The research isolated phosphorus-soluble bacteria from different parts of ryegrasses and selected 7 bacteria performing better in solbilizing capacity. The test results showed that the capacity of phosphorus-solubiliz...The research isolated phosphorus-soluble bacteria from different parts of ryegrasses and selected 7 bacteria performing better in solbilizing capacity. The test results showed that the capacity of phosphorus-solubilizing tended to be volatile in the range from 135.27 to 187.87 μg/ml and the secreting capacity of IAA was in3.47-24.27 μg/ml. It is believed that Lp59, Lp61, Lp65, Lp69, Lp70 and Lp72 are potential for further development.展开更多
Application of phosphate-solubilizing microorganisms (PSMs) has been reported to increase P uptake and plant growth. However, no information is available regarding the ecological consequences of the inoculation with P...Application of phosphate-solubilizing microorganisms (PSMs) has been reported to increase P uptake and plant growth. However, no information is available regarding the ecological consequences of the inoculation with PSMs. The effect of inoculation with phosphate-solubilizing fungal (PSF) isolates Aspergillus niger P39 and Penicillium oxalicum P66 on the bacterial communities in the rhizospheres of maize (Zea mays L. 'Haiyu 6') and soybean (Glycine max Merr. 'Heinong 35') was examined using culture-dependent methods as well as a culture-independent method, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Compared with the control, the number of culturable microbes for soybean was significantly greater with P39, whereas for maize, the same was significantly greater with P66. In addition, a greater number of microbes were found in the rhizosphere of maize compared with soybean. The fingerprint of DGGE for 16S rDNA indicated that inoculation with PSF also increased bacterial communities, with the P66 treatment having higher numbers of DGGE bands and a higher Shannon-Weaver diversity index compared with P39; the composition of the microbial community was also more complex with the P66 treatment. Overall, complex interactions between plant species and exotic PSMs affected the structure of the bacterial community in the rhizosphere, but plant species were more important in determining the bacterial community structure than the introduction of exotic microorganisms.展开更多
Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the ba...Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the bacterial community modifications are poorly understood. Here, six soybean(Glycine max) genotypes with differences in P efficiency were cultivated in acidic soils with long-term sufficient or deficient P-fertilizer treatments. The acid phosphatase(AcP) activities, organic-P concentrations and associated bacterial community compositions were determined in bulk and rhizosphere soils. The results showed that both soybean plant P content and the soil AcP activity were negatively correlated with soil organic-P concentration in P-deficient acidic soils. Soil P-availability affected the ɑ-diversity of bacteria in both bulk and rhizosphere soils. However, soybean had a stronger effect on the bacterial community composition, as reflected by the similar biomarker bacteria in the rhizosphere soils in both P-treatments. The relative abundance of biomarker bacteria Proteobacteria was strongly correlated with soil organic-P concentration and AcP activity in low-P treatments. Further high-throughput sequencing of the phoC gene revealed an obvious shift in Proteobacteria groups between bulk soils and rhizosphere soils, which was emphasized by the higher relative abundances of Cupriavidus and Klebsiella, and lower relative abundance of Xanthomonas in rhizosphere soils. Among them, Cupriavidus was the dominant phoC bacterial genus, and it was negatively correlated with the soil organic-P concentration. These findings suggest that soybean growth relies on organic-P mineralization in P-deficient acidic soils, which might be partially achieved by recruiting specific phoCharboring bacteria, such as Cupriavidus.展开更多
Microorganisms capable of solubilizing and mineralizing phosphorus (P) pools in soils are considered vital in promoting P bioavallability. The study was conducted to screen and isolate inorganic P-solubilizing bacte...Microorganisms capable of solubilizing and mineralizing phosphorus (P) pools in soils are considered vital in promoting P bioavallability. The study was conducted to screen and isolate inorganic P-solubilizing bacteria (IPSB) and organic P-mineralizing bacteria (OPMB) in soils taken from subtropical flooded and temperate non-flooded soils, and to compare inorganic P-solubilizing and organic P-solubilizing abilities between IPSB and OPMB. Ten OPMB strains were isolated and identified as Bacillus cereus and Bacillus megaterium, and five IPSB strains as B. megaterium, Burkholderia caryophyUi, Pseudomonas cichorii, and Pseudomonas syringae. P-solubilizing and -mineralizing abilities of the strains were measured using the methods taking cellular P into account. The IPSB strains exhibited inorganic P-solubilizing abilities ranging between 25.4-41.7 μg P mL^-1 and organic P-mineralizing abilities between 8.2-17.8μg P mL^-1. Each of the OPMB strains also exhibited both solubilizing and mineralizing abilities varying from 4.4 to 26.5 μg P mL^-1 and from 13.8 to 62.8 μg P mL^-1, respectively. For both IPSB and OPMB strains, most of the P mineralized from the organic P source was incorporated into the bacterial cells as cellular P. A significantly negative linear correlation (P 〈 0.05) was found between culture pH and P solubilized from inorganic P by OPMB strains. The results suggested that P solubilization and mineralization could coexist in the same bacterial strain.展开更多
Positive associations between alpine cushion plants and other species have been extensively studied.However,almost all studies have focused on the associations between macrofauna.Studies that have investigated positiv...Positive associations between alpine cushion plants and other species have been extensively studied.However,almost all studies have focused on the associations between macrofauna.Studies that have investigated positive associations between alpine cushion plants and rhizospheric microbes have been limited to the vegetation growing season.Here,we asked whether the positive effects that alpine cushion plants confer on rhizospheric microbe communities vary with seasons.We assessed seasonal variations in the bacterial diversity and composition in rhizosphere of two alpine cushion plants and surrounding bare ground by employing a high throughput sequencing method targeting the V3 region of bacterial 16 S rRNA genes.Soil properties of the rhizosphere and the bare ground were also examined.We found that cushion rhizospheres harbored significantly more C,N,S,ammonia nitrogen,and soil moisture than the bare ground.Soil properties in cushion rhizospheres were not notably different,except for soil pH.Bacterial diversities within the same microhabitats did not vary significantly with seasons.We concluded that alpine cushion plants had positive effects on the rhizospheric bacterial communities,even though the strength of the effect varied in different cushion species.Cushion species and the soil sulfur content were probably the major factors driving the spatial distribution and structure of soil bacterial communities in the alpine communities dominated by cushion plants.展开更多
The effects of biological bacterial fertilizer and chemical fertilizer on carbon metabolism characteristics of rhizosphere soil bacteria in rice were studied through a plot experiment.The results showed that the numbe...The effects of biological bacterial fertilizer and chemical fertilizer on carbon metabolism characteristics of rhizosphere soil bacteria in rice were studied through a plot experiment.The results showed that the number and Mcintosh index of bacteria in rice rhizosphere soil increased significantly with the application of biological bacterial fertilizer.It was found that the AWCD(average well color development)value of the bacteria remarkably increased and the decomposition of carboxylic acids,amines and heterozygotes were accelerated when adding biological bacterial fertilizer at a proper weight percent.All in all,proper addition of biological bacterial fertilizer could increase the number and carbon metabolism of bacteria.The most appropriate application rate was 70%chemical fertilizer nitrogen+30%biological bacterial fertilizer nitrogen for rice production in Northern Jiangsu Province.展开更多
Microbe communities in rhizosphere ecosystems are important for plant health but there is limited knowledge of them in the rhizospheres of genetically modified(GM) plants, especial for tree species. We used the ampl...Microbe communities in rhizosphere ecosystems are important for plant health but there is limited knowledge of them in the rhizospheres of genetically modified(GM) plants, especial for tree species. We used the amplitude sequencing method to analyze the V4 regions of the 16 S r RNA gene to identify changes in bacterial diversity and community structure in two GM lines(D520 and D521), one non-genetically modified(nonGM) line and in uncultivated soil. After chimera filtering,468.133 sequences in the domain Bacteria remained. There were ten dominant taxonomic groups(with [1 % of all sequences) across the samples. 241 of 551 genera(representing a ratio of 97.33 %) were common to all samples.A Venn diagram showed that 1.926 operational taxonomic units(OTUs) were shared by all samples. We found a specific change, a reduction in Chloroflexi, in the microorganisms in the rhizosphere soil planted with poplars. Taken together, the results showed few statistical differences in the bacterial diversity and community structure between the GM line and non-GM line, this suggests that there was no or very limited impact of this genetic modification on the bacterial communities in the rhizosphere.展开更多
In order to explore the nitrogen removal process in constructed wetlands(CW s),the moisture,ammonia nitrogen(NH4+-N),nitrate nitrogen(NO3"-N)and nitrification intensity in three wetland plant rhizosphere soils(Ac...In order to explore the nitrogen removal process in constructed wetlands(CW s),the moisture,ammonia nitrogen(NH4+-N),nitrate nitrogen(NO3"-N)and nitrification intensity in three wetland plant rhizosphere soils(Acorns calamus,Typha orientalis,Iris pseudacorus)were investigated at a relatively normal temperature range of15to25The relative abundance of ammonia-oxidizing bacteria(AOB)and ammonia-oxidizing archaea(AOA)were also achieved using fluorescence in situ hybridization(FISH).It is found that T.orientalis achieves the highest nitrification intensity of2.03m g(h?kg)while the second is I.pseudacorrs(1.74m g/(h?kg)),and followed by A.calamus(1.65m g/(h?kg))throughout the experiment.FISH reveals that the abundance of bacteria(1010g_1wet soil)is higher than that of archaea(109g_1wet soil),and AOBare the dominant bacteria in the ammonia oxidation process.The abundance of AOB in te rhizosphere soils from high to low T.orientalis(1.88x1010g"1),I pseudacorus(1.23x1010g1),A.calamus(5.07x109g"1)while the abundance of AOA from high to low ae I.pseudacorus(4.00x109g1),A.calamus(3.52x109g"1),T.orientalis(3.48x109g"1).The study provides valuable evidence of plant selection for nitrogen removal in CWs.展开更多
Sulfate-reducing bacteria(SRB)are ubiquitous anaerobic microorganisms that play signifi cant roles in the global biogeochemical cycle.Coastal wetlands,one of the major habitats of SRB,exhibit high sulfate-reducing act...Sulfate-reducing bacteria(SRB)are ubiquitous anaerobic microorganisms that play signifi cant roles in the global biogeochemical cycle.Coastal wetlands,one of the major habitats of SRB,exhibit high sulfate-reducing activity and thus play signifi cant roles in organic carbon remineralization,benthic geochemical action,and plant-microbe interactions.Recent studies have provided credible evidence that the functional rather than the taxonomic composition of microbes responds more closely to environmental factors.Therefore,in this study,functional gene prediction based on PacBio single molecular real-time sequencing of 16S rDNA was applied to determine the sulfate-reducing and organic substrate-decomposing activities of SRB in the rhizospheres of two typical coastal wetland plants in North and South China:Zostera japonica and Scirpus mariqueter.To this end,some physicochemical characteristics of the sediments as well as the phylogenetic structure,community composition,diversity,and proportions of several functional genes of the SRB in the two plant rhizospheres were analyzed.The Z.japonic a meadow had a higher dissimilatory sulfate reduction capability than the S.mariqueter-comprising saltmarsh,owing to its larger proportion of SRB in the microbial community,larger proportions of functional genes involved in dissimilatory sulfate reduction,and the stronger ability of the SRB to degrade organic substrates completely.This study confi rmed the feasibility of applying microbial community function prediction in research on the metabolic features of SRB,which will be helpful for gaining new knowledge of the biogeochemical and ecological roles of these bacteria in coastal wetlands.展开更多
Nitrogen is one of the most needed elements by coffee plants. Utilization of biological nitrogen fixation by non symbiotic bacteria offers alternative to reduce the N fertilizer usage. This study was focused to obtain...Nitrogen is one of the most needed elements by coffee plants. Utilization of biological nitrogen fixation by non symbiotic bacteria offers alternative to reduce the N fertilizer usage. This study was focused to obtain aerobic non symbiotic nitrogen-fixing bacteria from coffee rhizosphere. The application of those bacteria was expected to enhance coffee seedling growth. Sixty four aerobic nitrogen-fixing bacterial isolates were isolated from coffee plants rhizosphere from Jember, East Java using several nitrogen free medium, such as Ashby, malate acid, and fahreus agar. The nitrogen fixation ability of the isolates was determined by measuring their ability in pellicle formation on semi solid medium and ammonium excretion on growth medium. Ab Kws.l, Asm E6s.3.a, Asm Bsl.1, and Asm E6s were the isolates which showed the best performance on nitrogen fixation with excreted ammonium concentration ranged from 129.6 up to 239.8 pM/mg dry weight cell. Acetylene reduction assay was used to detect nitrogenase activity. Ab Kws.1 was the isolate which had the highest nitrogenase activity (7.4 mmol N2 fixed/gram dry weight cell/hour). Inoculation of the four best isolates onto Robusta coffee seedling positively enhanced the seedling growth in this green house experiment. Based on the results of Becton Dickinson's (BD) PhoenixTM Automated Microbiology System biochemical tests, Asm Bls.l isolates has similarities with Achromobacter sp., Asm E6s.l and Asm E6s.3.a had similarities with Stenotrophomonas maltophilia, while Ab Kws. 1 had similarities with Leifsonia aquatica.展开更多
Phosphate solubilizing bacteria isolated from rhizosphere of coffee plants may play an important role in improving phosphate availability for the plants. However, one of the factors influencing the degree of phosphate...Phosphate solubilizing bacteria isolated from rhizosphere of coffee plants may play an important role in improving phosphate availability for the plants. However, one of the factors influencing the degree of phosphate solubilization by these bacteria is the ability of the microorganisms to utilize phosphate. The objective of this study was to determine the ability of phosphate solubilizing bacteria isolated from coffee plant rhizosphere and their effects on robusta coffee seedling growth. This research was carried out by taking soil samples from Andungsari (Bondowoso District) and Kaliwining (Jember District) coffee plantations, both located in East Java. Liquid medium of Pikovskaya was used for isolation of phosphate solubilizing bacteria from the soil samples. Results of this study showed that 12 phosphate solubilizing bacteria were obtained from this isolation, eight isolates from Andungsari and four isolates from Kaliwining. Selection of those bacteria isolates was based on the qualitative ability in phosphate solubilizing by measuring the clear zone surrounding the colonies and quantitatively by measuring the solubilized phosphate using spectrophotometer. The results showed that four isolates, in the order of PFpKW1, PFpC61, PFsC62a, and PFsB 11, had the highest qualitative ability in solubilizing phosphate, while for the highest quantitative ability the order was PFpKW 1, PFpC61, PFsC62a, and PFsB 11. In a green house study, inoculation of these selected isolates onto Robusta coffee seedlings positively enhanced the coffee seedling growth. Phenotypic test indicated that the four isolates are similar to the genus of Pseudomonas.展开更多
Microbial diversity has been an important facet of scientific research, since microbes promise a plethora of biomolecules which are otherwise not found in nature. Microbes are subjected to high level of competition fo...Microbial diversity has been an important facet of scientific research, since microbes promise a plethora of biomolecules which are otherwise not found in nature. Microbes are subjected to high level of competition for survival in the environment, and hence develop mechanisms of defense. The biomolecules produced by these microbes as part of their defense or survival mechanism, are of importance for human and animal drugs and many other industrial and environmental applications. The marine counterparts of these terrestrial microbes have yet higher potential, since the marine environment has higher biotic and abiotic stresses, leading to new molecule discovery. In the current study, a bacterial diversity study of the culturable bacteria of the mangrove rhizosphere of Avicennia marina has been undertaken, to understand the flora diversity. Mangroves are unique ecosystems which are under a combination of marine and terrestrial influence. Mangroves are seaward, inland and also found in creek areas. This diversity in their habitat, leads them to produce variable root exudates, which support the growth of different types of organisms. This study has revealed that certain species are dominant in these ecosystems irrespective of the biotic and abiotic stresses, whereas certain species appear only at neutral pH. The study will help select organisms for further biomolecule discovery programs, based on their environment of isolation and other growth parameters.展开更多
Incessant application of chemical fertilizers to the agricultural fields may alter the composition and activities of soil microbiota.Thus,the shift of cultivation practices from chemical to organic is considered to be...Incessant application of chemical fertilizers to the agricultural fields may alter the composition and activities of soil microbiota.Thus,the shift of cultivation practices from chemical to organic is considered to be the need of the hour in order to maintain soil health.A study was conducted in the agricultural fields of the University of Burdwan,India to observe the impact of organic manure on the rhizosphere bacterial community.The experiments were conducted on maize plants,supplemented with the recommended dose of chemical fertilizer and organic manure(vermicompost and cow dung mixture).Corresponding changes in the plant phenological events and soil health in terms of soil physico-chemical factors and rhizosphere bacterial groups up to the level of CFU g-1×105 dry soil was noted.The results showed a significant increase in population of phosphate solubilizing bacteria during 30DAS.However,at 90 DAS,significant increase in the population of phosphate solubilizing bacteria,nitrifying bacteria,asymbiotic nitrogen-fixing bacteria and protein hydrolyzing bacteria was observed in the organically treated plots.The growth of rhizosphere bacteria was attributed to the type of organic manure supplied to the agricultural fields.In addition,a strong correlation was observed between Zn and protein hydrolyzing bacteria.The soil organic carbon and available nitrogen were strongly correlated with nitrifying,fat solubilizing and phosphate solubilizing groups of bacteria.展开更多
Two rice cultivars(Xiushui 09 and Chunyou 84)were used to evaluate the effects of various soil oxygen(O2)conditions on soil nitrogen(N)transformation,absorption and accumulation in rice plants.The treatments were cont...Two rice cultivars(Xiushui 09 and Chunyou 84)were used to evaluate the effects of various soil oxygen(O2)conditions on soil nitrogen(N)transformation,absorption and accumulation in rice plants.The treatments were continuous flooding(CF),continuous flooding and aeration(CFA),and alternate wetting and drying(AWD).The results showed that the AWD and CFA treatments improved soil N transformation,rice growth,and N absorption and accumulation.Soil NO3–content,nitrification activity and ammonia-oxidising bacteria abundance,leaf area,nitrate reductase activity,and N absorption and accumulation in rice all increased in both cultivars.However,soil microbial biomass carbon and pH did not significantly change during the whole period of rice growth.Correlation analysis revealed a significant positive correlation between the nitrification activity and ammonia-oxidising bacteria abundance,and both of them significantly increased as the total N accumulation in rice increased.Our results indicated that improved soil O2 conditions led to changing soil N cycling and contributed to increases in N absorption and accumulation by rice in paddy fields.展开更多
A two-year field experiment conducted under dryland conditions in semi-humid and drought-prone regions of China aimed to assess the effect of ammonia-oxidizing bacterial on maize water use efficiency and yield.A heter...A two-year field experiment conducted under dryland conditions in semi-humid and drought-prone regions of China aimed to assess the effect of ammonia-oxidizing bacterial on maize water use efficiency and yield.A heterotrophic ammonia-oxidizing bacteria(HAOB)strain S2_8_1 was used.Six treatments were applied:(1)no irrigation+HAOB strain(DI),(2)no irrigation+blank culture medium(DM),(3)no irrigation control(DCK),(4)irrigation+HAOB(WI),(5)irrigation+blank culture medium(WM),and(6)irrigation control(WCK).Results revealed that HAOB treatment increased maize growth,yield,and water use efficiency over controls,regardless of whether the year was wet or dry.This improvement was attributed to the accelerated nitrification in the rhizosphere soil due to HAOB inoculation,which subsequently led to increased levels of leaf cytokinins.Overall,these findings suggest that HAOB inoculation holds promise as a strategy to boost water use efficiency and maize productivity in dryland agriculture.展开更多
Phthalic acid is a main pollutant, which is also an important reason for the continuous cropping effect of tobacco. In order to degrade the phthalic acid accumulated in the environment and relieve the obstacle effect ...Phthalic acid is a main pollutant, which is also an important reason for the continuous cropping effect of tobacco. In order to degrade the phthalic acid accumulated in the environment and relieve the obstacle effect of tobacco continuous cropping caused by the accumulation of phthalic acid in the soil. In this study, phthalate degrading bacteria B3 is screened from continuous cropping tobacco soil. The results of biochemical identification and 16sDNA comparison show that the homology between degrading bacterium B3 and Enterobacter sp. is 99%. At the same time, the growth of Enterobacter hormaechei subsp. B3 and the degradation of phthalic acid under different environmental conditions are studied. The results show that the environment with a temperature of 30˚C, PH of 7, and inoculation amount of not less than 1.2%, which is the optimal growth conditions for Enterobacter sp. B3. In an environment with a concentration of phthalic acid not exceeding 500 mg/L, Enterobacter sp. B3 has a better effect on phthalic acid degradation, and the degradation rate can reach 77% in 7 d. The results of indoor potting experiments on tobacco show that the degradation rate of phthalic acid by Enterobacter B3 in the soil is about 45%, which can reduce the inhibitory effect of phthalic acid on the growth of tobacco seedlings. This study enriches the microbial resources for degrading phthalic acid and provides a theoretical basis for alleviating tobacco continuous cropping obstacles.展开更多
INTRODUCTION The insoluble phosphates which can not be directly absorbed by plants are the mai forms of inorganic phosphate in soil. These kinds of phosphates can be solubilized by several species of bacteria which ar...INTRODUCTION The insoluble phosphates which can not be directly absorbed by plants are the mai forms of inorganic phosphate in soil. These kinds of phosphates can be solubilized by several species of bacteria which are widely spread in soil especially in rhizosphere where70% of the bacteria are capable of solubilizing inorganic phosphate. Many researchers re-展开更多
Harnessing the rhizospheric microbiome,including phosphorus mineralizing bacteria(PMB),is a promising technique for maintaining sustainability and productivity in intensive agricultural systems.However,it is unclear a...Harnessing the rhizospheric microbiome,including phosphorus mineralizing bacteria(PMB),is a promising technique for maintaining sustainability and productivity in intensive agricultural systems.However,it is unclear as to which beneficial taxonomic group populations in the rhizosphere are potentially associated with the changes in soil microbiomes shifted by fertilization regimes.Herein,we analyzed the diversity and community structure of total bacteria and PMB in the rhizosphere of maize(Zea mays L.)grown in soils under 25 years of four fertilization regimes(compost,biocompost,chemical,or nonfertilized)via selective culture and Illumina sequencing of the 16S rRNA genes.Plant development explained more variations(29 and 13%,respectively)in the composition of total bacteria and PMB in the rhizosphere of maize than the different fertilization regimes.Among those genera enriched in the rhizosphere of maize,the relative abundances of Oceanobacillus,Bacillus,Achromobacter,Ensifer,Paracoccus,Ramlibacter,and Luteimonas were positively correlated with those in the bulk soil.The relative abundance of Paracoccus was significantly higher in soils fertilized by compost or biocompost than the other soils.Similar results were also observed for PMB affiliated with Ensifer,Bacillus,and Streptomyces.Although plant development was the major factor in shaping the rhizospheric microbiome of maize,fertilization regimes might have modified beneficial rhizospheric microbial taxa such as Bacillus and Ensifer.展开更多
基金Supported by Social Development Projects in Guizhou Province(NY[2011]3104)System Reform Program of Guizhou Province(Z[2012]4005)~~
文摘The research isolated phosphorus-soluble bacteria from different parts of ryegrasses and selected 7 bacteria performing better in solbilizing capacity. The test results showed that the capacity of phosphorus-solubilizing tended to be volatile in the range from 135.27 to 187.87 μg/ml and the secreting capacity of IAA was in3.47-24.27 μg/ml. It is believed that Lp59, Lp61, Lp65, Lp69, Lp70 and Lp72 are potential for further development.
基金Project supported by the Director Fund of Northeast Institute of Geography and Agroecology, Chinese Academy of Sciencesthe National High Technology Research and Development Program (863 Program) of China (No. 2006AA10Z424).
文摘Application of phosphate-solubilizing microorganisms (PSMs) has been reported to increase P uptake and plant growth. However, no information is available regarding the ecological consequences of the inoculation with PSMs. The effect of inoculation with phosphate-solubilizing fungal (PSF) isolates Aspergillus niger P39 and Penicillium oxalicum P66 on the bacterial communities in the rhizospheres of maize (Zea mays L. 'Haiyu 6') and soybean (Glycine max Merr. 'Heinong 35') was examined using culture-dependent methods as well as a culture-independent method, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Compared with the control, the number of culturable microbes for soybean was significantly greater with P39, whereas for maize, the same was significantly greater with P66. In addition, a greater number of microbes were found in the rhizosphere of maize compared with soybean. The fingerprint of DGGE for 16S rDNA indicated that inoculation with PSF also increased bacterial communities, with the P66 treatment having higher numbers of DGGE bands and a higher Shannon-Weaver diversity index compared with P39; the composition of the microbial community was also more complex with the P66 treatment. Overall, complex interactions between plant species and exotic PSMs affected the structure of the bacterial community in the rhizosphere, but plant species were more important in determining the bacterial community structure than the introduction of exotic microorganisms.
基金This work was supported by grants from the National Key Research and Development Program of China(2021YFF1000500)the Open Competition Program of Ten Major Directions of Agricultural Science and Technology Innovation for the 14th Five-Year Plan of Guangdong Province,China(2022SDZG07)+3 种基金the Key Areas Research and Development Programs of Guangdong Province,China(2022B0202060005)the STICGrantof China(SGDX20210823103535007)the Major Program of Guangdong Basic and Applied Research,China(2019B030302006)the Natural Science Foundation of Guangdong Province,China(2021A1515010826and 2020A1515110261).
文摘Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the bacterial community modifications are poorly understood. Here, six soybean(Glycine max) genotypes with differences in P efficiency were cultivated in acidic soils with long-term sufficient or deficient P-fertilizer treatments. The acid phosphatase(AcP) activities, organic-P concentrations and associated bacterial community compositions were determined in bulk and rhizosphere soils. The results showed that both soybean plant P content and the soil AcP activity were negatively correlated with soil organic-P concentration in P-deficient acidic soils. Soil P-availability affected the ɑ-diversity of bacteria in both bulk and rhizosphere soils. However, soybean had a stronger effect on the bacterial community composition, as reflected by the similar biomarker bacteria in the rhizosphere soils in both P-treatments. The relative abundance of biomarker bacteria Proteobacteria was strongly correlated with soil organic-P concentration and AcP activity in low-P treatments. Further high-throughput sequencing of the phoC gene revealed an obvious shift in Proteobacteria groups between bulk soils and rhizosphere soils, which was emphasized by the higher relative abundances of Cupriavidus and Klebsiella, and lower relative abundance of Xanthomonas in rhizosphere soils. Among them, Cupriavidus was the dominant phoC bacterial genus, and it was negatively correlated with the soil organic-P concentration. These findings suggest that soybean growth relies on organic-P mineralization in P-deficient acidic soils, which might be partially achieved by recruiting specific phoCharboring bacteria, such as Cupriavidus.
基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the Ministry of Education of the P.R. China.
文摘Microorganisms capable of solubilizing and mineralizing phosphorus (P) pools in soils are considered vital in promoting P bioavallability. The study was conducted to screen and isolate inorganic P-solubilizing bacteria (IPSB) and organic P-mineralizing bacteria (OPMB) in soils taken from subtropical flooded and temperate non-flooded soils, and to compare inorganic P-solubilizing and organic P-solubilizing abilities between IPSB and OPMB. Ten OPMB strains were isolated and identified as Bacillus cereus and Bacillus megaterium, and five IPSB strains as B. megaterium, Burkholderia caryophyUi, Pseudomonas cichorii, and Pseudomonas syringae. P-solubilizing and -mineralizing abilities of the strains were measured using the methods taking cellular P into account. The IPSB strains exhibited inorganic P-solubilizing abilities ranging between 25.4-41.7 μg P mL^-1 and organic P-mineralizing abilities between 8.2-17.8μg P mL^-1. Each of the OPMB strains also exhibited both solubilizing and mineralizing abilities varying from 4.4 to 26.5 μg P mL^-1 and from 13.8 to 62.8 μg P mL^-1, respectively. For both IPSB and OPMB strains, most of the P mineralized from the organic P source was incorporated into the bacterial cells as cellular P. A significantly negative linear correlation (P 〈 0.05) was found between culture pH and P solubilized from inorganic P by OPMB strains. The results suggested that P solubilization and mineralization could coexist in the same bacterial strain.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC0505200,to Hang Sun)the Major Program of National Natural Science Foundation of China(Grant No.31590823,to Hang Sun)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA20050203,to Hang Sun)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB15020302,to Jianqiang Su)the Yunnan Applied Basic Research Project(Grant No.2018FA015,to Yang Yang)
文摘Positive associations between alpine cushion plants and other species have been extensively studied.However,almost all studies have focused on the associations between macrofauna.Studies that have investigated positive associations between alpine cushion plants and rhizospheric microbes have been limited to the vegetation growing season.Here,we asked whether the positive effects that alpine cushion plants confer on rhizospheric microbe communities vary with seasons.We assessed seasonal variations in the bacterial diversity and composition in rhizosphere of two alpine cushion plants and surrounding bare ground by employing a high throughput sequencing method targeting the V3 region of bacterial 16 S rRNA genes.Soil properties of the rhizosphere and the bare ground were also examined.We found that cushion rhizospheres harbored significantly more C,N,S,ammonia nitrogen,and soil moisture than the bare ground.Soil properties in cushion rhizospheres were not notably different,except for soil pH.Bacterial diversities within the same microhabitats did not vary significantly with seasons.We concluded that alpine cushion plants had positive effects on the rhizospheric bacterial communities,even though the strength of the effect varied in different cushion species.Cushion species and the soil sulfur content were probably the major factors driving the spatial distribution and structure of soil bacterial communities in the alpine communities dominated by cushion plants.
文摘The effects of biological bacterial fertilizer and chemical fertilizer on carbon metabolism characteristics of rhizosphere soil bacteria in rice were studied through a plot experiment.The results showed that the number and Mcintosh index of bacteria in rice rhizosphere soil increased significantly with the application of biological bacterial fertilizer.It was found that the AWCD(average well color development)value of the bacteria remarkably increased and the decomposition of carboxylic acids,amines and heterozygotes were accelerated when adding biological bacterial fertilizer at a proper weight percent.All in all,proper addition of biological bacterial fertilizer could increase the number and carbon metabolism of bacteria.The most appropriate application rate was 70%chemical fertilizer nitrogen+30%biological bacterial fertilizer nitrogen for rice production in Northern Jiangsu Province.
基金financially supported by the National High-Tech Research and Development Program of China,863Program(Grant No.2011AA100201)the National Forestry Public Welfare Research Project of China(Grant No.201004004)
文摘Microbe communities in rhizosphere ecosystems are important for plant health but there is limited knowledge of them in the rhizospheres of genetically modified(GM) plants, especial for tree species. We used the amplitude sequencing method to analyze the V4 regions of the 16 S r RNA gene to identify changes in bacterial diversity and community structure in two GM lines(D520 and D521), one non-genetically modified(nonGM) line and in uncultivated soil. After chimera filtering,468.133 sequences in the domain Bacteria remained. There were ten dominant taxonomic groups(with [1 % of all sequences) across the samples. 241 of 551 genera(representing a ratio of 97.33 %) were common to all samples.A Venn diagram showed that 1.926 operational taxonomic units(OTUs) were shared by all samples. We found a specific change, a reduction in Chloroflexi, in the microorganisms in the rhizosphere soil planted with poplars. Taken together, the results showed few statistical differences in the bacterial diversity and community structure between the GM line and non-GM line, this suggests that there was no or very limited impact of this genetic modification on the bacterial communities in the rhizosphere.
基金The National Natural Science Foundation of China(No.51479034,50909019)the Fundamental Research Funds for the Central Universities
文摘In order to explore the nitrogen removal process in constructed wetlands(CW s),the moisture,ammonia nitrogen(NH4+-N),nitrate nitrogen(NO3"-N)and nitrification intensity in three wetland plant rhizosphere soils(Acorns calamus,Typha orientalis,Iris pseudacorus)were investigated at a relatively normal temperature range of15to25The relative abundance of ammonia-oxidizing bacteria(AOB)and ammonia-oxidizing archaea(AOA)were also achieved using fluorescence in situ hybridization(FISH).It is found that T.orientalis achieves the highest nitrification intensity of2.03m g(h?kg)while the second is I.pseudacorrs(1.74m g/(h?kg)),and followed by A.calamus(1.65m g/(h?kg))throughout the experiment.FISH reveals that the abundance of bacteria(1010g_1wet soil)is higher than that of archaea(109g_1wet soil),and AOBare the dominant bacteria in the ammonia oxidation process.The abundance of AOB in te rhizosphere soils from high to low T.orientalis(1.88x1010g"1),I pseudacorus(1.23x1010g1),A.calamus(5.07x109g"1)while the abundance of AOA from high to low ae I.pseudacorus(4.00x109g1),A.calamus(3.52x109g"1),T.orientalis(3.48x109g"1).The study provides valuable evidence of plant selection for nitrogen removal in CWs.
基金Supported by the Scientifi c Research Fund of the Second Institute of Oceanography,Ministry of Natural Resources(MNR)(Nos.JB1906,JG1616,JG1910)the Zhejiang Qingshan Lake Innovation Platform for Marine Science and Technology(No.2017E80001)+4 种基金the Key Projects of Philosophy and Social Sciences Research,Ministry of Education(No.18JZD059)the National Key Technology Research and Development Program of the Ministry of Science and Technology of the China(No.2015BAD08B01)the State Key Laboratory of Satellite Ocean Environment Dynamics(No.SOEDZZ1902)the National Natural Science Foundation of China(No.41806136)the Project of Long Term Observation and Research Plan in the Changjiang Estuary and the Adjacent East China Sea(LORCE,14282)。
文摘Sulfate-reducing bacteria(SRB)are ubiquitous anaerobic microorganisms that play signifi cant roles in the global biogeochemical cycle.Coastal wetlands,one of the major habitats of SRB,exhibit high sulfate-reducing activity and thus play signifi cant roles in organic carbon remineralization,benthic geochemical action,and plant-microbe interactions.Recent studies have provided credible evidence that the functional rather than the taxonomic composition of microbes responds more closely to environmental factors.Therefore,in this study,functional gene prediction based on PacBio single molecular real-time sequencing of 16S rDNA was applied to determine the sulfate-reducing and organic substrate-decomposing activities of SRB in the rhizospheres of two typical coastal wetland plants in North and South China:Zostera japonica and Scirpus mariqueter.To this end,some physicochemical characteristics of the sediments as well as the phylogenetic structure,community composition,diversity,and proportions of several functional genes of the SRB in the two plant rhizospheres were analyzed.The Z.japonic a meadow had a higher dissimilatory sulfate reduction capability than the S.mariqueter-comprising saltmarsh,owing to its larger proportion of SRB in the microbial community,larger proportions of functional genes involved in dissimilatory sulfate reduction,and the stronger ability of the SRB to degrade organic substrates completely.This study confi rmed the feasibility of applying microbial community function prediction in research on the metabolic features of SRB,which will be helpful for gaining new knowledge of the biogeochemical and ecological roles of these bacteria in coastal wetlands.
文摘Nitrogen is one of the most needed elements by coffee plants. Utilization of biological nitrogen fixation by non symbiotic bacteria offers alternative to reduce the N fertilizer usage. This study was focused to obtain aerobic non symbiotic nitrogen-fixing bacteria from coffee rhizosphere. The application of those bacteria was expected to enhance coffee seedling growth. Sixty four aerobic nitrogen-fixing bacterial isolates were isolated from coffee plants rhizosphere from Jember, East Java using several nitrogen free medium, such as Ashby, malate acid, and fahreus agar. The nitrogen fixation ability of the isolates was determined by measuring their ability in pellicle formation on semi solid medium and ammonium excretion on growth medium. Ab Kws.l, Asm E6s.3.a, Asm Bsl.1, and Asm E6s were the isolates which showed the best performance on nitrogen fixation with excreted ammonium concentration ranged from 129.6 up to 239.8 pM/mg dry weight cell. Acetylene reduction assay was used to detect nitrogenase activity. Ab Kws.1 was the isolate which had the highest nitrogenase activity (7.4 mmol N2 fixed/gram dry weight cell/hour). Inoculation of the four best isolates onto Robusta coffee seedling positively enhanced the seedling growth in this green house experiment. Based on the results of Becton Dickinson's (BD) PhoenixTM Automated Microbiology System biochemical tests, Asm Bls.l isolates has similarities with Achromobacter sp., Asm E6s.l and Asm E6s.3.a had similarities with Stenotrophomonas maltophilia, while Ab Kws. 1 had similarities with Leifsonia aquatica.
文摘Phosphate solubilizing bacteria isolated from rhizosphere of coffee plants may play an important role in improving phosphate availability for the plants. However, one of the factors influencing the degree of phosphate solubilization by these bacteria is the ability of the microorganisms to utilize phosphate. The objective of this study was to determine the ability of phosphate solubilizing bacteria isolated from coffee plant rhizosphere and their effects on robusta coffee seedling growth. This research was carried out by taking soil samples from Andungsari (Bondowoso District) and Kaliwining (Jember District) coffee plantations, both located in East Java. Liquid medium of Pikovskaya was used for isolation of phosphate solubilizing bacteria from the soil samples. Results of this study showed that 12 phosphate solubilizing bacteria were obtained from this isolation, eight isolates from Andungsari and four isolates from Kaliwining. Selection of those bacteria isolates was based on the qualitative ability in phosphate solubilizing by measuring the clear zone surrounding the colonies and quantitatively by measuring the solubilized phosphate using spectrophotometer. The results showed that four isolates, in the order of PFpKW1, PFpC61, PFsC62a, and PFsB 11, had the highest qualitative ability in solubilizing phosphate, while for the highest quantitative ability the order was PFpKW 1, PFpC61, PFsC62a, and PFsB 11. In a green house study, inoculation of these selected isolates onto Robusta coffee seedlings positively enhanced the coffee seedling growth. Phenotypic test indicated that the four isolates are similar to the genus of Pseudomonas.
文摘Microbial diversity has been an important facet of scientific research, since microbes promise a plethora of biomolecules which are otherwise not found in nature. Microbes are subjected to high level of competition for survival in the environment, and hence develop mechanisms of defense. The biomolecules produced by these microbes as part of their defense or survival mechanism, are of importance for human and animal drugs and many other industrial and environmental applications. The marine counterparts of these terrestrial microbes have yet higher potential, since the marine environment has higher biotic and abiotic stresses, leading to new molecule discovery. In the current study, a bacterial diversity study of the culturable bacteria of the mangrove rhizosphere of Avicennia marina has been undertaken, to understand the flora diversity. Mangroves are unique ecosystems which are under a combination of marine and terrestrial influence. Mangroves are seaward, inland and also found in creek areas. This diversity in their habitat, leads them to produce variable root exudates, which support the growth of different types of organisms. This study has revealed that certain species are dominant in these ecosystems irrespective of the biotic and abiotic stresses, whereas certain species appear only at neutral pH. The study will help select organisms for further biomolecule discovery programs, based on their environment of isolation and other growth parameters.
文摘Incessant application of chemical fertilizers to the agricultural fields may alter the composition and activities of soil microbiota.Thus,the shift of cultivation practices from chemical to organic is considered to be the need of the hour in order to maintain soil health.A study was conducted in the agricultural fields of the University of Burdwan,India to observe the impact of organic manure on the rhizosphere bacterial community.The experiments were conducted on maize plants,supplemented with the recommended dose of chemical fertilizer and organic manure(vermicompost and cow dung mixture).Corresponding changes in the plant phenological events and soil health in terms of soil physico-chemical factors and rhizosphere bacterial groups up to the level of CFU g-1×105 dry soil was noted.The results showed a significant increase in population of phosphate solubilizing bacteria during 30DAS.However,at 90 DAS,significant increase in the population of phosphate solubilizing bacteria,nitrifying bacteria,asymbiotic nitrogen-fixing bacteria and protein hydrolyzing bacteria was observed in the organically treated plots.The growth of rhizosphere bacteria was attributed to the type of organic manure supplied to the agricultural fields.In addition,a strong correlation was observed between Zn and protein hydrolyzing bacteria.The soil organic carbon and available nitrogen were strongly correlated with nitrifying,fat solubilizing and phosphate solubilizing groups of bacteria.
基金the National Key Research and Development Program of China(Grant No.2016YFD300507)the National Natural Science Foundation of China(Grant No.31401343)the National Rice Industry Technology System of China(Grant No.CARS-01-04A).
文摘Two rice cultivars(Xiushui 09 and Chunyou 84)were used to evaluate the effects of various soil oxygen(O2)conditions on soil nitrogen(N)transformation,absorption and accumulation in rice plants.The treatments were continuous flooding(CF),continuous flooding and aeration(CFA),and alternate wetting and drying(AWD).The results showed that the AWD and CFA treatments improved soil N transformation,rice growth,and N absorption and accumulation.Soil NO3–content,nitrification activity and ammonia-oxidising bacteria abundance,leaf area,nitrate reductase activity,and N absorption and accumulation in rice all increased in both cultivars.However,soil microbial biomass carbon and pH did not significantly change during the whole period of rice growth.Correlation analysis revealed a significant positive correlation between the nitrification activity and ammonia-oxidising bacteria abundance,and both of them significantly increased as the total N accumulation in rice increased.Our results indicated that improved soil O2 conditions led to changing soil N cycling and contributed to increases in N absorption and accumulation by rice in paddy fields.
基金supported by the National Natural Science Foundation of China(U1304326)the Natural Science Foundation of Henan Provincial(242300421242)。
文摘A two-year field experiment conducted under dryland conditions in semi-humid and drought-prone regions of China aimed to assess the effect of ammonia-oxidizing bacterial on maize water use efficiency and yield.A heterotrophic ammonia-oxidizing bacteria(HAOB)strain S2_8_1 was used.Six treatments were applied:(1)no irrigation+HAOB strain(DI),(2)no irrigation+blank culture medium(DM),(3)no irrigation control(DCK),(4)irrigation+HAOB(WI),(5)irrigation+blank culture medium(WM),and(6)irrigation control(WCK).Results revealed that HAOB treatment increased maize growth,yield,and water use efficiency over controls,regardless of whether the year was wet or dry.This improvement was attributed to the accelerated nitrification in the rhizosphere soil due to HAOB inoculation,which subsequently led to increased levels of leaf cytokinins.Overall,these findings suggest that HAOB inoculation holds promise as a strategy to boost water use efficiency and maize productivity in dryland agriculture.
文摘Phthalic acid is a main pollutant, which is also an important reason for the continuous cropping effect of tobacco. In order to degrade the phthalic acid accumulated in the environment and relieve the obstacle effect of tobacco continuous cropping caused by the accumulation of phthalic acid in the soil. In this study, phthalate degrading bacteria B3 is screened from continuous cropping tobacco soil. The results of biochemical identification and 16sDNA comparison show that the homology between degrading bacterium B3 and Enterobacter sp. is 99%. At the same time, the growth of Enterobacter hormaechei subsp. B3 and the degradation of phthalic acid under different environmental conditions are studied. The results show that the environment with a temperature of 30˚C, PH of 7, and inoculation amount of not less than 1.2%, which is the optimal growth conditions for Enterobacter sp. B3. In an environment with a concentration of phthalic acid not exceeding 500 mg/L, Enterobacter sp. B3 has a better effect on phthalic acid degradation, and the degradation rate can reach 77% in 7 d. The results of indoor potting experiments on tobacco show that the degradation rate of phthalic acid by Enterobacter B3 in the soil is about 45%, which can reduce the inhibitory effect of phthalic acid on the growth of tobacco seedlings. This study enriches the microbial resources for degrading phthalic acid and provides a theoretical basis for alleviating tobacco continuous cropping obstacles.
基金Projcct supponcd by the National Natural science Foundation of China.
文摘INTRODUCTION The insoluble phosphates which can not be directly absorbed by plants are the mai forms of inorganic phosphate in soil. These kinds of phosphates can be solubilized by several species of bacteria which are widely spread in soil especially in rhizosphere where70% of the bacteria are capable of solubilizing inorganic phosphate. Many researchers re-
基金supported by the National Key R&D Program of China(2019YFD1002000,2016YFD0800602 and 2016YFD0501404)。
文摘Harnessing the rhizospheric microbiome,including phosphorus mineralizing bacteria(PMB),is a promising technique for maintaining sustainability and productivity in intensive agricultural systems.However,it is unclear as to which beneficial taxonomic group populations in the rhizosphere are potentially associated with the changes in soil microbiomes shifted by fertilization regimes.Herein,we analyzed the diversity and community structure of total bacteria and PMB in the rhizosphere of maize(Zea mays L.)grown in soils under 25 years of four fertilization regimes(compost,biocompost,chemical,or nonfertilized)via selective culture and Illumina sequencing of the 16S rRNA genes.Plant development explained more variations(29 and 13%,respectively)in the composition of total bacteria and PMB in the rhizosphere of maize than the different fertilization regimes.Among those genera enriched in the rhizosphere of maize,the relative abundances of Oceanobacillus,Bacillus,Achromobacter,Ensifer,Paracoccus,Ramlibacter,and Luteimonas were positively correlated with those in the bulk soil.The relative abundance of Paracoccus was significantly higher in soils fertilized by compost or biocompost than the other soils.Similar results were also observed for PMB affiliated with Ensifer,Bacillus,and Streptomyces.Although plant development was the major factor in shaping the rhizospheric microbiome of maize,fertilization regimes might have modified beneficial rhizospheric microbial taxa such as Bacillus and Ensifer.