postdoctoral Science Foundation (Nos.2019M652497 and2020T130656)
文摘The Qinling Orogen resulted from the collision between the North and South China blocks in the Triassic.Mesozoic granitoids,ranging from the Triassic to the Cretaceous,are widely distributed in this orogen,and they provide excellent clues for understanding the crustal evolution and geodynamic evolution of the orogenic belt.The Triassic belt is mostly located in the South Qinling,whereas the Cretaceous belt is located mostly in the North Qinling.The Taibai complex pluton is located at the conjunction of the two belts.Here we present a data set comprising zircon U-Pb dating and elemental and Sr-Nd isotopic geochemistry for Late Mesozoic granite and microgranular enclaves(MME)exposed in the Taibai complex pluton.The granite and MME yield concordant U-Pb zircon ages of 124 to 118 Ma,indicating that they were products of roughly simultaneous magmatism in the Late Mesozoic.The granite rocks are high-K,calc-alkaline,and weakly peraluminous in compositions,and they are characterized by enrichment in large ion lithophile elements(e.g.,Rb,Ba),depletion in high field strength elements(e.g.,Nb,Ta,Zr,Ti),and variable Sr/Y ratios of 7.64 to 63.6.Low MgO,Cr,and Ni contents imply that the magma(s)were essentially crust-derived.Both the granite and the MME show relative depletion in Sr-Nd isotopic composition(initial ^(87)Sr/^(86)Sr of 0.7044 to 0.7067,initialε_(Nd) values of-3.4 to-2.6),suggesting that the magma(s)originated from juvenile crustal rocks.These Sr-Nd isotopic characteristics are significantly different from those of other Late Mesozoic granitoids exposed elsewhere in the Qinling orogenic belt,which formed from much older and enriched sources and with negligible contributions from mantle or juvenile crust.We propose a reworking event of the juvenile crust during the Late Mesozoic that was triggered by the tectonic extension and subsequent asthenospheric upwelling that occurred in eastern China.
基金financially supported by the National Natural Science Foundation of China (Nos. 41772047 and 41330206)the Graduate Innovation Fund of Jilin University (No. 2017034)the Opening Foundation of the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Wuhan) (No. GPMR201503)
文摘This paper presents a synthesis and analysis of geochronological, geochemical, and zircon Hf isotopic data of Phanerozoic granitoids within the Khanka massif, with the aim of revealing the ac- cretion and reworking processes of continental crust within the massif. Zircon U-Pb dating indicates that Phanerozoie granitic magmafism within the Khanka massif can be subdivided into eight stages: Late Cambrian, Middle-Late Ordovieian, Middle Silurian, Late Carboniferous, Early Permian, Middle--Late Permian to Early Triassic, Late Triassic-Early Jurassic, and Early Cretaceous. The zircon Hf isotopic compositions reveal that crustal accretionary events took place mainly in the Mesoprotero- zoie and Neoproterozoic. Through time, the zircon eHf(t) values gradually increase, indicating that the Phanerozoie granitic magmas were derived from the melting of progressively less ancient and more ju- venile crust. The zircon eHdt) values exhibit a gradual decrease with the increases in latitude, which im- plies that the amounts of ancient crustal components within the lower continental crust of the Khanka massif increased from south to north. At the same latitude range, the zircon Hf isotopic compositions also display some variations. We conclude, therefore, that significant horizontal and vertical heteroge- neities existed in the lower continental crust of the Khanka massif during the Phanerozoic.
基金This paper is jointly supported by the National Natural Science Foundation of China (Nos.40472099,40521001 and 40673019)the Ministry of Education of China (Nos.IRT0441,306021,B07039).
文摘Clastic sedimentary rocks are natural samples of the exposed continental crust over large areas. The Hanjiang (汉江) River drains the northern Yangtze craton, including the South Qinling (秦岭) belt and the northern parts of the Yangtze craton. Detrital zircons from this river thus provide an ideal sample for studying the formation and evolution of the northern Yangtze craton. Here we report laser ablation inductively coupled plasma mass spectrometer U-Pb ages of 122 detrital zircons from one sand sample of the Hanjiang River. The 110 concordant zircons reveal four major age groups of 768, 444, 212, and 124 Ma, which well correlate with known magmatic events in the northern Yangtze craton. A minor group is present at 1 536 Ma, which is less known in the study area. Only seven zircons have ages of 〉1 750 Ma. Our results show that the Early Paleozoic, Late Triassic, and Early Cretaceous are important episodes of zircon growth and crustal growth/reworking in addition to the previously documented Neoproterozoic event. Our results suggest very limited exposures of Paleoproterozoic and Archean rocks in the northern parts of the Yangtze craton.
文摘Craton basins are a significant petroliferous provenance. Having undergone multiple open- dose tectonic cycles and strong reworking of the late Cenozoic tectonic movement, the craton basins in China are highly broken. This has resulted in multi-source and multiphase hydrocarbon generation and later hydrocarbon accumulation so that a complicated spatial assemblage of primary, paraprimary and secondary oil-gas pools has been formed. The primary factors controlling hydrocarbon accumulation include hydrocarbon-generating depressions, paleouplifts, paleoslopes, unconformity surfaces, paleo-karst, faults and fissure systems as well as the later conservation conditions. In consequence, the strategy of exploration for China's craton basins is to identify the effective source rocks, pay attention to the different effects of paleohighs and late reworking, enhance studies of the secondary storage space, attach importance to the exploration of lithologic oil-gas reservoirs and natural gas pools, and approach consciously from the secondary oil pools to the targets near the source rocks. At the same time, a complete system of technologies and techniques must be built up.
文摘Black shales are marine sediments with argillaceous, silty and siliceous compositions and high contents of organic materials, disseminated pyrite and uranium. Uraniferous black shale has uranium content of more than 20 ppm.