To have a preliminary insight into biosafety of genetically transformed hybrid triploid poplars (Populus tomentosa × P bolleana)× P. tomentosa with the cowpea trypsin inhibitor (CpTD gene, two layers of r...To have a preliminary insight into biosafety of genetically transformed hybrid triploid poplars (Populus tomentosa × P bolleana)× P. tomentosa with the cowpea trypsin inhibitor (CpTD gene, two layers of rhizospheric soil (from 0 to 20cm deep and from 20 to 40cm deep, respectively) were collected for microorganism culture, counting assay and PCR analysis to assess the potential impact of transgenic poplars on non-target microorganism population and transgene dispersal. When the same soil layer of suspension stock solution was diluted at both 1:1000 and 1:10000 rates, there were no significant differences in bacterium colony numbers between the inoculation plates of both transgenic and non-transgenic poplars. The uniform results were revealed for both soil layer suspension solutions of identical poplars at both dilution rates except for non-transgenic poplars at 1:10000 dilution rates from the same type of soil. No significant variation in morphology of both Gram-positive and Gram-negative bacteria was observed under the microscope. The potential transgene dispersal from root exudates or fallen leaves to non-target microbes was repudiated by PCR analysis, in which no CpTI gene specific DNA band was amplified for 15 sites of transgenic rhizospheric soil samples. It can be concluded that transgenic poplar with the CpTI gene has no severe impact on rhizospheric microorganisms and is tentatively safe to surrounding soil micro-ecosystem.展开更多
Oyster shell soil conditioner had significant influence on soil and rhizospheric microorganisms in their biomass,respiratory intensity and nutritional requirement. It could stimulate growth of soil and rhizospheric mi...Oyster shell soil conditioner had significant influence on soil and rhizospheric microorganisms in their biomass,respiratory intensity and nutritional requirement. It could stimulate growth of soil and rhizospheric microorganisms, especially nitrogen-fixers, and intensify soil respiration in proportion to the dose and fertilizing time of the conditioner, leading to the increase in the number of nitrogen fixing bacteria and the decrease in the number of bacteria with special nutrition demands.展开更多
Ecological effects of crude oil residues on weed rhizospheres are still vague. The quantitative and diversity changes and metabolic responses of soil-bacterial communities in common dandelion (Taraxacum officinale),...Ecological effects of crude oil residues on weed rhizospheres are still vague. The quantitative and diversity changes and metabolic responses of soil-bacterial communities in common dandelion (Taraxacum officinale), jerusalem artichoke (Silphiurn perfoliatum L.) and evening primrose (A colypha australis L.) rhizospheric soils were thus examined using the method of carbon source utilization. The results indicated that there were various toxic effects of crude oil residues on the growth and reproduction of soil bacteria, but the weed rhizospheres could mitigate the toxic effects. Total heterotrophic counting colony-forming units (CFUs) in the rhizospheric soils were significantly higher than those in the non-rhizospheric soils. The culturable soil-bacterial CFUs in the jerusalem artichoke (S. perfoliatum) rhizosphere polluted with 0.50 kg/pot of crude oil residues were almost twice as much as those with 0.25 kg/pot and without the addition of crude oil residues. The addition of crude oil residues increased the difference in substrate evenness, substrate richness, and substrate diversity between non-rhizospheric and rhizospheric soils of T. officinale and A. australis, but there was no significant (p〉0.05) difference in the Shannon's diversity index between non-rhizospheric and rhizospheric soils of S. perfoliatum. The rhizospheric response of weed species to crude oil residues suggested that S. perfoliatum may be a potential weed species for the effective plant-microorganism bioremediation of contaminated soils by crude oil residues.展开更多
By using red soil and late rice Wufengyou T025 as the tested materials,the influences of straw returning with a microbial agent on the quantity of microorganisms and enzyme activity in rhizosphere soil in fields were ...By using red soil and late rice Wufengyou T025 as the tested materials,the influences of straw returning with a microbial agent on the quantity of microorganisms and enzyme activity in rhizosphere soil in fields were studied,and soil productivity was tested with yield and agricultural traits of late rice. The results showed that straw returning with the microbial agent could significantly improve the quantity of bacteria,fungi and actinomyces in soil,enhance the activity of sucrase,urease,catalase and cellulase,and improve the number of grains per spike,setting percentage,thousand seed weight and yield of late rice. The combination of rice straw returning and the microbial agent has a good prospect of application.展开更多
Rhizosphere and nonrhizopshere soils were sampled during corn growth. Total, inorganic phosphate-dissolving and lecithin-mineralizing bacteria, fungi and actinomyctes were determined by plate counting method. Generall...Rhizosphere and nonrhizopshere soils were sampled during corn growth. Total, inorganic phosphate-dissolving and lecithin-mineralizing bacteria, fungi and actinomyctes were determined by plate counting method. Generally, the rhizosphere soil contained around 5 to 100 times more of these bacteria and fungi than the non-rhizosphere soil. However, the actinomycetes in the rhizosphere soil were significantly lower than those in the non-rhizosphere soil. The numbers of these microorganisms didn't significantly change during corn growth in the soils. However, the proportion of the phosphate-dissolving microorganisms in the total changed markedly during corn growth. Generally there were much higher percentages of phosphate-dissolving bacteria and phosphate-dissolving fungi in the rhizosphere soil than the nonrhizosphere soil. More than 90% of the fungi in rhizosphere dissolved inorganic phosphate at the seedling period, but this proportion declined to 20% at the harvesting time. The community of phosphate-dissolving microorganisms also changed during corn growth. Bacillus was dominant in the nonrhizosphere soil. However, in the rhizosphere, Pseudomonas and Enterobacter became predominant. Penicillium and Streptomyces were the main fungi and actinomycetes capable of dissolving phosphate.展开更多
Microorganism DNA of rhizosphere soil from Pinus koraiensis and Pinus sylvestriformis were extracted by proteinase K based on SDS method, CTAB method, PVP (polyvinylpolypyrrolidone) method, and freezing and thawing ...Microorganism DNA of rhizosphere soil from Pinus koraiensis and Pinus sylvestriformis were extracted by proteinase K based on SDS method, CTAB method, PVP (polyvinylpolypyrrolidone) method, and freezing and thawing method and the crude DNA from rhizosphere soil were purified by dialysis method, silver beads absorption method, and squeezing DNA gel method. The results of different extracting and purifying methods were compared and evaluated. Results indicated that the best method of extraction for microorganism DNA in rhizosphere soil was proteinse K based on SDS method with high salt concentration of 1.0% (w/v) NaCl, which could effectively eliminate humic acids and other impurities. The dialysis method was suitable to purify DNA from rhizosphere soil because of effectively removing brown matters and humic acids and the purified products were suited to PCR amplification. Squeezing DNA gel method was also a good purification method with the advantage of inexpensive in cost and efficient in use.展开更多
The effects of surface cracks caused by underground coal mining on microhabitat in the rhizosphere of Artem&ia ordosias were studied based on field investigation and sample analysis. The results show that the amounts...The effects of surface cracks caused by underground coal mining on microhabitat in the rhizosphere of Artem&ia ordosias were studied based on field investigation and sample analysis. The results show that the amounts of microorganisms, enzyme activity and water content in soil vary with the biomass ofA. ordosias, and that the account exhibits in an order of large A. ordosias〉medium A. ordosias〉small A. ordosias. Surface cracks apparently decrease microbial quantities and enzymatic ac- tivities, and change the composition and structure of microbial community in the rhizosphere of A. ordosias. Surface cracks reduce water content and electrical conductivity, enhance the R/S (ratio of root and soil) of water content, electrical conductivity and pH value, and raise the content of Na and Pb in rhizosphere soil ofA. ordosicas, It can be concluded that the disturbance of underground coal mining on the microhabitat in the rhizosphere ofA. ordosica is obvious in the early days.展开更多
Soil siderophores are important for crop growth,benefit ferric iron absorption of root,and are affected by cropping patterns.The objective of this study was to evaluate the quantity of siderophores in soil of 2 contin...Soil siderophores are important for crop growth,benefit ferric iron absorption of root,and are affected by cropping patterns.The objective of this study was to evaluate the quantity of siderophores in soil of 2 continuous crop rotation patterns over 30 years in Anren country,China.Quantity and siderophore-producing capability of microorganisms in rice-riceoilseed rape(DDY)rotation and rice-rice(DD)rontinuous cropping rhizosphere soil were tested and analyzed by chrome azurol S method.Isolated strains were used to identify siderophore-producing microorganism(SPM)by PCR amplification and DNA sequencing.Results showed that 9 siderophore-producing bacteria strains were isolated from DDY rhizosphere soil while 7 strains were identified from DD rhizosphere soil.The mean solubility index which representing siderophore-producing capability of strains was 3.05.PCR amplification results indicated that bacterial were the major SPM in soil.This research indicates that crop rotation systems could drive microorganisms to produce siderophores and enrich them in bacterial communities.展开更多
[Objective] The aim was to know the pathogenic fungi types and distribution law in ginseng rhizosphere soil.[Method] During May to Oct.in 2008 and 2009,more than 200 soil samples were collected from ginseng rhizospher...[Objective] The aim was to know the pathogenic fungi types and distribution law in ginseng rhizosphere soil.[Method] During May to Oct.in 2008 and 2009,more than 200 soil samples were collected from ginseng rhizosphere soil in Ji an City,Fusong County of Jilin Province and Huanren County of Liaoning Province.Soil dilution plate method and soil particle method were adopted to isolate and culture soil fungi,then classification and identification were carried out.[Result] 33 species of 22 fungal genera were id...展开更多
[Objective] The aim was to study the characteristics of microbial community in the rhizosphere soil of Dongxiang wild rice(Oryza rufipogon Griff.).[Method] The microbial biomass carbon and nitrogen was estimated by ...[Objective] The aim was to study the characteristics of microbial community in the rhizosphere soil of Dongxiang wild rice(Oryza rufipogon Griff.).[Method] The microbial biomass carbon and nitrogen was estimated by the chloroform fumigation extraction method;the microbial community composition and Nitrogen cycling microbial functional groups were investigated by the Dilution plate culture method and the most probable number methods respectively.[Result] The microbial biomass carbon and nitrogen,in rhizosphere soil of Dongxiang Wild Rice was 83.02±18.23 mg/kg soil and 16.98±2.54 mg/kg soil,which was lower than that of ordinary cultivated rice;The relationship between the number of culturable microbial groups was bacteriaactinomycetesfungi,and the Nitrogen cycling microbial physiological groups was as the following:ammonifying bacteriaaerobic azotobacteriadenitrobacteriaanaerobic azotobacterianitrobacterianitrosobacteria.[Conclusion] The microbial community in the rhizosphere soil of Dongxiang Wild Rice was different from that of the ordinary cultivated rice.展开更多
[Objective] This study aimed to investigate the effects of different land use patterns on soil ecological environment. [Method] Total three representative land use patterns (corn field, cherry tree land, wood land) ...[Objective] This study aimed to investigate the effects of different land use patterns on soil ecological environment. [Method] Total three representative land use patterns (corn field, cherry tree land, wood land) were selected from Hongta District, Yuxi City, and under these three patterns, soil microbial quantity and activity were studied. [Result] Under the three land use patterns, soil microorganisms were domi- nated by bacteria; soil microbial quantity ranked as wood land's〉cheery tree land's〉 corn field's; and total microbial activity, catalase activity and urease activity all ranked as cherry tree land's〉wood land's〉corn field's. [Conclusion] Soil microbial activity and functions are related to farmland management measures, as well as land use pattern and soil nutrients.展开更多
Soil management practices affect rhizosphere microorganisms and enzyme activities, which in turn influence soil ecosystem processes. The objective of this study was to explore the effects of different nitrogen applica...Soil management practices affect rhizosphere microorganisms and enzyme activities, which in turn influence soil ecosystem processes. The objective of this study was to explore the effects of different nitrogen application rates on wheat(Triticum aestivum L.) rhizosphere soil microorganisms and enzyme activities, and their temporal variations in relation to soil fertility under supplemental irrigation conditions in a fluvo-aquic region. For this, we established a split-plot experiment for two consecutive years(2014–2015 and 2015–2016) in the field with three levels of soil moisture: water deficit to no irrigation(W1), medium irrigation to(70±5)% of soil relative moisture after jointing stage(W2), and adequate irrigation to(80±5)% of soil relative moisture after jointing stage(W3);and three levels of nitrogen: 0 kg ha^–1(N1), 195 kg ha^–1(N2) and 270 kg ha^–1(N3). Results showed that irrigation and nitrogen application significantly increased rhizosphere microorganisms and enzyme activities. Soil microbiological properties showed different trends in response to N level;the highest values of bacteria, protease, catalase and phosphatase appeared in N2, while the highest levels of actinobacteria, fungi and urease were observed in N3. In addition, these items performed best under medium irrigation(W2) relative to W1 and W3;particularly the maximum microorganism(bacteria, actinobacteria and fungi) amounts appeared at W2, 5.37×10^7 and 6.35×10^7 CFUs g^–1 higher than those at W3 in 2014–2015 and 2015–2016, respectively;and these changes were similar in both growing seasons. Microbe-related parameters fluctuated over time but their seasonality did not hamper the irrigation and fertilization-induced effects. Further, the highest grain yields of 13 309.2 and 12 885.7 kg ha^–1 were both obtained at W2 N2 in 2014–2015 and 2015–2016, respectively. The selected properties, soil microorganisms and enzymes, were significantly correlated with wheat yield and proved to be valuable indicators of soil quality. These results clearly demonstrated that the combined treatment(W2 N2) significantly improved soil microbiological properties, soil fertility and wheat yield on the Huanghuai Plain, China.展开更多
To analyze the intrinsic relationship between rhizosphere microbial community structure and variety of rice, the microbial community structures in rhizosphere of different hybrid rice cultivars were determined with ph...To analyze the intrinsic relationship between rhizosphere microbial community structure and variety of rice, the microbial community structures in rhizosphere of different hybrid rice cultivars were determined with phospholipid fatty acids (PLFA) analysis. Three series of new-breeding hybrid rice cultivars in China were tested in the experiment, Ilyouming 86 (II-32A/Minghui 86), Ilyouhang 1 (II-32A/Hang 1), and Ilyouhang 2 (II-32A/Hang 2) with H-32A as female parent, XinyouHK02 (XinA/HK02) and YiyouHK02 (YXA/HK02) with HK02 as male parent, Chuanyou 167 (ChuanxiangA/MR167) and 44you167 (Hunan44A/MR167) with MR167 as male parent. The results showed that the microbial community in rhizosphere of the hybrid rice comprised bacteria, fungi, actinomycetes, and protozoa, according to the 40 PLFA biomarkers detected. Bacteria were more abundant than fungi and actinomycetes in rhizosphere of the hybrid rice tested. Both sulfate-reducing and methane-oxidizing bacteria were found to exist in the hybrid rice rhizosphere. It was also found that the characteristics of PLFA biomarkers had correlation with the biological traits of rice. The cluster analysis suggested that microbial community structure and activity in rhizosphere were associated with genetic background of the rice cultivar.展开更多
Biological control agents and soil amendments have been applied to control tobacco bacterial wilt, but the mechanism is not well-known. In the present study, a field experiment was performed to investigate the soil ph...Biological control agents and soil amendments have been applied to control tobacco bacterial wilt, but the mechanism is not well-known. In the present study, a field experiment was performed to investigate the soil physicochemical properties, disease index (DI) and disease incidence of tobacco bacterial wilt, and rhizosphere microbial community. The results show that the control efficacy of single application of antagonistic bacteria and calcium cyanamide was 46.43% and 51.92%, respectively. While the combined control efficacy of antagonistic bacteria and calcium cyanamide was 65.79%. Besides, the combined application of antagonistic bacteria and calcium cyanamide could increase soil pH, total N alkaline N, and exchangeable Ca, which were negatively associated with the microbial diversity, soil-borne pathogenic microorganisms, and incidence of tobacco bacterial wilt. Additionally, the combination of antagonistic bacteria and calcium cyanamide can improve the proportion of some antagonistic microbial species, and these antagonistic microbial species were inversely associated with the DI of tobacco bacterial wilt. In conclusion: The integrated measure may influence soil microbial communities through enhancing soil physicochemical properties and rebuild healthy soil microbial community structure to mitigate tobacco bacterial wilt. The current study presented valuable insights into the mechanisms enhancing soil health in the integrated measure.展开更多
文摘To have a preliminary insight into biosafety of genetically transformed hybrid triploid poplars (Populus tomentosa × P bolleana)× P. tomentosa with the cowpea trypsin inhibitor (CpTD gene, two layers of rhizospheric soil (from 0 to 20cm deep and from 20 to 40cm deep, respectively) were collected for microorganism culture, counting assay and PCR analysis to assess the potential impact of transgenic poplars on non-target microorganism population and transgene dispersal. When the same soil layer of suspension stock solution was diluted at both 1:1000 and 1:10000 rates, there were no significant differences in bacterium colony numbers between the inoculation plates of both transgenic and non-transgenic poplars. The uniform results were revealed for both soil layer suspension solutions of identical poplars at both dilution rates except for non-transgenic poplars at 1:10000 dilution rates from the same type of soil. No significant variation in morphology of both Gram-positive and Gram-negative bacteria was observed under the microscope. The potential transgene dispersal from root exudates or fallen leaves to non-target microbes was repudiated by PCR analysis, in which no CpTI gene specific DNA band was amplified for 15 sites of transgenic rhizospheric soil samples. It can be concluded that transgenic poplar with the CpTI gene has no severe impact on rhizospheric microorganisms and is tentatively safe to surrounding soil micro-ecosystem.
基金support from the 863 National High-Technology Program of China(819-07-10).
文摘Oyster shell soil conditioner had significant influence on soil and rhizospheric microorganisms in their biomass,respiratory intensity and nutritional requirement. It could stimulate growth of soil and rhizospheric microorganisms, especially nitrogen-fixers, and intensify soil respiration in proportion to the dose and fertilizing time of the conditioner, leading to the increase in the number of nitrogen fixing bacteria and the decrease in the number of bacteria with special nutrition demands.
基金The National Natural Science Foundation of China as an Outstanding Youth Fund grant (No. 20225722) the National NaturalScience Foundation for the Joint China-Russia Project (No. 20611120015)
文摘Ecological effects of crude oil residues on weed rhizospheres are still vague. The quantitative and diversity changes and metabolic responses of soil-bacterial communities in common dandelion (Taraxacum officinale), jerusalem artichoke (Silphiurn perfoliatum L.) and evening primrose (A colypha australis L.) rhizospheric soils were thus examined using the method of carbon source utilization. The results indicated that there were various toxic effects of crude oil residues on the growth and reproduction of soil bacteria, but the weed rhizospheres could mitigate the toxic effects. Total heterotrophic counting colony-forming units (CFUs) in the rhizospheric soils were significantly higher than those in the non-rhizospheric soils. The culturable soil-bacterial CFUs in the jerusalem artichoke (S. perfoliatum) rhizosphere polluted with 0.50 kg/pot of crude oil residues were almost twice as much as those with 0.25 kg/pot and without the addition of crude oil residues. The addition of crude oil residues increased the difference in substrate evenness, substrate richness, and substrate diversity between non-rhizospheric and rhizospheric soils of T. officinale and A. australis, but there was no significant (p〉0.05) difference in the Shannon's diversity index between non-rhizospheric and rhizospheric soils of S. perfoliatum. The rhizospheric response of weed species to crude oil residues suggested that S. perfoliatum may be a potential weed species for the effective plant-microorganism bioremediation of contaminated soils by crude oil residues.
基金Supported by National Key Research and Development Program of China(2017YFD0200808)National Key Technology R&D Program in the 11th Five-Year Plan of China(2006BAD02A04)+1 种基金Innovation Foundation for Postgraduates in Jiangxi Province(YC10A056)Free Declaration Project of Jiangxi Agricultural University
文摘By using red soil and late rice Wufengyou T025 as the tested materials,the influences of straw returning with a microbial agent on the quantity of microorganisms and enzyme activity in rhizosphere soil in fields were studied,and soil productivity was tested with yield and agricultural traits of late rice. The results showed that straw returning with the microbial agent could significantly improve the quantity of bacteria,fungi and actinomyces in soil,enhance the activity of sucrase,urease,catalase and cellulase,and improve the number of grains per spike,setting percentage,thousand seed weight and yield of late rice. The combination of rice straw returning and the microbial agent has a good prospect of application.
文摘Rhizosphere and nonrhizopshere soils were sampled during corn growth. Total, inorganic phosphate-dissolving and lecithin-mineralizing bacteria, fungi and actinomyctes were determined by plate counting method. Generally, the rhizosphere soil contained around 5 to 100 times more of these bacteria and fungi than the non-rhizosphere soil. However, the actinomycetes in the rhizosphere soil were significantly lower than those in the non-rhizosphere soil. The numbers of these microorganisms didn't significantly change during corn growth in the soils. However, the proportion of the phosphate-dissolving microorganisms in the total changed markedly during corn growth. Generally there were much higher percentages of phosphate-dissolving bacteria and phosphate-dissolving fungi in the rhizosphere soil than the nonrhizosphere soil. More than 90% of the fungi in rhizosphere dissolved inorganic phosphate at the seedling period, but this proportion declined to 20% at the harvesting time. The community of phosphate-dissolving microorganisms also changed during corn growth. Bacillus was dominant in the nonrhizosphere soil. However, in the rhizosphere, Pseudomonas and Enterobacter became predominant. Penicillium and Streptomyces were the main fungi and actinomycetes capable of dissolving phosphate.
基金This project was supported by the Knowledge Innovation Project from Chinese Academy (KZCXI-SW-01) and the National Natural Science Foundation of China (30070158).
文摘Microorganism DNA of rhizosphere soil from Pinus koraiensis and Pinus sylvestriformis were extracted by proteinase K based on SDS method, CTAB method, PVP (polyvinylpolypyrrolidone) method, and freezing and thawing method and the crude DNA from rhizosphere soil were purified by dialysis method, silver beads absorption method, and squeezing DNA gel method. The results of different extracting and purifying methods were compared and evaluated. Results indicated that the best method of extraction for microorganism DNA in rhizosphere soil was proteinse K based on SDS method with high salt concentration of 1.0% (w/v) NaCl, which could effectively eliminate humic acids and other impurities. The dialysis method was suitable to purify DNA from rhizosphere soil because of effectively removing brown matters and humic acids and the purified products were suited to PCR amplification. Squeezing DNA gel method was also a good purification method with the advantage of inexpensive in cost and efficient in use.
文摘The effects of surface cracks caused by underground coal mining on microhabitat in the rhizosphere of Artem&ia ordosias were studied based on field investigation and sample analysis. The results show that the amounts of microorganisms, enzyme activity and water content in soil vary with the biomass ofA. ordosias, and that the account exhibits in an order of large A. ordosias〉medium A. ordosias〉small A. ordosias. Surface cracks apparently decrease microbial quantities and enzymatic ac- tivities, and change the composition and structure of microbial community in the rhizosphere of A. ordosias. Surface cracks reduce water content and electrical conductivity, enhance the R/S (ratio of root and soil) of water content, electrical conductivity and pH value, and raise the content of Na and Pb in rhizosphere soil ofA. ordosicas, It can be concluded that the disturbance of underground coal mining on the microhabitat in the rhizosphere ofA. ordosica is obvious in the early days.
基金supported by the Natural Science Foundation of China (No. 31272248)the project of graduate innovation in Hunan Province (No. CX2017B364)
文摘Soil siderophores are important for crop growth,benefit ferric iron absorption of root,and are affected by cropping patterns.The objective of this study was to evaluate the quantity of siderophores in soil of 2 continuous crop rotation patterns over 30 years in Anren country,China.Quantity and siderophore-producing capability of microorganisms in rice-riceoilseed rape(DDY)rotation and rice-rice(DD)rontinuous cropping rhizosphere soil were tested and analyzed by chrome azurol S method.Isolated strains were used to identify siderophore-producing microorganism(SPM)by PCR amplification and DNA sequencing.Results showed that 9 siderophore-producing bacteria strains were isolated from DDY rhizosphere soil while 7 strains were identified from DD rhizosphere soil.The mean solubility index which representing siderophore-producing capability of strains was 3.05.PCR amplification results indicated that bacterial were the major SPM in soil.This research indicates that crop rotation systems could drive microorganisms to produce siderophores and enrich them in bacterial communities.
基金Supported by National Natural Science Foundation of China(30770009)~~
文摘[Objective] The aim was to know the pathogenic fungi types and distribution law in ginseng rhizosphere soil.[Method] During May to Oct.in 2008 and 2009,more than 200 soil samples were collected from ginseng rhizosphere soil in Ji an City,Fusong County of Jilin Province and Huanren County of Liaoning Province.Soil dilution plate method and soil particle method were adopted to isolate and culture soil fungi,then classification and identification were carried out.[Result] 33 species of 22 fungal genera were id...
基金Supported by Jiangxi Natural Science Fund Program(2009GQN0068)~~
文摘[Objective] The aim was to study the characteristics of microbial community in the rhizosphere soil of Dongxiang wild rice(Oryza rufipogon Griff.).[Method] The microbial biomass carbon and nitrogen was estimated by the chloroform fumigation extraction method;the microbial community composition and Nitrogen cycling microbial functional groups were investigated by the Dilution plate culture method and the most probable number methods respectively.[Result] The microbial biomass carbon and nitrogen,in rhizosphere soil of Dongxiang Wild Rice was 83.02±18.23 mg/kg soil and 16.98±2.54 mg/kg soil,which was lower than that of ordinary cultivated rice;The relationship between the number of culturable microbial groups was bacteriaactinomycetesfungi,and the Nitrogen cycling microbial physiological groups was as the following:ammonifying bacteriaaerobic azotobacteriadenitrobacteriaanaerobic azotobacterianitrobacterianitrosobacteria.[Conclusion] The microbial community in the rhizosphere soil of Dongxiang Wild Rice was different from that of the ordinary cultivated rice.
文摘[Objective] This study aimed to investigate the effects of different land use patterns on soil ecological environment. [Method] Total three representative land use patterns (corn field, cherry tree land, wood land) were selected from Hongta District, Yuxi City, and under these three patterns, soil microbial quantity and activity were studied. [Result] Under the three land use patterns, soil microorganisms were domi- nated by bacteria; soil microbial quantity ranked as wood land's〉cheery tree land's〉 corn field's; and total microbial activity, catalase activity and urease activity all ranked as cherry tree land's〉wood land's〉corn field's. [Conclusion] Soil microbial activity and functions are related to farmland management measures, as well as land use pattern and soil nutrients.
基金supported by the National Technology R&D Program of China (2013BAD07B07, 2015BAD26B01 and 2018YFD0300701)
文摘Soil management practices affect rhizosphere microorganisms and enzyme activities, which in turn influence soil ecosystem processes. The objective of this study was to explore the effects of different nitrogen application rates on wheat(Triticum aestivum L.) rhizosphere soil microorganisms and enzyme activities, and their temporal variations in relation to soil fertility under supplemental irrigation conditions in a fluvo-aquic region. For this, we established a split-plot experiment for two consecutive years(2014–2015 and 2015–2016) in the field with three levels of soil moisture: water deficit to no irrigation(W1), medium irrigation to(70±5)% of soil relative moisture after jointing stage(W2), and adequate irrigation to(80±5)% of soil relative moisture after jointing stage(W3);and three levels of nitrogen: 0 kg ha^–1(N1), 195 kg ha^–1(N2) and 270 kg ha^–1(N3). Results showed that irrigation and nitrogen application significantly increased rhizosphere microorganisms and enzyme activities. Soil microbiological properties showed different trends in response to N level;the highest values of bacteria, protease, catalase and phosphatase appeared in N2, while the highest levels of actinobacteria, fungi and urease were observed in N3. In addition, these items performed best under medium irrigation(W2) relative to W1 and W3;particularly the maximum microorganism(bacteria, actinobacteria and fungi) amounts appeared at W2, 5.37×10^7 and 6.35×10^7 CFUs g^–1 higher than those at W3 in 2014–2015 and 2015–2016, respectively;and these changes were similar in both growing seasons. Microbe-related parameters fluctuated over time but their seasonality did not hamper the irrigation and fertilization-induced effects. Further, the highest grain yields of 13 309.2 and 12 885.7 kg ha^–1 were both obtained at W2 N2 in 2014–2015 and 2015–2016, respectively. The selected properties, soil microorganisms and enzymes, were significantly correlated with wheat yield and proved to be valuable indicators of soil quality. These results clearly demonstrated that the combined treatment(W2 N2) significantly improved soil microbiological properties, soil fertility and wheat yield on the Huanghuai Plain, China.
基金supported by the National Basic Research Program of China (2011CB111607)the Fujian Funds for Distinguished Young Scientists,China (2009J06010)
文摘To analyze the intrinsic relationship between rhizosphere microbial community structure and variety of rice, the microbial community structures in rhizosphere of different hybrid rice cultivars were determined with phospholipid fatty acids (PLFA) analysis. Three series of new-breeding hybrid rice cultivars in China were tested in the experiment, Ilyouming 86 (II-32A/Minghui 86), Ilyouhang 1 (II-32A/Hang 1), and Ilyouhang 2 (II-32A/Hang 2) with H-32A as female parent, XinyouHK02 (XinA/HK02) and YiyouHK02 (YXA/HK02) with HK02 as male parent, Chuanyou 167 (ChuanxiangA/MR167) and 44you167 (Hunan44A/MR167) with MR167 as male parent. The results showed that the microbial community in rhizosphere of the hybrid rice comprised bacteria, fungi, actinomycetes, and protozoa, according to the 40 PLFA biomarkers detected. Bacteria were more abundant than fungi and actinomycetes in rhizosphere of the hybrid rice tested. Both sulfate-reducing and methane-oxidizing bacteria were found to exist in the hybrid rice rhizosphere. It was also found that the characteristics of PLFA biomarkers had correlation with the biological traits of rice. The cluster analysis suggested that microbial community structure and activity in rhizosphere were associated with genetic background of the rice cultivar.
文摘Biological control agents and soil amendments have been applied to control tobacco bacterial wilt, but the mechanism is not well-known. In the present study, a field experiment was performed to investigate the soil physicochemical properties, disease index (DI) and disease incidence of tobacco bacterial wilt, and rhizosphere microbial community. The results show that the control efficacy of single application of antagonistic bacteria and calcium cyanamide was 46.43% and 51.92%, respectively. While the combined control efficacy of antagonistic bacteria and calcium cyanamide was 65.79%. Besides, the combined application of antagonistic bacteria and calcium cyanamide could increase soil pH, total N alkaline N, and exchangeable Ca, which were negatively associated with the microbial diversity, soil-borne pathogenic microorganisms, and incidence of tobacco bacterial wilt. Additionally, the combination of antagonistic bacteria and calcium cyanamide can improve the proportion of some antagonistic microbial species, and these antagonistic microbial species were inversely associated with the DI of tobacco bacterial wilt. In conclusion: The integrated measure may influence soil microbial communities through enhancing soil physicochemical properties and rebuild healthy soil microbial community structure to mitigate tobacco bacterial wilt. The current study presented valuable insights into the mechanisms enhancing soil health in the integrated measure.