A differential equation that is generally effective for squeeze film air damping of perforated plate and non perforated plate as well as in MEMS devices is developed.For perforated plate,the thickness and the dimens...A differential equation that is generally effective for squeeze film air damping of perforated plate and non perforated plate as well as in MEMS devices is developed.For perforated plate,the thickness and the dimensions of the plate are not limited.With boundary conditions,pressure distribution and the damping force on the plate can be found by solving the differential equation.Analytical expressions for damping pressure and damping force of a long strip holeplate are presented with a finite thickness and a finite width.To the extreme conditions of very thin plate and very thin hole,the results are reduced to the corresponding results of the conventional Reynolds' equation.Thus, the effectiveness of the generalized differential equation is justified.Therefore,the generalized Reynolds' equation will be a useful tool of design for damping structures in MEMS.展开更多
A differential equation for calculating squeeze-film air damping in slotted plates is developed by modifying the Reynolds equation. A term is added to account for the effect of airflow through the slots on the air dam...A differential equation for calculating squeeze-film air damping in slotted plates is developed by modifying the Reynolds equation. A term is added to account for the effect of airflow through the slots on the air damping of the plate. The end effect of the airflow in the slots is also treated by substituting an effective channel length for the geometric channel length (i. e. the thickness of the plate)..The damping pressure distribution, damping force, and damping force coefficient of the slotted plates can be found by solving the equation under appropriate boundary conditions. With restrictions on the thickness and the lateral dimensions of the slotted plate removed,the equation provides a useful tool for analysing the squeeze-film air damping effect of slotted plates with finite thickness and finite lateral dimensions. For a typical slotted plate structure, the damping force coefficient obtained by this equation agrees well with that generated by ANSYS.展开更多
In order to better describe the phenomenon of biological invasion,this paper introduces a free boundary model of biological invasion.Firstly,the right free boundary is added to the equation with logistic terms.Secondl...In order to better describe the phenomenon of biological invasion,this paper introduces a free boundary model of biological invasion.Firstly,the right free boundary is added to the equation with logistic terms.Secondly,the existence and uniqueness of local solutions are proved by the Sobolev embedding theorem and the comparison principle.Finally,according to the relevant research data and contents of red fire ants,the diffusion area and nest number of red fire ants were simulated without external disturbance.This paper mainly simulates the early diffusion process of red fire ants.In the early diffusion stage,red fire ants grow slowly and then spread over a large area after reaching a certain number.展开更多
In this paper,we delve into a generalized higher order Camassa-Holm type equation,(or,an ghmCH equation for short).We establish local well-posedness for this equation under the condition that the initial data uo belon...In this paper,we delve into a generalized higher order Camassa-Holm type equation,(or,an ghmCH equation for short).We establish local well-posedness for this equation under the condition that the initial data uo belongs to the Sobolev space H'(R)for some s>2.In addition,we obtain the weak formulation of this equation and prove the existence of both single peakon solution and a multi-peakon dynamic system.展开更多
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di...Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.展开更多
A vertical 2-D numerical wave model was developed based on unsteady Reynolds equations. In this model, the k-epsilon models were used to close the Reynolds equations, and volume of fluid(VOF) method was used to recons...A vertical 2-D numerical wave model was developed based on unsteady Reynolds equations. In this model, the k-epsilon models were used to close the Reynolds equations, and volume of fluid(VOF) method was used to reconstruct the free surface. The model was verified by experimental data. Then the model was used to simulate solitary wave interaction with submerged, alternative submerged and emerged semi-circular breakwaters. The process of velocity field, pressure field and the wave surface near the breakwaters was obtained. It is found that when the semi-circular breakwater is submerged, a large vortex will be generated at the bottom of the lee side wall of the breakwater; when the still water depth is equal to the radius of the semi-circular breakwater, a pair of large vortices will be generated near the shoreward wall of the semi-circular breakwater due to wave impacting, but the velocity near the bottom of the lee side wall of the breakwater is always relatively small. When the semi-circular breakwater is emerged, and solitary wave cannot overtop it, the solitary wave surface will run up and down secondarily during reflecting from the breakwater. It can be further used to estate the diffusing and transportation of the contamination and transportation of suspended sediment.展开更多
A generalized Reynolds equation based on non-Newtonian flow is derived in this paper.This equation is suitable for a number of non-Newtonian flow models and can be solved numerically to obtain pressure fields in therm...A generalized Reynolds equation based on non-Newtonian flow is derived in this paper.This equation is suitable for a number of non-Newtonian flow models and can be solved numerically to obtain pressure fields in thermalhydrodynamically or elastohydrodynamically lubricated fluid films.A mathematical ap- proach is given for solving simultaneously the shearing stress,shearing rate,velocity and equivalent viscosity.To show the application of this equation,two rheological models which have been widely used in lubrication mechnaics are incorporated into this equation to obtain numerical solutions to the line contact thermal elastohydrodynamic lubrication problem.展开更多
We study the nonlinear parabolic equations for travelling wave solutions of Burger’s equations. The purpose of the present work is to study various types of Burger’s equations describing waves and those are based on...We study the nonlinear parabolic equations for travelling wave solutions of Burger’s equations. The purpose of the present work is to study various types of Burger’s equations describing waves and those are based on nonlinear equations. We focus on to describe the analytic solution in the special pattern of travelling wave solutions using tan-cot function method. We discuss about inviscid and viscous version of Burger’s equation for fluid flow and investigate the effects of internal friction of a fluid via Reynolds number. By changing the velocity amplitude, the nature of flows with shock wave and disturbance are observed. For numerical solutions, the Crank-Nicolson scheme is introduced to establish the wave solutions.展开更多
Weir crest must have the correct shape in the concave side of an ogee-shaped crest to diminish erosion. This shape can be obtained using an approximation of the fractional Reynolds equations when the water interacts w...Weir crest must have the correct shape in the concave side of an ogee-shaped crest to diminish erosion. This shape can be obtained using an approximation of the fractional Reynolds equations when the water interacts with the surface. A model is introduced for the Reynolds stresses complemented with a closure relation of fractional origin. A power type solution is obtained for the main velocity and stress. Velocity profile is found based on the assumption of a steady flow and the energy conservation equation. A Froude number and the cubic equation of the weir are built. The dimensionless upstream velocity head is also determined which allow graphically showing the exponent and coefficient of the water-profile over an ogee-shaped crest. It is possible to estimate the occupied-space index trough an exponents' ratio of profile over the velocity head.展开更多
A high-order accurate explicit scheme is proposed for solving Euler/Reynolds-averaged Navier-Stokes equations for steady and unsteady flows, respectively. Baldwin-Lomax turbulence model is utilized to obtain the turbu...A high-order accurate explicit scheme is proposed for solving Euler/Reynolds-averaged Navier-Stokes equations for steady and unsteady flows, respectively. Baldwin-Lomax turbulence model is utilized to obtain the turbulent viscosity. For the explicit scheme, the Runge-Kutta time-stepping methods of third orders are used in time integration, and space discretization for the right-hand side (RHS) terms of semi-discrete equations is performed by third-order ENN scheme for inviscid terms and fourth-order compact difference for viscous terms. Numerical experiments suggest that the present scheme not only has a fairly rapid convergence rate, but also can generate a highly resolved approximation to numerical solution, even to unsteady problem.展开更多
This paper is a continuation of recent work by Guo-Xiang-Zheng[10].We deduce the sharp Morrey regularity theory for weak solutions to the fourth order nonhomogeneous Lamm-Rivière equation △^{2}u=△(V▽u)+div(w▽...This paper is a continuation of recent work by Guo-Xiang-Zheng[10].We deduce the sharp Morrey regularity theory for weak solutions to the fourth order nonhomogeneous Lamm-Rivière equation △^{2}u=△(V▽u)+div(w▽u)+(▽ω+F)·▽u+f in B^(4),under the smallest regularity assumptions of V,ω,ω,F,where f belongs to some Morrey spaces.This work was motivated by many geometrical problems such as the flow of biharmonic mappings.Our results deepens the Lp type regularity theory of[10],and generalizes the work of Du,Kang and Wang[4]on a second order problem to our fourth order problems.展开更多
We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to de...We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to depend very little of) the time variable t. In this work, we want to study the case where it does depend on t(and xas well). For this purpose, we make a change of unknown function V=ϕSin order to obtain a saturation-like (advection-diffusion) equation. A priori estimates and regularity results are established for the new equation based in part on what is known from the saturation equation, when ϕis independent of the time t. These results are then extended to the full saturation equation with time-dependent porosity ϕ=ϕ(x,t). In this analysis, we make explicitly the dependence of the various constants in the estimates on the porosity ϕby the introduced transport vector w, through the change of unknown function. Also we do not assume zero-flux boundary, but we carry the analysis for the case Q≡0.展开更多
Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based...Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based on these bilinear equations, some exact solutions to the three modified equations are derived.展开更多
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b...In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.展开更多
By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by si...By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by simulating Ai-and Bi-soliton solutions of the cylindrical Korteweg-de Vries(cKdV)equation.展开更多
In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied tho...In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied thoroughly, matrix Riccati equation of which scalar Riccati equations is a particular case, is much less investigated. This article proposes a change of variable that allows to find explicit solution of the Matrix Riccati equation. We then apply this solution to Optimal Control.展开更多
This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectio...This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectional propagation of long-wave in dispersive media and GSEs are used to model the interaction between one-dimensional high,and low-frequency waves.Classes of trigonometric and hyperbolic function solutions in fractional calculus are discussed.Graphical simulations of the numerical solutions are flaunted by MATLAB.展开更多
This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Bouss...This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Boussinesq system focused on here is anisotropic,and involves only horizontal dissipation and thermal damping.In the 2D case R^(2),due to the lack of vertical dissipation,the stability and large-time behavior problems have remained open in a Sobolev setting.For the spatial domain T×R,this paper solves the stability problem and gives the precise large-time behavior of the perturbation.By decomposing the velocity u and temperatureθinto the horizontal average(ū,θ)and the corresponding oscillation(ū,θ),we can derive the global stability in H~2 and the exponential decay of(ū,θ)to zero in H^(1).Moreover,we also obtain that(ū_(2),θ)decays exponentially to zero in H^(1),and thatū_(1)decays exponentially toū_(1)(∞)in H^(1)as well;this reflects a strongly stratified phenomenon of buoyancy-driven fluids.In addition,we establish the global stability in H^(3)for the 3D case R^(3).展开更多
文摘A differential equation that is generally effective for squeeze film air damping of perforated plate and non perforated plate as well as in MEMS devices is developed.For perforated plate,the thickness and the dimensions of the plate are not limited.With boundary conditions,pressure distribution and the damping force on the plate can be found by solving the differential equation.Analytical expressions for damping pressure and damping force of a long strip holeplate are presented with a finite thickness and a finite width.To the extreme conditions of very thin plate and very thin hole,the results are reduced to the corresponding results of the conventional Reynolds' equation.Thus, the effectiveness of the generalized differential equation is justified.Therefore,the generalized Reynolds' equation will be a useful tool of design for damping structures in MEMS.
文摘A differential equation for calculating squeeze-film air damping in slotted plates is developed by modifying the Reynolds equation. A term is added to account for the effect of airflow through the slots on the air damping of the plate. The end effect of the airflow in the slots is also treated by substituting an effective channel length for the geometric channel length (i. e. the thickness of the plate)..The damping pressure distribution, damping force, and damping force coefficient of the slotted plates can be found by solving the equation under appropriate boundary conditions. With restrictions on the thickness and the lateral dimensions of the slotted plate removed,the equation provides a useful tool for analysing the squeeze-film air damping effect of slotted plates with finite thickness and finite lateral dimensions. For a typical slotted plate structure, the damping force coefficient obtained by this equation agrees well with that generated by ANSYS.
基金Supported by National Natural Science Foundation of China(12101482)Postdoctoral Science Foundation of China(2022M722604)+2 种基金General Project of Science and Technology of Shaanxi Province(2023-YBSF-372)The Natural Science Foundation of Shaan Xi Province(2023-JCQN-0016)Shannxi Mathmatical Basic Science Research Project(23JSQ042)。
文摘In order to better describe the phenomenon of biological invasion,this paper introduces a free boundary model of biological invasion.Firstly,the right free boundary is added to the equation with logistic terms.Secondly,the existence and uniqueness of local solutions are proved by the Sobolev embedding theorem and the comparison principle.Finally,according to the relevant research data and contents of red fire ants,the diffusion area and nest number of red fire ants were simulated without external disturbance.This paper mainly simulates the early diffusion process of red fire ants.In the early diffusion stage,red fire ants grow slowly and then spread over a large area after reaching a certain number.
文摘In this paper,we delve into a generalized higher order Camassa-Holm type equation,(or,an ghmCH equation for short).We establish local well-posedness for this equation under the condition that the initial data uo belongs to the Sobolev space H'(R)for some s>2.In addition,we obtain the weak formulation of this equation and prove the existence of both single peakon solution and a multi-peakon dynamic system.
文摘Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.
文摘A vertical 2-D numerical wave model was developed based on unsteady Reynolds equations. In this model, the k-epsilon models were used to close the Reynolds equations, and volume of fluid(VOF) method was used to reconstruct the free surface. The model was verified by experimental data. Then the model was used to simulate solitary wave interaction with submerged, alternative submerged and emerged semi-circular breakwaters. The process of velocity field, pressure field and the wave surface near the breakwaters was obtained. It is found that when the semi-circular breakwater is submerged, a large vortex will be generated at the bottom of the lee side wall of the breakwater; when the still water depth is equal to the radius of the semi-circular breakwater, a pair of large vortices will be generated near the shoreward wall of the semi-circular breakwater due to wave impacting, but the velocity near the bottom of the lee side wall of the breakwater is always relatively small. When the semi-circular breakwater is emerged, and solitary wave cannot overtop it, the solitary wave surface will run up and down secondarily during reflecting from the breakwater. It can be further used to estate the diffusing and transportation of the contamination and transportation of suspended sediment.
文摘A generalized Reynolds equation based on non-Newtonian flow is derived in this paper.This equation is suitable for a number of non-Newtonian flow models and can be solved numerically to obtain pressure fields in thermalhydrodynamically or elastohydrodynamically lubricated fluid films.A mathematical ap- proach is given for solving simultaneously the shearing stress,shearing rate,velocity and equivalent viscosity.To show the application of this equation,two rheological models which have been widely used in lubrication mechnaics are incorporated into this equation to obtain numerical solutions to the line contact thermal elastohydrodynamic lubrication problem.
文摘We study the nonlinear parabolic equations for travelling wave solutions of Burger’s equations. The purpose of the present work is to study various types of Burger’s equations describing waves and those are based on nonlinear equations. We focus on to describe the analytic solution in the special pattern of travelling wave solutions using tan-cot function method. We discuss about inviscid and viscous version of Burger’s equation for fluid flow and investigate the effects of internal friction of a fluid via Reynolds number. By changing the velocity amplitude, the nature of flows with shock wave and disturbance are observed. For numerical solutions, the Crank-Nicolson scheme is introduced to establish the wave solutions.
文摘Weir crest must have the correct shape in the concave side of an ogee-shaped crest to diminish erosion. This shape can be obtained using an approximation of the fractional Reynolds equations when the water interacts with the surface. A model is introduced for the Reynolds stresses complemented with a closure relation of fractional origin. A power type solution is obtained for the main velocity and stress. Velocity profile is found based on the assumption of a steady flow and the energy conservation equation. A Froude number and the cubic equation of the weir are built. The dimensionless upstream velocity head is also determined which allow graphically showing the exponent and coefficient of the water-profile over an ogee-shaped crest. It is possible to estimate the occupied-space index trough an exponents' ratio of profile over the velocity head.
基金The project supported by the National Natural Science Foundation of China under Contract No.59576007 and 19572038
文摘A high-order accurate explicit scheme is proposed for solving Euler/Reynolds-averaged Navier-Stokes equations for steady and unsteady flows, respectively. Baldwin-Lomax turbulence model is utilized to obtain the turbulent viscosity. For the explicit scheme, the Runge-Kutta time-stepping methods of third orders are used in time integration, and space discretization for the right-hand side (RHS) terms of semi-discrete equations is performed by third-order ENN scheme for inviscid terms and fourth-order compact difference for viscous terms. Numerical experiments suggest that the present scheme not only has a fairly rapid convergence rate, but also can generate a highly resolved approximation to numerical solution, even to unsteady problem.
基金supported by the National Natural Science Foundation of China(12271296,12271195).
文摘This paper is a continuation of recent work by Guo-Xiang-Zheng[10].We deduce the sharp Morrey regularity theory for weak solutions to the fourth order nonhomogeneous Lamm-Rivière equation △^{2}u=△(V▽u)+div(w▽u)+(▽ω+F)·▽u+f in B^(4),under the smallest regularity assumptions of V,ω,ω,F,where f belongs to some Morrey spaces.This work was motivated by many geometrical problems such as the flow of biharmonic mappings.Our results deepens the Lp type regularity theory of[10],and generalizes the work of Du,Kang and Wang[4]on a second order problem to our fourth order problems.
文摘We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to depend very little of) the time variable t. In this work, we want to study the case where it does depend on t(and xas well). For this purpose, we make a change of unknown function V=ϕSin order to obtain a saturation-like (advection-diffusion) equation. A priori estimates and regularity results are established for the new equation based in part on what is known from the saturation equation, when ϕis independent of the time t. These results are then extended to the full saturation equation with time-dependent porosity ϕ=ϕ(x,t). In this analysis, we make explicitly the dependence of the various constants in the estimates on the porosity ϕby the introduced transport vector w, through the change of unknown function. Also we do not assume zero-flux boundary, but we carry the analysis for the case Q≡0.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11931017 and 12071447)。
文摘Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based on these bilinear equations, some exact solutions to the three modified equations are derived.
文摘In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.
基金supported by the National Natural Science Foundation of China(Grant Nos.12175111 and 12235007)the K.C.Wong Magna Fund in Ningbo University。
文摘By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by simulating Ai-and Bi-soliton solutions of the cylindrical Korteweg-de Vries(cKdV)equation.
文摘In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied thoroughly, matrix Riccati equation of which scalar Riccati equations is a particular case, is much less investigated. This article proposes a change of variable that allows to find explicit solution of the Matrix Riccati equation. We then apply this solution to Optimal Control.
文摘This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectional propagation of long-wave in dispersive media and GSEs are used to model the interaction between one-dimensional high,and low-frequency waves.Classes of trigonometric and hyperbolic function solutions in fractional calculus are discussed.Graphical simulations of the numerical solutions are flaunted by MATLAB.
基金supported by National Natural Science Foundation of China(12071391,12231016)the Guangdong Basic and Applied Basic Research Foundation(2022A1515010860)。
文摘This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Boussinesq system focused on here is anisotropic,and involves only horizontal dissipation and thermal damping.In the 2D case R^(2),due to the lack of vertical dissipation,the stability and large-time behavior problems have remained open in a Sobolev setting.For the spatial domain T×R,this paper solves the stability problem and gives the precise large-time behavior of the perturbation.By decomposing the velocity u and temperatureθinto the horizontal average(ū,θ)and the corresponding oscillation(ū,θ),we can derive the global stability in H~2 and the exponential decay of(ū,θ)to zero in H^(1).Moreover,we also obtain that(ū_(2),θ)decays exponentially to zero in H^(1),and thatū_(1)decays exponentially toū_(1)(∞)in H^(1)as well;this reflects a strongly stratified phenomenon of buoyancy-driven fluids.In addition,we establish the global stability in H^(3)for the 3D case R^(3).