期刊文献+
共找到537篇文章
< 1 2 27 >
每页显示 20 50 100
Selection of Rhizosphere Phosphate-solubilizing Bacteria of Perennial Ryegrass
1
作者 杨明举 丁磊磊 +4 位作者 李世歌 莫本田 舒健虹 张文 李娟 《Agricultural Science & Technology》 CAS 2016年第3期756-759,共4页
The research isolated phosphorus-soluble bacteria from different parts of ryegrasses and selected 7 bacteria performing better in solbilizing capacity. The test results showed that the capacity of phosphorus-solubiliz... The research isolated phosphorus-soluble bacteria from different parts of ryegrasses and selected 7 bacteria performing better in solbilizing capacity. The test results showed that the capacity of phosphorus-solubilizing tended to be volatile in the range from 135.27 to 187.87 μg/ml and the secreting capacity of IAA was in3.47-24.27 μg/ml. It is believed that Lp59, Lp61, Lp65, Lp69, Lp70 and Lp72 are potential for further development. 展开更多
关键词 Perennial ryegrass phosphate-solubilizing bacteria Phosphorus-solubilizing ability IAA
下载PDF
Inoculation with Phosphate-Solubilizing Fungi Diversifies the Bacterial Community in Rhizospheres of Maize and Soybean 被引量:1
2
作者 WANG Guang-Hua JIN Jian +2 位作者 XU Mei-Na PAN Xiang-Wen C. TANG 《Pedosphere》 SCIE CAS CSCD 2007年第2期191-199,共9页
Application of phosphate-solubilizing microorganisms (PSMs) has been reported to increase P uptake and plant growth. However, no information is available regarding the ecological consequences of the inoculation with P... Application of phosphate-solubilizing microorganisms (PSMs) has been reported to increase P uptake and plant growth. However, no information is available regarding the ecological consequences of the inoculation with PSMs. The effect of inoculation with phosphate-solubilizing fungal (PSF) isolates Aspergillus niger P39 and Penicillium oxalicum P66 on the bacterial communities in the rhizospheres of maize (Zea mays L. 'Haiyu 6') and soybean (Glycine max Merr. 'Heinong 35') was examined using culture-dependent methods as well as a culture-independent method, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Compared with the control, the number of culturable microbes for soybean was significantly greater with P39, whereas for maize, the same was significantly greater with P66. In addition, a greater number of microbes were found in the rhizosphere of maize compared with soybean. The fingerprint of DGGE for 16S rDNA indicated that inoculation with PSF also increased bacterial communities, with the P66 treatment having higher numbers of DGGE bands and a higher Shannon-Weaver diversity index compared with P39; the composition of the microbial community was also more complex with the P66 treatment. Overall, complex interactions between plant species and exotic PSMs affected the structure of the bacterial community in the rhizosphere, but plant species were more important in determining the bacterial community structure than the introduction of exotic microorganisms. 展开更多
关键词 bacterial community DIVERSITY PCR-DGGE phosphate-solubilizing fungus rhizosphere
下载PDF
Soybean(Glycine max)rhizosphere organic phosphorus recycling relies on acid phosphatase activity and specific phosphorusmineralizing-related bacteria in phosphate deficient acidic soils
3
作者 Qianqian Chen Qian Zhao +9 位作者 Baoxing Xie Xing Lu Qi Guo Guoxuan Liu Ming Zhou Jihui Tian Weiguo Lu Kang Chen Jiang Tian Cuiyue Liang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1685-1702,共18页
Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the ba... Bacteria play critical roles in regulating soil phosphorus(P) cycling. The effects of interactions between crops and soil P-availability on bacterial communities and the feedback regulation of soil P cycling by the bacterial community modifications are poorly understood. Here, six soybean(Glycine max) genotypes with differences in P efficiency were cultivated in acidic soils with long-term sufficient or deficient P-fertilizer treatments. The acid phosphatase(AcP) activities, organic-P concentrations and associated bacterial community compositions were determined in bulk and rhizosphere soils. The results showed that both soybean plant P content and the soil AcP activity were negatively correlated with soil organic-P concentration in P-deficient acidic soils. Soil P-availability affected the ɑ-diversity of bacteria in both bulk and rhizosphere soils. However, soybean had a stronger effect on the bacterial community composition, as reflected by the similar biomarker bacteria in the rhizosphere soils in both P-treatments. The relative abundance of biomarker bacteria Proteobacteria was strongly correlated with soil organic-P concentration and AcP activity in low-P treatments. Further high-throughput sequencing of the phoC gene revealed an obvious shift in Proteobacteria groups between bulk soils and rhizosphere soils, which was emphasized by the higher relative abundances of Cupriavidus and Klebsiella, and lower relative abundance of Xanthomonas in rhizosphere soils. Among them, Cupriavidus was the dominant phoC bacterial genus, and it was negatively correlated with the soil organic-P concentration. These findings suggest that soybean growth relies on organic-P mineralization in P-deficient acidic soils, which might be partially achieved by recruiting specific phoCharboring bacteria, such as Cupriavidus. 展开更多
关键词 organic phosphorus acid phosphatase SOYBEAN bacterial community phoC-harboring bacteria rhizosphere
下载PDF
Phosphate-Solubilizing and -Mineralizing Abilities of Bacteria Isolated from Soils 被引量:34
4
作者 TAO Guang-Can TIAN Shu-Jun +1 位作者 CAI Miao-Ying XIE Guang-Hui 《Pedosphere》 SCIE CAS CSCD 2008年第4期515-523,共9页
Microorganisms capable of solubilizing and mineralizing phosphorus (P) pools in soils are considered vital in promoting P bioavallability. The study was conducted to screen and isolate inorganic P-solubilizing bacte... Microorganisms capable of solubilizing and mineralizing phosphorus (P) pools in soils are considered vital in promoting P bioavallability. The study was conducted to screen and isolate inorganic P-solubilizing bacteria (IPSB) and organic P-mineralizing bacteria (OPMB) in soils taken from subtropical flooded and temperate non-flooded soils, and to compare inorganic P-solubilizing and organic P-solubilizing abilities between IPSB and OPMB. Ten OPMB strains were isolated and identified as Bacillus cereus and Bacillus megaterium, and five IPSB strains as B. megaterium, Burkholderia caryophyUi, Pseudomonas cichorii, and Pseudomonas syringae. P-solubilizing and -mineralizing abilities of the strains were measured using the methods taking cellular P into account. The IPSB strains exhibited inorganic P-solubilizing abilities ranging between 25.4-41.7 μg P mL^-1 and organic P-mineralizing abilities between 8.2-17.8μg P mL^-1. Each of the OPMB strains also exhibited both solubilizing and mineralizing abilities varying from 4.4 to 26.5 μg P mL^-1 and from 13.8 to 62.8 μg P mL^-1, respectively. For both IPSB and OPMB strains, most of the P mineralized from the organic P source was incorporated into the bacterial cells as cellular P. A significantly negative linear correlation (P 〈 0.05) was found between culture pH and P solubilized from inorganic P by OPMB strains. The results suggested that P solubilization and mineralization could coexist in the same bacterial strain. 展开更多
关键词 Bacillus sp. Burkholderia sp. inorganic phosphate-solubilizing bacteria organic phosphorus-mineralizing bacteria Pseudomonas sp.
下载PDF
Seasonal comparison of bacterial communities in rhizosphere of alpine cushion plants in the Himalayan Hengduan Mountains 被引量:4
5
作者 Shuai Chang Jianguo Chen +2 位作者 Jianqiang Su Yang Yang Hang Sun 《Plant Diversity》 SCIE CAS CSCD 2018年第5期209-216,共8页
Positive associations between alpine cushion plants and other species have been extensively studied.However,almost all studies have focused on the associations between macrofauna.Studies that have investigated positiv... Positive associations between alpine cushion plants and other species have been extensively studied.However,almost all studies have focused on the associations between macrofauna.Studies that have investigated positive associations between alpine cushion plants and rhizospheric microbes have been limited to the vegetation growing season.Here,we asked whether the positive effects that alpine cushion plants confer on rhizospheric microbe communities vary with seasons.We assessed seasonal variations in the bacterial diversity and composition in rhizosphere of two alpine cushion plants and surrounding bare ground by employing a high throughput sequencing method targeting the V3 region of bacterial 16 S rRNA genes.Soil properties of the rhizosphere and the bare ground were also examined.We found that cushion rhizospheres harbored significantly more C,N,S,ammonia nitrogen,and soil moisture than the bare ground.Soil properties in cushion rhizospheres were not notably different,except for soil pH.Bacterial diversities within the same microhabitats did not vary significantly with seasons.We concluded that alpine cushion plants had positive effects on the rhizospheric bacterial communities,even though the strength of the effect varied in different cushion species.Cushion species and the soil sulfur content were probably the major factors driving the spatial distribution and structure of soil bacterial communities in the alpine communities dominated by cushion plants. 展开更多
关键词 ALPINE Cushion plant Positive effect rhizosphere bacteria Soil nutrient
下载PDF
Effects of Biological Bacterial Fertilizer on Carbon Metabolism Characteristics of Rhizosphere Soil Bacteria in Rice 被引量:3
6
作者 ZHAO Jie ZHU Xiao-lei +2 位作者 YE Ming HE Xing-wu HUANG Wu-jian 《Agricultural Science & Technology》 CAS 2020年第3期25-29,共5页
The effects of biological bacterial fertilizer and chemical fertilizer on carbon metabolism characteristics of rhizosphere soil bacteria in rice were studied through a plot experiment.The results showed that the numbe... The effects of biological bacterial fertilizer and chemical fertilizer on carbon metabolism characteristics of rhizosphere soil bacteria in rice were studied through a plot experiment.The results showed that the number and Mcintosh index of bacteria in rice rhizosphere soil increased significantly with the application of biological bacterial fertilizer.It was found that the AWCD(average well color development)value of the bacteria remarkably increased and the decomposition of carboxylic acids,amines and heterozygotes were accelerated when adding biological bacterial fertilizer at a proper weight percent.All in all,proper addition of biological bacterial fertilizer could increase the number and carbon metabolism of bacteria.The most appropriate application rate was 70%chemical fertilizer nitrogen+30%biological bacterial fertilizer nitrogen for rice production in Northern Jiangsu Province. 展开更多
关键词 Biological bacterial fertilizer rhizosphere soil bacteria Carbon metabolism characteristics
下载PDF
Assessing bacterial communities in the rhizosphere of 8-year-old genetically modified poplar(Populus spp.) 被引量:2
7
作者 Wenxu Zhu Yanguang Chu +4 位作者 Changjun Ding Qinjun Huang Bingyu Zhang Weixi Zhang Xiaohua Su 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第4期939-947,共9页
Microbe communities in rhizosphere ecosystems are important for plant health but there is limited knowledge of them in the rhizospheres of genetically modified(GM) plants, especial for tree species. We used the ampl... Microbe communities in rhizosphere ecosystems are important for plant health but there is limited knowledge of them in the rhizospheres of genetically modified(GM) plants, especial for tree species. We used the amplitude sequencing method to analyze the V4 regions of the 16 S r RNA gene to identify changes in bacterial diversity and community structure in two GM lines(D520 and D521), one non-genetically modified(nonGM) line and in uncultivated soil. After chimera filtering,468.133 sequences in the domain Bacteria remained. There were ten dominant taxonomic groups(with [1 % of all sequences) across the samples. 241 of 551 genera(representing a ratio of 97.33 %) were common to all samples.A Venn diagram showed that 1.926 operational taxonomic units(OTUs) were shared by all samples. We found a specific change, a reduction in Chloroflexi, in the microorganisms in the rhizosphere soil planted with poplars. Taken together, the results showed few statistical differences in the bacterial diversity and community structure between the GM line and non-GM line, this suggests that there was no or very limited impact of this genetic modification on the bacterial communities in the rhizosphere. 展开更多
关键词 rhizosphere communities bacteria sequencing poplar planted taxonomic representing genera microbial
下载PDF
Nitrification intensity and ammonia-oxidizing bacteria and archaea in different wetland plant rhizosphere soils 被引量:1
8
作者 Yan Chunni Huang Juan +3 位作者 Yang Sisi Cao Chong Peng Cheng Li Runqing 《Journal of Southeast University(English Edition)》 EI CAS 2017年第4期466-472,共7页
In order to explore the nitrogen removal process in constructed wetlands(CW s),the moisture,ammonia nitrogen(NH4+-N),nitrate nitrogen(NO3"-N)and nitrification intensity in three wetland plant rhizosphere soils(Ac... In order to explore the nitrogen removal process in constructed wetlands(CW s),the moisture,ammonia nitrogen(NH4+-N),nitrate nitrogen(NO3"-N)and nitrification intensity in three wetland plant rhizosphere soils(Acorns calamus,Typha orientalis,Iris pseudacorus)were investigated at a relatively normal temperature range of15to25The relative abundance of ammonia-oxidizing bacteria(AOB)and ammonia-oxidizing archaea(AOA)were also achieved using fluorescence in situ hybridization(FISH).It is found that T.orientalis achieves the highest nitrification intensity of2.03m g(h?kg)while the second is I.pseudacorrs(1.74m g/(h?kg)),and followed by A.calamus(1.65m g/(h?kg))throughout the experiment.FISH reveals that the abundance of bacteria(1010g_1wet soil)is higher than that of archaea(109g_1wet soil),and AOBare the dominant bacteria in the ammonia oxidation process.The abundance of AOB in te rhizosphere soils from high to low T.orientalis(1.88x1010g"1),I pseudacorus(1.23x1010g1),A.calamus(5.07x109g"1)while the abundance of AOA from high to low ae I.pseudacorus(4.00x109g1),A.calamus(3.52x109g"1),T.orientalis(3.48x109g"1).The study provides valuable evidence of plant selection for nitrogen removal in CWs. 展开更多
关键词 wetland plant rhizosphere nitrification intensity ammonia-oxidizing bacteria ammonia-oxidizing archaea florescence in situ hybridization
下载PDF
Partial function prediction of sulfate-reducing bacterial community from the rhizospheres of two typical coastal wetland plants in China 被引量:1
9
作者 Xiaoyue SONG Jiangning ZENG +7 位作者 Yi ZHOU Quanzhen CHEN Hongsheng YANG Lu SHOU Yibo LIAO Wei HUANG Ping DU Qiang LIU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2021年第1期185-197,共13页
Sulfate-reducing bacteria(SRB)are ubiquitous anaerobic microorganisms that play signifi cant roles in the global biogeochemical cycle.Coastal wetlands,one of the major habitats of SRB,exhibit high sulfate-reducing act... Sulfate-reducing bacteria(SRB)are ubiquitous anaerobic microorganisms that play signifi cant roles in the global biogeochemical cycle.Coastal wetlands,one of the major habitats of SRB,exhibit high sulfate-reducing activity and thus play signifi cant roles in organic carbon remineralization,benthic geochemical action,and plant-microbe interactions.Recent studies have provided credible evidence that the functional rather than the taxonomic composition of microbes responds more closely to environmental factors.Therefore,in this study,functional gene prediction based on PacBio single molecular real-time sequencing of 16S rDNA was applied to determine the sulfate-reducing and organic substrate-decomposing activities of SRB in the rhizospheres of two typical coastal wetland plants in North and South China:Zostera japonica and Scirpus mariqueter.To this end,some physicochemical characteristics of the sediments as well as the phylogenetic structure,community composition,diversity,and proportions of several functional genes of the SRB in the two plant rhizospheres were analyzed.The Z.japonic a meadow had a higher dissimilatory sulfate reduction capability than the S.mariqueter-comprising saltmarsh,owing to its larger proportion of SRB in the microbial community,larger proportions of functional genes involved in dissimilatory sulfate reduction,and the stronger ability of the SRB to degrade organic substrates completely.This study confi rmed the feasibility of applying microbial community function prediction in research on the metabolic features of SRB,which will be helpful for gaining new knowledge of the biogeochemical and ecological roles of these bacteria in coastal wetlands. 展开更多
关键词 sulfate-reducing bacteria(SRB) microbial community function prediction 16S rDNA PacBio SMRT sequencing Zostera japonica Scirpus mariqueter rhizosphere
下载PDF
Ability of Non Symbiotic Nitrogen-Fixing Bacteria Isolated from Coffee Plant Rhizosphere and Their Effects on Robusta Coffee Seedlings
10
作者 Sri Wedhastri Neysa Fitri Yudianti +1 位作者 Jaka Widada John Bako Baon 《Journal of Agricultural Science and Technology(A)》 2012年第5期660-666,共7页
Nitrogen is one of the most needed elements by coffee plants. Utilization of biological nitrogen fixation by non symbiotic bacteria offers alternative to reduce the N fertilizer usage. This study was focused to obtain... Nitrogen is one of the most needed elements by coffee plants. Utilization of biological nitrogen fixation by non symbiotic bacteria offers alternative to reduce the N fertilizer usage. This study was focused to obtain aerobic non symbiotic nitrogen-fixing bacteria from coffee rhizosphere. The application of those bacteria was expected to enhance coffee seedling growth. Sixty four aerobic nitrogen-fixing bacterial isolates were isolated from coffee plants rhizosphere from Jember, East Java using several nitrogen free medium, such as Ashby, malate acid, and fahreus agar. The nitrogen fixation ability of the isolates was determined by measuring their ability in pellicle formation on semi solid medium and ammonium excretion on growth medium. Ab Kws.l, Asm E6s.3.a, Asm Bsl.1, and Asm E6s were the isolates which showed the best performance on nitrogen fixation with excreted ammonium concentration ranged from 129.6 up to 239.8 pM/mg dry weight cell. Acetylene reduction assay was used to detect nitrogenase activity. Ab Kws.1 was the isolate which had the highest nitrogenase activity (7.4 mmol N2 fixed/gram dry weight cell/hour). Inoculation of the four best isolates onto Robusta coffee seedling positively enhanced the seedling growth in this green house experiment. Based on the results of Becton Dickinson's (BD) PhoenixTM Automated Microbiology System biochemical tests, Asm Bls.l isolates has similarities with Achromobacter sp., Asm E6s.l and Asm E6s.3.a had similarities with Stenotrophomonas maltophilia, while Ab Kws. 1 had similarities with Leifsonia aquatica. 展开更多
关键词 Nitrogen fixer non symbiotic bacteria rhizosphere Robusta coffee seedling.
下载PDF
The Ability of Phosphate Solubilizing Bacteria Isolated from Coffee Plant Rhizosphere and Their Effects on Robusta Coffee Seedlings
11
作者 John Bako Baon Sri Wedhastri Andi Kumiawan 《Journal of Agricultural Science and Technology(A)》 2012年第9期1064-1070,共7页
Phosphate solubilizing bacteria isolated from rhizosphere of coffee plants may play an important role in improving phosphate availability for the plants. However, one of the factors influencing the degree of phosphate... Phosphate solubilizing bacteria isolated from rhizosphere of coffee plants may play an important role in improving phosphate availability for the plants. However, one of the factors influencing the degree of phosphate solubilization by these bacteria is the ability of the microorganisms to utilize phosphate. The objective of this study was to determine the ability of phosphate solubilizing bacteria isolated from coffee plant rhizosphere and their effects on robusta coffee seedling growth. This research was carried out by taking soil samples from Andungsari (Bondowoso District) and Kaliwining (Jember District) coffee plantations, both located in East Java. Liquid medium of Pikovskaya was used for isolation of phosphate solubilizing bacteria from the soil samples. Results of this study showed that 12 phosphate solubilizing bacteria were obtained from this isolation, eight isolates from Andungsari and four isolates from Kaliwining. Selection of those bacteria isolates was based on the qualitative ability in phosphate solubilizing by measuring the clear zone surrounding the colonies and quantitatively by measuring the solubilized phosphate using spectrophotometer. The results showed that four isolates, in the order of PFpKW1, PFpC61, PFsC62a, and PFsB 11, had the highest qualitative ability in solubilizing phosphate, while for the highest quantitative ability the order was PFpKW 1, PFpC61, PFsC62a, and PFsB 11. In a green house study, inoculation of these selected isolates onto Robusta coffee seedlings positively enhanced the coffee seedling growth. Phenotypic test indicated that the four isolates are similar to the genus of Pseudomonas. 展开更多
关键词 Phosphate solubilizing bacteria rhizosphere Robusta coffee seedlings.
下载PDF
Study of Bacterial Diversity of Mangroves Rhizosphere
12
作者 Nidhi Sakhia Sunil Prajapati +2 位作者 Vikram Shetty Shreyas Bhatt Anasuya Bhadalkar 《Open Journal of Marine Science》 2016年第1期23-31,共9页
Microbial diversity has been an important facet of scientific research, since microbes promise a plethora of biomolecules which are otherwise not found in nature. Microbes are subjected to high level of competition fo... Microbial diversity has been an important facet of scientific research, since microbes promise a plethora of biomolecules which are otherwise not found in nature. Microbes are subjected to high level of competition for survival in the environment, and hence develop mechanisms of defense. The biomolecules produced by these microbes as part of their defense or survival mechanism, are of importance for human and animal drugs and many other industrial and environmental applications. The marine counterparts of these terrestrial microbes have yet higher potential, since the marine environment has higher biotic and abiotic stresses, leading to new molecule discovery. In the current study, a bacterial diversity study of the culturable bacteria of the mangrove rhizosphere of Avicennia marina has been undertaken, to understand the flora diversity. Mangroves are unique ecosystems which are under a combination of marine and terrestrial influence. Mangroves are seaward, inland and also found in creek areas. This diversity in their habitat, leads them to produce variable root exudates, which support the growth of different types of organisms. This study has revealed that certain species are dominant in these ecosystems irrespective of the biotic and abiotic stresses, whereas certain species appear only at neutral pH. The study will help select organisms for further biomolecule discovery programs, based on their environment of isolation and other growth parameters. 展开更多
关键词 rhizosphere MANGROVES bacteria Microbial Diversity 16S rRNA Sequencing
下载PDF
Vermicompost and Cow Dung Admixture Increases Rhizosphere Bacterial Population and Promotes Rapid Physiological Maturity in Maize (Zea mays L.)
13
作者 Priya Chatterjee Paramita Mandal +1 位作者 Sudipto Mandal Soumendranath Chatterjee 《NASS Journal of Agricultural Sciences》 2019年第2期27-36,共10页
Incessant application of chemical fertilizers to the agricultural fields may alter the composition and activities of soil microbiota.Thus,the shift of cultivation practices from chemical to organic is considered to be... Incessant application of chemical fertilizers to the agricultural fields may alter the composition and activities of soil microbiota.Thus,the shift of cultivation practices from chemical to organic is considered to be the need of the hour in order to maintain soil health.A study was conducted in the agricultural fields of the University of Burdwan,India to observe the impact of organic manure on the rhizosphere bacterial community.The experiments were conducted on maize plants,supplemented with the recommended dose of chemical fertilizer and organic manure(vermicompost and cow dung mixture).Corresponding changes in the plant phenological events and soil health in terms of soil physico-chemical factors and rhizosphere bacterial groups up to the level of CFU g-1×105 dry soil was noted.The results showed a significant increase in population of phosphate solubilizing bacteria during 30DAS.However,at 90 DAS,significant increase in the population of phosphate solubilizing bacteria,nitrifying bacteria,asymbiotic nitrogen-fixing bacteria and protein hydrolyzing bacteria was observed in the organically treated plots.The growth of rhizosphere bacteria was attributed to the type of organic manure supplied to the agricultural fields.In addition,a strong correlation was observed between Zn and protein hydrolyzing bacteria.The soil organic carbon and available nitrogen were strongly correlated with nitrifying,fat solubilizing and phosphate solubilizing groups of bacteria. 展开更多
关键词 Chemical fertilizer Organic manure Phenological events Physico-chemical factors rhizosphere bacteria
下载PDF
Rhizosphere Aeration Improves Nitrogen Transformation in Soil, and Nitrogen Absorption and Accumulation in Rice Plants 被引量:10
14
作者 XU Chunmei CHEN Liping +3 位作者 CHEN Song CHU Guang WANG Danying ZHANG Xiufu 《Rice science》 SCIE CSCD 2020年第2期162-174,共13页
Two rice cultivars(Xiushui 09 and Chunyou 84)were used to evaluate the effects of various soil oxygen(O2)conditions on soil nitrogen(N)transformation,absorption and accumulation in rice plants.The treatments were cont... Two rice cultivars(Xiushui 09 and Chunyou 84)were used to evaluate the effects of various soil oxygen(O2)conditions on soil nitrogen(N)transformation,absorption and accumulation in rice plants.The treatments were continuous flooding(CF),continuous flooding and aeration(CFA),and alternate wetting and drying(AWD).The results showed that the AWD and CFA treatments improved soil N transformation,rice growth,and N absorption and accumulation.Soil NO3–content,nitrification activity and ammonia-oxidising bacteria abundance,leaf area,nitrate reductase activity,and N absorption and accumulation in rice all increased in both cultivars.However,soil microbial biomass carbon and pH did not significantly change during the whole period of rice growth.Correlation analysis revealed a significant positive correlation between the nitrification activity and ammonia-oxidising bacteria abundance,and both of them significantly increased as the total N accumulation in rice increased.Our results indicated that improved soil O2 conditions led to changing soil N cycling and contributed to increases in N absorption and accumulation by rice in paddy fields. 展开更多
关键词 ammonium-nitrogen CONTENT nitrate-nitrogen CONTENT NITRIFICATION ACTIVITY nitrate REDUCTASE ACTIVITY rhizosphere oxygen condition ammonia-oxidising bacteria abundance rice NITROGEN use efficiency
下载PDF
Improving dryland maize productivity and water efficiency with heterotrophic ammonia-oxidizing bacteria via nitrification and cytokinin activity
15
作者 Xiaoling Wang Jiawei Cao +4 位作者 Runhong Sun Wei Liu Lin Qi Peng Song Shenjiao Yang 《The Crop Journal》 SCIE CSCD 2024年第3期880-887,共8页
A two-year field experiment conducted under dryland conditions in semi-humid and drought-prone regions of China aimed to assess the effect of ammonia-oxidizing bacterial on maize water use efficiency and yield.A heter... A two-year field experiment conducted under dryland conditions in semi-humid and drought-prone regions of China aimed to assess the effect of ammonia-oxidizing bacterial on maize water use efficiency and yield.A heterotrophic ammonia-oxidizing bacteria(HAOB)strain S2_8_1 was used.Six treatments were applied:(1)no irrigation+HAOB strain(DI),(2)no irrigation+blank culture medium(DM),(3)no irrigation control(DCK),(4)irrigation+HAOB(WI),(5)irrigation+blank culture medium(WM),and(6)irrigation control(WCK).Results revealed that HAOB treatment increased maize growth,yield,and water use efficiency over controls,regardless of whether the year was wet or dry.This improvement was attributed to the accelerated nitrification in the rhizosphere soil due to HAOB inoculation,which subsequently led to increased levels of leaf cytokinins.Overall,these findings suggest that HAOB inoculation holds promise as a strategy to boost water use efficiency and maize productivity in dryland agriculture. 展开更多
关键词 Heterotrophic ammonia-oxidizing bacteria rhizosphere soil nitrification CYTOKININ MAIZE Dryland agriculture
下载PDF
The Preliminary Study on Screening and Application of Phthalic Acid-Degrading Bacteria
16
作者 Honghao Zhang Lin Yang +3 位作者 Rubing Xu Yuxiao Sun Yong Yang Yanyan Li 《Advances in Microbiology》 CAS 2024年第4期226-239,共14页
Phthalic acid is a main pollutant, which is also an important reason for the continuous cropping effect of tobacco. In order to degrade the phthalic acid accumulated in the environment and relieve the obstacle effect ... Phthalic acid is a main pollutant, which is also an important reason for the continuous cropping effect of tobacco. In order to degrade the phthalic acid accumulated in the environment and relieve the obstacle effect of tobacco continuous cropping caused by the accumulation of phthalic acid in the soil. In this study, phthalate degrading bacteria B3 is screened from continuous cropping tobacco soil. The results of biochemical identification and 16sDNA comparison show that the homology between degrading bacterium B3 and Enterobacter sp. is 99%. At the same time, the growth of Enterobacter hormaechei subsp. B3 and the degradation of phthalic acid under different environmental conditions are studied. The results show that the environment with a temperature of 30˚C, PH of 7, and inoculation amount of not less than 1.2%, which is the optimal growth conditions for Enterobacter sp. B3. In an environment with a concentration of phthalic acid not exceeding 500 mg/L, Enterobacter sp. B3 has a better effect on phthalic acid degradation, and the degradation rate can reach 77% in 7 d. The results of indoor potting experiments on tobacco show that the degradation rate of phthalic acid by Enterobacter B3 in the soil is about 45%, which can reduce the inhibitory effect of phthalic acid on the growth of tobacco seedlings. This study enriches the microbial resources for degrading phthalic acid and provides a theoretical basis for alleviating tobacco continuous cropping obstacles. 展开更多
关键词 Phthalic Acid Degrading bacteria rhizosphere Soil
下载PDF
Species of Inorganic Phosphate Solubilizing Bacteria in Red Soil and the Mechanism of Solubilization 被引量:13
17
作者 LUOAN-CHENG SUNXI 《Pedosphere》 SCIE CAS CSCD 1993年第3期285-288,共4页
INTRODUCTION The insoluble phosphates which can not be directly absorbed by plants are the mai forms of inorganic phosphate in soil. These kinds of phosphates can be solubilized by several species of bacteria which ar... INTRODUCTION The insoluble phosphates which can not be directly absorbed by plants are the mai forms of inorganic phosphate in soil. These kinds of phosphates can be solubilized by several species of bacteria which are widely spread in soil especially in rhizosphere where70% of the bacteria are capable of solubilizing inorganic phosphate. Many researchers re- 展开更多
关键词 organic acid phosphate-solubilizing bacteria red soil
下载PDF
Modification of total and phosphorus mineralizing bacterial communities associated with Zea mays L.through plant development and fertilization regimes 被引量:1
18
作者 XIN Yuan-yuan Anisur RAHMAN +3 位作者 LI Hui-xiu XU Ting DING Guo-chun LI Ji 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第11期3026-3038,共13页
Harnessing the rhizospheric microbiome,including phosphorus mineralizing bacteria(PMB),is a promising technique for maintaining sustainability and productivity in intensive agricultural systems.However,it is unclear a... Harnessing the rhizospheric microbiome,including phosphorus mineralizing bacteria(PMB),is a promising technique for maintaining sustainability and productivity in intensive agricultural systems.However,it is unclear as to which beneficial taxonomic group populations in the rhizosphere are potentially associated with the changes in soil microbiomes shifted by fertilization regimes.Herein,we analyzed the diversity and community structure of total bacteria and PMB in the rhizosphere of maize(Zea mays L.)grown in soils under 25 years of four fertilization regimes(compost,biocompost,chemical,or nonfertilized)via selective culture and Illumina sequencing of the 16S rRNA genes.Plant development explained more variations(29 and 13%,respectively)in the composition of total bacteria and PMB in the rhizosphere of maize than the different fertilization regimes.Among those genera enriched in the rhizosphere of maize,the relative abundances of Oceanobacillus,Bacillus,Achromobacter,Ensifer,Paracoccus,Ramlibacter,and Luteimonas were positively correlated with those in the bulk soil.The relative abundance of Paracoccus was significantly higher in soils fertilized by compost or biocompost than the other soils.Similar results were also observed for PMB affiliated with Ensifer,Bacillus,and Streptomyces.Although plant development was the major factor in shaping the rhizospheric microbiome of maize,fertilization regimes might have modified beneficial rhizospheric microbial taxa such as Bacillus and Ensifer. 展开更多
关键词 organic fertilization bacterial diversity phosphorus mineralizing bacteria(PMB) Zea mays L. rhizosphere
下载PDF
玉米种植改变了引黄灌区盐渍化土壤细菌多样性与功能 被引量:3
19
作者 李凤霞 黄业芸 +5 位作者 王长军 沈靖丽 孙娇 张永宏 吴霞 郭鑫年 《中国生态农业学报(中英文)》 CAS CSCD 北大核心 2024年第6期986-996,共11页
为了明确植物修复对盐渍化土壤细菌群落结构及多样性的影响,本文对宁夏引黄灌区盐渍化土壤玉米种植地根际和非根际土壤以及荒地土壤细菌多样性、群落结构及功能、细菌群落与环境因子之间的相关关系等进行研究。结果表明:玉米种植能够增... 为了明确植物修复对盐渍化土壤细菌群落结构及多样性的影响,本文对宁夏引黄灌区盐渍化土壤玉米种植地根际和非根际土壤以及荒地土壤细菌多样性、群落结构及功能、细菌群落与环境因子之间的相关关系等进行研究。结果表明:玉米种植能够增加盐渍化土壤细菌物种数(OTU, Operational Taxonomic Unit)和多样性,各土壤细菌总物种数和特有物种数(OTU)从高到低依次为:非根际土壤>根际土壤>荒地土壤;土壤细菌多样性(即ACE指数、Chao1指数、Simpson指数与Shannon指数)由大到小均依次为:根际土壤>非根际土壤>荒地土壤, 3种土壤细菌多样性之间差异不显著。玉米种植改变了盐渍化土壤细菌群落结构和功能多样性,玉米种植显著提高了变形菌门(Proteobacteria)与放线菌门(Actinobacteria)两种优势菌门的相对丰度;丛毛单胞菌属(Comamonadaceae)、丝状菌属(Hyphomircobiales)和根瘤菌属(Rhizobiaceae)为3种土壤组间差异贡献最大的物种;玉米种植增加了盐渍化土壤中细菌参与新陈代谢功能与遗传信息处理功能物种的相对丰度,且有效磷、全磷、速效氮、全盐和pH是影响二级功能相对丰度的重要因子。玉米种植后其根际和非根际土壤细菌群落在生态位上与荒地之间存在明显分异。种植玉米修复盐渍化土壤能够改变土壤细菌群落结构、功能和多样性,对改善盐渍化土壤微环境,促进盐渍化土壤微生物功能发挥和盐渍化土壤种植结构优化具有重要意义。 展开更多
关键词 盐渍化土壤 细菌 功能预测 玉米根际 引黄灌区
下载PDF
香葱伴生番茄对青枯病及根际微生态特征的影响 被引量:1
20
作者 佘小漫 姚挺 +1 位作者 黄真珍 何自福 《广东农业科学》 CAS 2024年第1期10-20,共11页
【目的】为明确香葱伴生对番茄青枯病及根际微生态特征的影响,揭示香葱伴生番茄降低青枯病发病率的机理。【方法】通过田间试验设置番茄单作和香葱伴生番茄2个处理,分别采集单作发病番茄(QK)、单作健康番茄(NBS)和香葱伴生番茄(BS)的根... 【目的】为明确香葱伴生对番茄青枯病及根际微生态特征的影响,揭示香葱伴生番茄降低青枯病发病率的机理。【方法】通过田间试验设置番茄单作和香葱伴生番茄2个处理,分别采集单作发病番茄(QK)、单作健康番茄(NBS)和香葱伴生番茄(BS)的根际土壤,应用16S rDNA高通量测序和液相色谱-质谱联用(LC-MS)技术,探究香葱伴生对番茄根际微生态特征的影响。【结果】田间试验结果表明,番茄单作处理和香葱伴生番茄处理的青枯病平均病株率分别为50.48、31.43%,香葱伴生番茄处理对番茄青枯病的防治效果为37.74%。16S rDNA高通量测序结果表明,BS、NBS根际土壤细菌群落相对丰度和多样性均显著高于QK;与QK相比,BS和NBS根际土壤细菌茄科雷尔氏菌属相对丰度显著降低,而芽孢杆菌属相对丰度升高;与NBS相比,BS根际土壤细菌茄科雷尔氏菌属相对丰度降低,芽孢杆菌属相对丰度显著提高。利用LC-MS技术共鉴定出番茄根际土壤代谢物586种,其中正离子模式代谢物320种,负离子模式代谢物266种,并将代谢物的功能注释至新陈代谢、遗传信息加工和环境信息加工等代谢通路;与NBS相比,BS根际土壤代谢物中的缬氨酸、L-天冬酰胺和柠檬酸的含量均显著降低,L-赖氨酸、谷氨酸、D-谷氨酰胺和异亮氨酸的含量也低于NBS,但差异未达到显著水平。【结论】香葱伴生番茄显著降低番茄青枯病田间发病率,改变了番茄根际土壤中细菌群落结构和番茄根际土壤代谢物含量。 展开更多
关键词 香葱伴生 番茄青枯病 根际土壤细菌 根际土壤代谢物 防效
下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部