期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Reynolds-Averaged Navier-Stokes Equations Describing Turbulent Flow and Heat Transfer Behavior for Supercritical Fluid 被引量:3
1
作者 YANG Zheng CHENG Xu +1 位作者 ZHENG Xinghua CHEN Haisheng 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第1期191-200,共10页
Supercritical fluid has been widely applied in many industrial applications.The traditional Reynolds-averaged Navier-Stokes(RANS)equations are directly applied for turbulent flow and heat transfer of the supercritical... Supercritical fluid has been widely applied in many industrial applications.The traditional Reynolds-averaged Navier-Stokes(RANS)equations are directly applied for turbulent flow and heat transfer of the supercritical fluid,ignoring turbulent effect of the thermal physical properties due to the intense nonlinearity.This paper deduces a set of Reynolds-averaged Navier-Stokes equations for supercritical fluid(SCF-RANS equations)to depict turbulent flow and heat transfer of the supercritical fluid taking all the physical parameters as variables.The SCF-RANS equations include many new correlation terms due to fluctuation of the thermal physical properties.Model methods for the new correlation term have been discussed for closing the SCF-RANS equations.Some of them have relatively mature models,while others are completely new and need profound physical theoretical analysis for proposing reasonable models.This paper provides referable information for these new correlations as far as authors know.The SCF-RANS equations not only provide the formulation special for flow and heat transfer of the supercritical fluid,but also represent the most sophisticate form of the RANS equations,for every involved physical property has been considered as variable without any simplification. 展开更多
关键词 SCF-rans equations supercritical fluid TURBULENCE reynolds-averaged navier-stokes equations
原文传递
Study of Tunnel Thruster Performance and Flow by Quasi-Steady Reynolds-Averaged Navier-Stokes Simulation 被引量:4
2
作者 郁程 杨晨俊 《Journal of Shanghai Jiaotong university(Science)》 EI 2016年第6期662-671,共10页
A numerical approach based on the solution of the Reynolds-averaged Navier-Stokes(RANS) equations using the shear-stress transport(SST) turbulence model has been employed to investigate the hydrodynamic performance an... A numerical approach based on the solution of the Reynolds-averaged Navier-Stokes(RANS) equations using the shear-stress transport(SST) turbulence model has been employed to investigate the hydrodynamic performance and flow of tunnel thrusters.The flow passages between adjacent blades are discretized with prismatic cells so that the boundary layer flow is resolved down to the viscous sub-layer.The hydrodynamic performances predicted by the quasi-steady approach agree well with the experimental data for three impellers covering a range of blade area and pitch.Through analysis of the flow field,the reason why the hub of impeller also contributes to thrust which can amount to 40%—60% of the impeller thrust,and the mechanism of the impeller inducing an axial force on the hull are elucidated. 展开更多
关键词 tunnel thruster hydrodynamic performance reynolds-averaged navier-stokes(rans) simulation quasi-steady
原文传递
Hybrid Reynolds-averaged Navier-Stokes/large-eddy simulation of jet mixing in a supersonic crossflow 被引量:1
3
作者 WANG HongBo WANG ZhenGuo +1 位作者 SUN MingBo QIN Ning 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第6期1435-1448,共14页
A sonic under-expanded transverse jet injection into a Ma 1.6 supersonic crossflow is investigated numerically using our hybrid RANS/LES (Reynolds-averaged Navier-Stokes/large eddy simulation) method. First, a calcula... A sonic under-expanded transverse jet injection into a Ma 1.6 supersonic crossflow is investigated numerically using our hybrid RANS/LES (Reynolds-averaged Navier-Stokes/large eddy simulation) method. First, a calculation is carried out to validate the code, where both the instantaneous and statistical results show good agreement with the existing experimental data. Then the jet-mixing characteristics are analyzed. It is observed that the large-scale vortex on the windward portion of the jet boundary is formed mainly by the intermittent impingement of the incoming high-speed fluid on the relatively low-speed region of the upstream jet boundary, where the interaction between the upstream separated region and the jet supplies a favorable pressure condition for the sustaining acceleration of the high-speed fluid during the vortex forming, associated with which the incoming fluid is entrained into the jet boundary and large-scale mixing occurs. Meanwhile, the secondary recirculation zone between the upstream separated region and the jet is observed to develop evidently during the vortex forming, inducing the entrainment of jet fluid into the upstream separated region. Moreover, effects of the incoming boundary layer on the jet mixing are addressed. 展开更多
关键词 hybrid rans/LES reynolds-averaged navier-stokes/large eddy simulation) jet mixing SUPERSONIC boundary layer
原文传递
Assessment of advanced RANS turbulence models for prediction of complex flows in compressors 被引量:1
4
作者 Wei SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第9期162-177,共16页
Reynolds-Averaged Navier-Stokes(RANS) Computational Fluid Dynamics(CFD) has been widely used in compressor design and analysis. However, reasonable prediction of compressor flow and its impact on compressor performanc... Reynolds-Averaged Navier-Stokes(RANS) Computational Fluid Dynamics(CFD) has been widely used in compressor design and analysis. However, reasonable prediction of compressor flow and its impact on compressor performance remains challenging. In this study, Menter’s Shear Stress Transport(SST) model and its variants, as well as the ω-based Reynolds stress model(Stress-BSL) are assessed. For a single rotor(Rotor 67), under the peak efficiency operating condition, all studied turbulence models predict its performance with reasonable accuracy;under the off-design conditions, SST with Helicity correction(SST-Helicity) shows superiority in predicting the effect of flow on the spanwise distribution of aerodynamic parameters. For Darmstadt’s 1.5-stage transonic axial compressor, SST-Helicity outperforms SST, SST with the Quadratic Constitutive Relation(SST-QCR) and Stress-BSL in predicting the performance as well as the spanwise distribution of aerodynamic parameters. At the design rotating speed, the stall margin given by SST-Helicity(20.90%) is the closest to the experimental measurement(24.81%), which is more than twice that by SST(8.71%) and 1.5 times that by SST-QCR(14.14%). This paper demonstrates that SSTHelicity model, together with a good quality and sufficiently refined grid, can capture the compressor flow features with reasonable accuracy, which results in a credible prediction of compressor performance and stage matching. 展开更多
关键词 Compressor flow Computational Fluid Dynamics(CFD) reynolds-averaged navier-stokes(rans) Reynolds stress model Stall margin Shear Stress Transport(SST)model Turbulence modelling
原文传递
Flow Dynamics of a Spiral-groove Dry-gas Seal 被引量:20
5
作者 WANG Bing ZHANG Huiqiang CAO Hongjun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期78-84,共7页
The dry-gas seal has been widely used in different industries. With increased spin speed of the rotator shaft, turbulence occurs in the gas film between the stator and rotor seal faces. For the micro-scale flow in the... The dry-gas seal has been widely used in different industries. With increased spin speed of the rotator shaft, turbulence occurs in the gas film between the stator and rotor seal faces. For the micro-scale flow in the gas film and grooves, turbulence can change the pressure distribution of the gas film. Hence, the seal performance is influenced. However, turbulence effects and methods for their evaluation are not considered in the existing industrial designs of dry-gas seal. The present paper numerically obtains the turbulent flow fields of a spiral-groove dry-gas seal to analyze turbulence effects on seal performance. The direct numerical simulation (DNS) and Reynolds-averaged Navier-Stokes (RANS) methods are utilized to predict the velocity field properties in the grooves and gas film. The key performance parameter, open force, is obtained by integrating the pressure distribution, and the obtained result is in good agreement with the experimental data of other researchers. Very large velocity gradients are found in the sealing gas film because of the geometrical effects of the grooves. Considering turbulence effects, the calculation results show that both the gas film pressure and open force decrease. The RANS method underestimates the performance, compared with the DNS. The solution of the conventional Reynolds lubrication equation without turbulence effects suffers from significant calculation errors and a small application scope. The present study helps elucidate the physical mechanism of the hydrodynamic effects of grooves for improving and optimizing the industrial design or seal face pattern of a dry-gas seal. 展开更多
关键词 flow dynamics spiral-groove dry-gas seal turbulence effects direct numerical simulation (DNS) reynolds-averaged navier-stokes (rans method Reynolds lubrication equation
下载PDF
URANS simulations of ship motion responses in long-crest irregular waves 被引量:13
6
作者 沈志荣 叶海轩 万德成 《Journal of Hydrodynamics》 SCIE EI CSCD 2014年第3期436-446,共11页
In this paper, numerical prediction of ship motion responses in long-crest irregular waves by the URANS-VOF method is presented. A white noise spectrum is applied to generate the incoming waves to evaluate the motion ... In this paper, numerical prediction of ship motion responses in long-crest irregular waves by the URANS-VOF method is presented. A white noise spectrum is applied to generate the incoming waves to evaluate the motion responses. The procedure can replace a decade of simulations in regular wave with one single run to obtain a complete curve of linear motion response, considerably reducing computation time. A correction procedure is employed to adjust the wave generation signal based on the wave spectrum and achieves fairly better results in the wave tank. Three ship models with five wave conditions are introduced to validate the method. The computations in this paper are completed by using the solver naoe-FOAM-SJTU, a solver developed for ship and ocean engineering based on the open source code OpenFOAM. The computational motion responses by the irregular wave procedure are compared with the results by regular wave, experiments and strip theory. Transfer functions by irregular wave closely agree with the data obtained in the regular waves, showing negligible difference. The comparison between computational results and experiments also show good agreements. The results better predicted by CFD method than strip theories indicate that this method can compensate for the inaccuracy of the strip theories. The results confirm that the irregular wave procedure is a promising method for the accurate prediction of motion responses with less accuracy loss and higher efficiency compared with the regular wave procedure. 展开更多
关键词 irregular waves white noise spectrum unsteady incompressible reynolds-average navier-stokes(Urans) equations ship motion response naoe-FOAM-SJTU solver OPENFOAM
原文传递
AERODYNAMIC OPTIMIZATION FOR TURBINE BLADE BASED ON HIERARCHICAL FAIR COMPETITION GENETIC ALGORITHMS WITH DYNAMIC NICHE 被引量:5
7
作者 SHU Xinwei GU Chuangang WANG Tong YANG Bo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第6期38-42,共5页
A global optimization approach to turbine blade design based on hierarchical fair competition genetic algorithms with dynamic niche (HFCDN-GAs) coupled with Reynolds-averaged Navier-Stokes (RANS) equation is prese... A global optimization approach to turbine blade design based on hierarchical fair competition genetic algorithms with dynamic niche (HFCDN-GAs) coupled with Reynolds-averaged Navier-Stokes (RANS) equation is presented. In order to meet the search theory of GAs and the aerodynamic performances of turbine, Bezier curve is adopted to parameterize the turbine blade profile, and a fitness function pertaining to optimization is designed. The design variables are the control points' ordinates of characteristic polygon of Bezier curve representing the turbine blade profile. The object function is the maximum lift-drag ratio of the turbine blade. The constraint conditions take into account the leading and trailing edge metal angle, and the strength and aerodynamic performances of turbine blade. And the treatment method of the constraint conditions is the flexible penalty function. The convergence history of test function indicates that HFCDN-GAs can locate the global optimum within a few search steps and have high robustness. The lift-drag ratio of the optimized blade is 8.3% higher than that of the original one. The results show that the proposed global optimization approach is effective for turbine blade. 展开更多
关键词 Turbine blade reynolds-averaged navier-stokes(rans equation Lift-drag ratio Optimum design
下载PDF
Numerical Wave Flume Study on Wave Motion Around Submerged Plates 被引量:4
8
作者 齐鹏 侯一筠 《海洋工程:英文版》 2003年第3期397-406,共10页
Nonlinear interaction between surface waves and a submerged horizontal plate is investigated in the absorbed numerical wave flume developed based on the volume of fluid (VOF) method. The governing equations of the num... Nonlinear interaction between surface waves and a submerged horizontal plate is investigated in the absorbed numerical wave flume developed based on the volume of fluid (VOF) method. The governing equations of the numerical model are the continuity equation and the Reynolds-Averaged Navier-Stokes (RANS) equations with the k-ε turbulence equations. Incident waves are generated by an absorbing wave-maker that eliminates the waves reflected from structures. Results are obtained for a range of parameters, with consideration of the condition under which the reflection coefficient becomes maximal and the transmission coefficient minimal. Wave breaking over the plate, vortex shedding downwave, and pulsating flow below the plate are observed. Time-averaged hydrodynamic force reveals a negative drift force. All these characteristics provide a reference for construction of submerged plate breakwaters. 展开更多
关键词 wave-body interaction vortex flow reynolds-averaged navier-stokes equations submerged plate
下载PDF
An iterative data-driven turbulence modeling framework based on Reynolds stress representation 被引量:3
9
作者 Yuhui Yin Zhi Shen +2 位作者 Yufei Zhang Haixin Chena Song Fu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2022年第5期371-387,共17页
Data-driven turbulence modeling studies have reached such a stage that the basic framework is settled,but several essential issues remain that strongly affect the performance.Two problems are studied in the current re... Data-driven turbulence modeling studies have reached such a stage that the basic framework is settled,but several essential issues remain that strongly affect the performance.Two problems are studied in the current research:(1)the processing of the Reynolds stress tensor and(2)the coupling method between the machine learning model and flow solver.For the Reynolds stress processing issue,we perform the theoretical derivation to extend the relevant tensor arguments of Reynolds stress.Then,the tensor representation theorem is employed to give the complete irreducible invariants and integrity basis.An adaptive regularization term is employed to enhance the representation performance.For the coupling issue,an iterative coupling framework with consistent convergence is proposed and then applied to a canonical separated flow.The results have high consistency with the direct numerical simulation true values,which proves the validity of the current approach. 展开更多
关键词 Turbulence modeling reynolds-averaged navier-stokes equations Reynolds stress representation Machine learning
下载PDF
Investigating the Performance of Twin Marine Propellers in Different Ship Wake Fields Using an Unsteady Viscous and Inviscid Solver 被引量:3
10
作者 Saeed Najafi Mehdi Pourmostafa 《Journal of Marine Science and Application》 CSCD 2022年第2期92-105,共14页
In this study,the performance of a twin-screw propeller under the influence of the wake field of a fully appended ship was investigated using a coupled Reynolds-averaged Navier–Stokes(RANS)/boundary element method(BE... In this study,the performance of a twin-screw propeller under the influence of the wake field of a fully appended ship was investigated using a coupled Reynolds-averaged Navier–Stokes(RANS)/boundary element method(BEM)code.The unsteady BEM is an efficient approach to predicting propeller performance.By applying the time-stepping method in the BEM solver,the trailing vortex sheet pattern of the propeller can be accurately captured at each time step.This is the main innovation of the coupled strategy.Furthermore,to ascertain the effect of the wake field of the ship with acceptable accuracy,a RANS solver was developed.A finite volume method was used to discretize the Navier–Stokes equations on fully unstructured grids.To simulate ship motions,the volume of the fluid method was applied to the RANS solver.The validation of each solver(BEM/RANS)was separately performed,and the results were compared with experimental data.Ultimately,the BEM and RANS solvers were coupled to estimate the performance of a twin-screw propeller,which was affected by the wake field of the fully appended hull.The proposed model was applied to a twin-screw oceanography research vessel.The results demonstrated that the presented model can estimate the thrust coefficient of a propeller with good accuracy as compared to an experimental self-propulsion test.The wake sheet pattern of the propeller in open water(uniform flow)was also compared with the propeller in a real wake field. 展开更多
关键词 Twin propeller reynolds-averaged navier-stokes(rans) Boundary element method(BEM) Time-stepping method(TSM) Wake sheet pattern Effective wake field
下载PDF
End-to-end differentiable learning of turbulence models from indirect observations 被引量:2
11
作者 Carlos A.Michelén Strofer Heng Xiao 《Theoretical & Applied Mechanics Letters》 CSCD 2021年第4期205-212,共8页
The emerging push of the differentiable programming paradigm in scientific computing is conducive to training deep learning turbulence models using indirect observations.This paper demonstrates the viability of this a... The emerging push of the differentiable programming paradigm in scientific computing is conducive to training deep learning turbulence models using indirect observations.This paper demonstrates the viability of this approach and presents an end-to-end differentiable framework for training deep neural networks to learn eddy viscosity models from indirect observations derived from the velocity and pressure fields.The framework consists of a Reynolds-averaged Navier–Stokes(RANS)solver and a neuralnetwork-represented turbulence model,each accompanied by its derivative computations.For computing the sensitivities of the indirect observations to the Reynolds stress field,we use the continuous adjoint equations for the RANS equations,while the gradient of the neural network is obtained via its built-in automatic differentiation capability.We demonstrate the ability of this approach to learn the true underlying turbulence closure when one exists by training models using synthetic velocity data from linear and nonlinear closures.We also train a linear eddy viscosity model using synthetic velocity measurements from direct numerical simulations of the Navier–Stokes equations for which no true underlying linear closure exists.The trained deep-neural-network turbulence model showed predictive capability on similar flows. 展开更多
关键词 Turbulence modeling Machine learning Adjoint solver reynolds-averaged navier-stokes equations
下载PDF
An Efficient Hydrodynamic Model for Surface Waves 被引量:1
12
作者 王昆 金生 刘刚 《China Ocean Engineering》 SCIE EI 2009年第1期145-156,共12页
In the present study, a semi-implicit finite difference model for non-hydrostatic, free-surface flows is analyzed and discussed. The governing equations are the three-dimensional free-surface Reynolds-averaged Navier-... In the present study, a semi-implicit finite difference model for non-hydrostatic, free-surface flows is analyzed and discussed. The governing equations are the three-dimensional free-surface Reynolds-averaged Navier-Stokes equations defined on a general, irregular domain of arbitrary scale. At outflow, a combination of a sponge layer technique and a radiation boundary condition is applied to minimize wave reflection. The equations are solved with the fractional step method where the hydrostatic pressure component is determined first, while the non-hydrostatic component of the pressure is computed from the pressure Poisson equation in which the coefficient matrix is positive definite and symmetric. The advection and horizontal viscosity terms are discretized by use of a semi-Lagrangian approach. The resulting model is computationally efficient and unrestricted to the CFL condition. The developed model is verified against analytical solutions and experimental data, with excellent agreement. 展开更多
关键词 reynolds-averaged navier-stokes equations NON-HYDROSTATIC sponge layer SEMI-IMPLICIT serrd-Lagrangian
下载PDF
NUMERICAL STUDY OF AN OSCILLATORY TURBULENT FLOW OVER A FLAT PLATE 被引量:1
13
作者 陆夕云 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1999年第1期8-14,共7页
Oscillatory turbulent flow over a flat plate was studied by using large eddy simulation (LES) and Reynolds-average Navier-Stokes (RANS) methods. A dynamic subgrid-scale model was employed in LES and Saffman's tur... Oscillatory turbulent flow over a flat plate was studied by using large eddy simulation (LES) and Reynolds-average Navier-Stokes (RANS) methods. A dynamic subgrid-scale model was employed in LES and Saffman's turbulence model was used in RANS. The flow behaviors were discussed for the accelerating and decelerating phases during the oscillating cycle. The friction force on the wall and its phase shift from laminar to turbulent regime were also investigated for different Reynolds numbers. (Edited author abstract) 11 Refs. 展开更多
关键词 turbulent flow large eddy simulation (LES) reynolds-average navier-stokes (rans) subgrid-scale (SGS) model oscillatory flow
下载PDF
Characteristics of transonic moist air flows around butterfly valves with spontaneous condensation
14
作者 A.B.M.Toufique Hasan S.Matsuo T.Setoguchib 《Propulsion and Power Research》 SCIE 2015年第2期72-83,共12页
Effects of spontaneous condensation of moist air on the shock wave dynamics around butterfly valves in transonic flows are investigated by experimental and numerical simulations.Two symmetric valve disk shapes namely-... Effects of spontaneous condensation of moist air on the shock wave dynamics around butterfly valves in transonic flows are investigated by experimental and numerical simulations.Two symmetric valve disk shapes namely-a flat rectangular plate and a mid-plane cross-section of a prototype butterfly valve have been studied in the present research.Results showed that in case with spontaneous condensation,the root mean square of pressure oscillation(induced by shock dynamics)is reduced significantly with those without condensation for both shapes of the valves.Moreover,local aerodynamic moments were reduced in case with condensation which is considered to be beneficial in torque requirement in case of on/off applications of valves as flow control devices.However,total pressure loss was increased with spontaneous condensation in both the valves.Furthermore,the disk shape of a prototype butterfly valve showed better aerodynamic performances compared to flat rectangular plate profile in respect of total pressure loss and vortex shedding frequency in the wake region. 展开更多
关键词 Transonic flow Shock waves Spontaneous condensation Butterfly valves reynolds-averaged navier-stokes(rans)
原文传递
Analysis on Aerodynamic Performance of Finite Swept Wing with Glaze Ice Accretions
15
作者 AUNG Ko Wynn 《Computer Aided Drafting,Design and Manufacturing》 2010年第2期15-22,共8页
A computational investigation was performed to predict the effects of aerodynamic performance degradation on aircraft swept taper wing with and without 10 minutes and 22.5 minutes glaze ice accretions. In this study, ... A computational investigation was performed to predict the effects of aerodynamic performance degradation on aircraft swept taper wing with and without 10 minutes and 22.5 minutes glaze ice accretions. In this study, the three-dimensional simulated glaze ice shapes were defined from a series of two-dimensional ice sections. The aerodynamic performances of glaze iced swept wings with C-H structure multi-block grid were analyzed and evaluated. The steady Reynolds- Averaged Navier-Stokes (RANS) equations are employed to compute solutions with implementation of two equation Shear-Stress Transport (SST) turbulence model and second-order upwind differencing for entire iced wing flow field. Computed results were compared with available experimental data. The CFD computation can also accurately predict the aerodynamic performance degradation of lift, drag and pressure coefficients of finite swept wing with glaze ice accretions which have two big upper and lower horn. 展开更多
关键词 aerodynamic characteristics reynolds-averaged navier-stokes equations computational fluid dynamics computer aided design ice accretions grid generation numerical simulation
下载PDF
Investigation of flow characteristics in a rotor-stator cavity under crossflow using wall-modelled large-eddy simulation
16
作者 Lei XIE Qiang DU +3 位作者 Guang LIU Zengyan LIAN Yaguang XIE Yifu LUO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2023年第6期473-496,共24页
Rotor-stator cavities are frequently encountered in engineering applications such as gas turbine engines.They are usually subject to an external hot mainstream crossflow which in general is highly swirled under the ef... Rotor-stator cavities are frequently encountered in engineering applications such as gas turbine engines.They are usually subject to an external hot mainstream crossflow which in general is highly swirled under the effect of the nozzle guide vanes.To avoid hot mainstream gas ingress,the cavity is usually purged by a stream of sealing flow.The interactions between the external crossflow,cavity flow,and sealing flow are complicated and involve all scales of turbulent unsteadiness and flow instability which are beyond the resolution of the Reynolds-average approach.To cope with such a complex issue,a wall-modeled large-eddy simulation(WMLES)approach is adopted in this study.In the simulation,a 20°sector model is used and subjected to a uniform pre-swirled external crossflow and a stream of radial sealing flow.It is triggered by a convergent Reynoldsaveraged Navier-Stokes(RANS)result in which the shear stress transport(SST)turbulent model is used.In the WMLES simulation,the Smagoringsky sub-grid scale(SGS)model is applied.A scalar transportation equation is solved to simulate the blending and transportation process in the cavity.The overall flow field characteristics and deviation between RANS and WMLES results are discussed first.Both RANS and WMLES results show a Batchelor flow mode,while distinct deviation is also observed.Deviations in the small-radius region are caused by the insufficiency of the RANS approach in capturing the small-scale vortex structures in the boundary layer while deviations in the large-radius region are caused by the insufficiency of the RANS approach in predicting the external crossflow ingestion.The boundary layer vortex and external ingestion are then discussed in detail,highlighting the related flow instabilities.Finally,the large-flow structures induced by external flow ingress are analyzed using unsteady pressure oscillation signals. 展开更多
关键词 Wall-modeled large-eddy simulation(WMLES) Rotor-stator cavity Flow instability reynolds-averaged navier-stokes(rans)
原文传递
一种改进的类DES湍流模拟方法 被引量:4
17
作者 汪洪波 孙明波 +1 位作者 吴海燕 王振国 《航空动力学报》 EI CAS CSCD 北大核心 2011年第10期2167-2173,共7页
构造了一种基于一方程S-A(Spalart-Allmaras)模型和一方程Yoshizawa亚格子模型的混合RANS/LES(Reynolds-averaged Navier-Stokes/large eddy simulation)湍流模拟方法.在涡黏假设的基础上,将Yoshizawa亚格子湍动能方程转化为等效的亚格... 构造了一种基于一方程S-A(Spalart-Allmaras)模型和一方程Yoshizawa亚格子模型的混合RANS/LES(Reynolds-averaged Navier-Stokes/large eddy simulation)湍流模拟方法.在涡黏假设的基础上,将Yoshizawa亚格子湍动能方程转化为等效的亚格子湍流涡黏性输运方程,并采用混合函数将其与S-A模型方程进行混合,从而改进了DES(detached eddy simulation)模型的亚格子行为,同时克服了其依靠网格控制模型转换的缺点.模拟了超声速的带斜坡凹腔流动,并与相同网格下的LES及DES结果进行了比较,结果表明该混合RANS/LES方法在远离壁面的自由剪切流区域与LES行为一致,而在附着边界层区域表现优于LES和DES方法. 展开更多
关键词 混合rans/LES(reynolds-averaged navier-stokes/large EDDY simulation) 混合函数 凹腔 超声速 亚格子模型
原文传递
PREDICTION OF LOADING DISTRIBUTION AND HYDRODYNAMIC MEASUREMENTS FOR PROPELLER BLADES IN A RIM DRIVEN THRU-STER 被引量:21
18
作者 CAO Qing-ming HONG Fang-wen +2 位作者 TANG Deng-hai HU Fang-lin LU Lin-zhang 《Journal of Hydrodynamics》 SCIE EI CSCD 2012年第1期50-57,共8页
This article presents an approach which employs a commercial Reynolds-Averaged Navier-Stokes(RANS)solver to predict the steady wake field and loading distributions for a rim driven thruster.Four different cases of p... This article presents an approach which employs a commercial Reynolds-Averaged Navier-Stokes(RANS)solver to predict the steady wake field and loading distributions for a rim driven thruster.Four different cases of propeller blades are chosen to be calculated with the presented method.The propeller blade radial circulation and chordwise circulation density distributions are analyzed.The maximum radial circulation is found at the blade tip,which is different from conventional shaft driven propeller.The numerical results indicate that there is no tip leakage vortex in rim driven propulors.But there exist the tip joint vortex and the root region vortex.Bollard characteristics are calculated by taking rim surface effect into account.From the predicted results the second case in this paper is selected as the final one to perform hydrodynamic experiment.The calculation results with empirical rim surface corrections are compared with the measurement.It shows that the developed numerical method can well predict hydrodynamic performances of the rim driven thruster. 展开更多
关键词 rim driven thruster reynolds-averaged navier-stokes(rans)solver wake field radial circulation chordwise circulation density hydrodynamic experiment
原文传递
Constrained large-eddy simulation and detached eddy simulation of flow past a commercial aircraft at 14 degrees angle of attack 被引量:14
19
作者 CHEN ShiYi CHEN YingChun +9 位作者 XIA ZhenHua QU Kun SHI YiPeng XIAO ZuoLi LIU QiuHong CAI QingDong LIU Feng LEE Cunbiao ZHANG RiKui CAI JinSheng 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2013年第2期270-276,共7页
With the development of computational power and numerical algorithms,computational fluid dynamics(CFD) has become an important strategy for the design of aircraft,which significantly reduces the reliance on wind-tunne... With the development of computational power and numerical algorithms,computational fluid dynamics(CFD) has become an important strategy for the design of aircraft,which significantly reduces the reliance on wind-tunnel and flight tests.In this paper,we conducted a numerical investigation on the flow past a full commercial aircraft at Mach number 0.2 and 14 degrees angle of attack by means of Reynolds-averaged Navier-Stokes(RANS),detached-eddy simulation(DES) and our newly developed constrained large-eddy simulation(CLES).The objective of this paper is to study the capability of these models in simulating turbulent flows.To our knowledge,this is the first large-eddy simulation method for full commercial aircraft simulation.The results show that the CLES can predict the mean statistical quantities well,qualitatively consistent with traditional methods,and can capture more small-scale structures near the surface of the aircraft with massive separations.Our study demonstrates that CLES is a promising alternative for simulating real engineering turbulent flows. 展开更多
关键词 turbulence simulation reynolds-averaged navier-stokes (rans detached-eddy simulation (DES) constrained large-eddysimulation (CLES) full-aircraft simulation
原文传递
NUMERICAL INVESTIGATION OF CAVITATION PERFORMANCE OF SHIP PROPELLERS 被引量:7
20
作者 ZHU Zhi-feng FANG Shi-liang 《Journal of Hydrodynamics》 SCIE EI CSCD 2012年第3期347-353,共7页
The cavitation performance of propellers is studied based on viscous multiphase flow theories. With a hybrid grid based on Navier-Stokes (N-S) and bubble dynamics equations, some recent validation results are presen... The cavitation performance of propellers is studied based on viscous multiphase flow theories. With a hybrid grid based on Navier-Stokes (N-S) and bubble dynamics equations, some recent validation results are presented in this paper in the predictions of the thrust, the torque and the vapor volume fraction on the back side of propeller blade for a uniform inflow. The numerical predictions of the hydrodynamic performance and the sheet cavitation under several operating conditions for two propellers agree with the corresponding measured data in general. The thrust and the torque are plotted with respect to the advance rate and the cavitation number. The cavitation performance breakdown is closely related to the strong sheet cavitation around propellers. The models with parameters modified are shown to predict the propeller cavitation well. 展开更多
关键词 CAVITATION reynolds-averaged navier-stokes (rans PROPELLER sliding mesh multiphase flow
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部