Ras homolog(Rho)-associated kinases(ROCKs)belong to the serine-threonine kinase family,which plays a pivotal role in regulating the damage,survival,axon guidance,and regeneration of neurons.ROCKs are also involved in ...Ras homolog(Rho)-associated kinases(ROCKs)belong to the serine-threonine kinase family,which plays a pivotal role in regulating the damage,survival,axon guidance,and regeneration of neurons.ROCKs are also involved in the biological effects of immune cells and glial cells,as well as the development of neurodegenerative disorders such as Alzheimer’s disease,Parkinson’s disease,and multiple sclerosis.Previous studies by us and others confirmed that ROCKs inhibitors attenuated the symptoms and progression of experimental models of the abovementioned neurodegenerative diseases by inhibiting neuroinflammation,regulating immune imbalance,repairing the blood-brain barrier,and promoting nerve repair and myelin regeneration.Fasudil,the first ROCKs inhibitor to be used clinically,has a good therapeutic effect on neurodegenerative diseases.Fasudil increases the activity of neural stem cells and mesenchymal stem cells,thus optimizing cell therapy.This review will systematically describe,for the first time,the effects of abnormal activation of ROCKs on T cells,B cells,microglia,astrocytes,oligodendrocytes,and pericytes in neurodegenerative diseases of the central nervous system,summarize the therapeutic potential of fasudil in several experimental models of neurodegenerative diseases,and clarify the possible cellular and molecular mechanisms of ROCKs inhibition.This review also proposes that fasudil is a novel potential treatment,especially in combination with cell-based therapy.Findings from this review add support for further investigation of ROCKs and its inhibitor fasudil for the treatment of neurodegenerative diseases.展开更多
Electroacupuncture is beneficial for the recovery of spinal cord injury, but the underlying mechanism is unclear. The Rho/Rho-associated kinase(ROCK) signaling pathway regulates the actin cytoskeleton by controlling...Electroacupuncture is beneficial for the recovery of spinal cord injury, but the underlying mechanism is unclear. The Rho/Rho-associated kinase(ROCK) signaling pathway regulates the actin cytoskeleton by controlling the adhesive and migratory behaviors of cells that could inhibit neurite regrowth after neural injury and consequently hinder the recovery from spinal cord injury. Therefore, we hypothesized electroacupuncture could affect the Rho/ROCK signaling pathway to promote the recovery of spinal cord injury. In our experiments, the spinal cord injury in adult Sprague-Dawley rats was caused by an impact device. Those rats were subjected to electroacupuncture at Yaoyangguan(GV3), Dazhui(GV14), Zusanli(ST36) and Ciliao(BL32) and/or monosialoganglioside treatment. Behavioral scores revealed that the hindlimb motor functions improved with those treatments. Real-time quantitative polymerase chain reaction, fluorescence in situ hybridization and western blot assay showed that electroacupuncture suppressed the m RNA and protein expression of Rho-A and Rho-associated kinase Ⅱ(ROCKⅡ) of injured spinal cord. Although monosialoganglioside promoted the recovery of hindlimb motor function, monosialoganglioside did not affect the expression of Rho-A and ROCKⅡ. However, electroacupuncture combined with monosialoganglioside did not further improve the motor function or suppress the expression of Rho-A and ROCKⅡ. Our data suggested that the electroacupuncture could specifically inhibit the activation of the Rho/ROCK signaling pathway thus partially contributing to the repair of injured spinal cord. Monosialoganglioside could promote the motor function but did not suppress expression of Rho A and ROCKⅡ. There was no synergistic effect of electroacupuncture combined with monosialoganglioside.展开更多
AIM:To investigate the effects of a selective inhibitor of Rho-associated kinase(ROCK),Y-27632,on inbred Wuzhishan porcine corneal endothelial cells(PCECs)in vitro and in vivo studies.METHODS:Primary PCECs were trypsi...AIM:To investigate the effects of a selective inhibitor of Rho-associated kinase(ROCK),Y-27632,on inbred Wuzhishan porcine corneal endothelial cells(PCECs)in vitro and in vivo studies.METHODS:Primary PCECs were trypsinized from Wuzhishan miniature porcine corneal tissues.The optimal concentration of Y-27632 on PCECs was determined through MTT and 5-ethynyl-2'-deoxyuridine(EdU)-labeling assays.Seven New Zealand rabbits were used as a corneal endothelial dysfunction model,and a PCECs suspension supplemented with Y-27632 was injected into the anterior chamber of the rabbits.The progression of rabbit corneal opacity and edema were observed by slit lamp examination.The rabbits were sacrificed,and rabbit globes were enucleated for trypan blue-alizarin red staining,hematoxylineosin staining,and immunofluorescence analysis.RESULTS:Administration of 100μmol/L Y-27632 facilitated PCECs'proliferation obviously.The rabbit corneas injected with PCECs suspension and 100μmol/L Y-27632 were restored to transparency significantly after 14d.CONCLUSION:The 100μmol/L Y-27632 treatment improves PCECs'proliferation significantly.And our results suggest that Y-27632 and PCECs can be used to treat corneal endothelial dysfunction.展开更多
Microglia are immunocompetent cells in the cen- tral nervous system that take up tissue debris and pathogens. Rho-associated kinase (ROCK) has been identified as an important regulator of uptake, proliferation, secr...Microglia are immunocompetent cells in the cen- tral nervous system that take up tissue debris and pathogens. Rho-associated kinase (ROCK) has been identified as an important regulator of uptake, proliferation, secretion, and differentiation in a number of cell types. Although ROCK plays critical roles in the microglial secretion of inflammatory factors, naigration, and morphology, its effects on microglial uptake activity have not been well characterized. In the present study, we found that treatment of BV2 microglia and primary microglia with the ROCK inhibitors Y27632 and fasudil increased uptake activity and was associated with morpholog- ical changes. Furthermore, western blots showed that this increase in uptake activity was mediated through the extracel- lular-signal-regulated kinase (ERK) signaling cascade, indi- cating the importance of ROCK in regulating microglial uptake activity.展开更多
The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enh...The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.展开更多
BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine recept...BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine receptor kinase(NTRK)gene fusionpositive uterine sarcoma,potentially aggressive and morphologically similar to fibrosarcoma,are limited due to its recent recognition.Pan-TRK immunohistochemistry(IHC)analysis serves as an effective screening tool with high sensitivity and specificity for NTRK-fusion malignancies.CASE SUMMARY We report a case of a malignant mesenchymal tumor originating from the uterine cervix,which was pan-TRK IHC-positive but lacked NTRK gene fusions,accompanied by a brief literature review.A 55-year-old woman presented to the emergency department with abdominal pain and distension,exhibiting significant ascites and multiple solid pelvic masses.Pelvic examination revealed a tumor encompassing the uterine cervix,extending to the vagina and uterine corpus.A punch biopsy of the cervix indicated NTRK sarcoma with positive immunochemical pan-TRK stain.However,subsequent next generation sequencing revealed no NTRK gene fusion,leading to a diagnosis of poorly differentiated,advanced-stage sarcoma.CONCLUSION The clinical significance of NTRK gene fusion lies in potential treatment with TRK inhibitors for positive sarcomas.Identifying such rare tumors is crucial due to the potential applicability of tropomyosin receptor kinase inhibitor treatment.展开更多
Rho-associated protein kinase is an essential regulator of cytoskeletal dynamics during the process of neurite extension. However, whether Rho kinase regulates microtubule remodeling or the distri- bution of adhesive ...Rho-associated protein kinase is an essential regulator of cytoskeletal dynamics during the process of neurite extension. However, whether Rho kinase regulates microtubule remodeling or the distri- bution of adhesive proteins to mediate neurite outgrowth remains unclear. By specifically modulat- ing Rho kinase activity with pharmacological agents, we studied the morpho-dynamics of neurite outgrowth. We found that lysophosphatidic acid, an activator of Rho kinase, inhibited neurite out- growth, which could be reversed by Y-27632, an inhibitor of Rho kinase. Meanwhile, reorganization of microtubules was noticed during these processes, as indicated by their significant changes in the soma and growth cone. In addition, exposure to lysophosphatidic acid led to a decreased mem- brane distribution of vinculin, a focal adhesion protein in neurons, whereas Y-27632 recruited vin- culin to the membrane. Taken together, our data suggest that Rho kinase regulates rat hippocampal neurite growth and microtubule formation via a mechanism associated with the redistribution of vinculin.展开更多
AIM: To investigate the roles and interactions of rhoassociatedprotein kinase (ROCK)1 and miR-124 inhuman colorectal cancer (CRC).METHODS: Expression of ROCK1 protein wasexamined by Western blotting, and quantitativer...AIM: To investigate the roles and interactions of rhoassociatedprotein kinase (ROCK)1 and miR-124 inhuman colorectal cancer (CRC).METHODS: Expression of ROCK1 protein wasexamined by Western blotting, and quantitativereverse transcriptase PCR was performed to measureexpression of ROCK1 mRNA and miR-124. Two cancercell lines were transfected with pre-miR-124 (mimic)and anti-miR-124 (inhibitor) and the effects onROCK1 protein and mRNA expression were observed.In addition, cell proliferation was assessed via a5-ethynyl-2′ deoxyuridine assay. Soft agar formationassay, and cell migration and invasion assays wereused to determine the effect of survivin on thetransformation and invasion activity of CRC cells.RESULTS: miR-124 was significantly downregulated inCRC compared to normal specimens (0.603 ± 0.092 vs1.147 ± 0.286, P = 0.016) and in metastatic comparedto nonmetastatic CRC specimens (0.416 ± 0.047 vs0.696 ± 0.089, P = 0.020). Expression of miR-124 wassignificantly associated with CRC metastasis, tumor Tand N stages, and tumor grade (all P < 0.05). ROCK1protein was significantly increased in CRC comparedto normal tissues (1.896 ± 0.258 vs 0.866 ± 0.136,P = 0.026), whereas ROCK1 mRNA expression wasunaltered (2.613 ± 0.251 vs 2.325 ± 0.246). miR-124and ROCK1 were inversely expressed in CRC tissuesand cell lines. ROCK1 mRNA was unaltered in cellstransfected with miR-124 mimic and miR-124 inhibitor,compared to normal controls. There was a significantreduction in ROCK1 protein in cells transfected withmiR-124 mimic and a significant increase in cells transfected with miR-124 inhibitor (P s < 0.05).Transformation and invasion of cells transfectedwith miR-124 inhibitor were significantly increasedcompared to those in normal controls (P < 0.05). Cellstransfected with miR-124 inhibitor showed increasedcell proliferation.CONCLUSION: miR-124 promotes hyperplasia andcontributes to invasion of CRC cells, but downregulatesROCK1. ROCK1 and miR-124 may play important rolesin CRC.展开更多
Objective:Deleted in liver cancer 1(DLC1)is a GTPase-activating protein that is reported as a suppressor in certain human cancers.However,the detailed biological function of DLC1 is still unclear in human prostate can...Objective:Deleted in liver cancer 1(DLC1)is a GTPase-activating protein that is reported as a suppressor in certain human cancers.However,the detailed biological function of DLC1 is still unclear in human prostate cancer(PCa).In the present study,we aimed to explore the function of DLC1 in PCa cells.Methods:Silencing and overexpression of DLC1 were induced in an androgen-sensitive PCa cell line(LNCaP)using RNA interference and lentiviral vector transduction.The Cell Counting Kit-8 assay was performed to determine cell proliferation.The cell cycle was examined by performing a propidium iodide staining assay.Results:Our results indicated that DLC1 overexpression markedly suppressed the proliferation and cell cycle progression of LNCaP cells.Moreover,DLC1 expression was negatively correlated with Rho-associated protein kinase(ROCK)expression in LNCaP cells.Importantly,this study showed that the ROCK inhibitor Y27632 restored the function of DLC1 in LNCaP cells and reduced the tumorigenicity of LNCaP cells in vivo.Conclusion:Our results indicated that DLC1 overexpression markedly suppressed the proliferation and cell cycle progression of PCa cells and negatively correlated with ROCK expression in PCa cells and tissue.展开更多
Hepatitis B virus(HBV)reactivation(HBVr)represents a severe and potentially life-threatening condition,and preventive measures are available through blood test screening or prophylactic therapy administration.The asse...Hepatitis B virus(HBV)reactivation(HBVr)represents a severe and potentially life-threatening condition,and preventive measures are available through blood test screening or prophylactic therapy administration.The assessment of HBVr traditionally considers factors such as HBV profile,including hepatitis B surface antigen(HBsAg)and antibody to hepatitis B core antigen,along with type of medication(chemotherapy;immunomodulants).Nevertheless,consideration of possible patient’s underlying tumor and the specific malignancy type(solid or hematologic)plays a crucial role and needs to be assessed for decision-making process.展开更多
BACKGROUND Epidermal growth factor receptor tyrosine kinase inhibitors(EGFR-TKIs)significantly improve the survival of patients with Epidermal growth factor receptor(EGFR)sensitive mutations in non-small cell lung can...BACKGROUND Epidermal growth factor receptor tyrosine kinase inhibitors(EGFR-TKIs)significantly improve the survival of patients with Epidermal growth factor receptor(EGFR)sensitive mutations in non-small cell lung cancer(NSCLC).CASE SUMMARY A 67-year-old female patient in advanced lung adenocarcinoma suffered from drug resistance after EGFR-TKIs treatment.Secondary pathological tissue biopsy confirmed squamous cell carcinoma(SCC)transformation.Patients inevitably encountered drug resistance issues after receiving EGFR-TKIs treatment for a certain period of time,while EGFR-TKIs can significantly improve the survival of patients with EGFR-sensitive mutations in NSCLC.Notably,EGFR-TKIs resistance includes primary and acquired.Pathological transformation is one of the mechanisms of acquired resistance in EGFR-TKIs,with SCC transformation being relatively rare.Our results provide more detailed results of the patient’s diagnosis and treatment process on SCC transformation after EGFR-TKIs treatment for lung adenocarcinoma.CONCLUSION Squamous cell carcinoma transformation is one of the acquired resistance mechanisms of EGFR-TKIs in advanced lung adenocarcinoma with EGFR mutations.展开更多
Glioblastoma,the most aggressive form of brain tumor,poses significant challenges in terms of treatment success and patient survival.Current treatment modalities for glioblastoma include radiation therapy,surgical int...Glioblastoma,the most aggressive form of brain tumor,poses significant challenges in terms of treatment success and patient survival.Current treatment modalities for glioblastoma include radiation therapy,surgical intervention,and chemotherapy.Unfortunately,the median survival rate remains dishearteningly low at 12–15 months.One of the major obstacles in treating glioblastoma is the recurrence of tumors,making chemotherapy the primary approach for secondary glioma patients.However,the efficacy of drugs is hampered by the presence of the blood-brain barrier and multidrug resistance mechanisms.Consequently,considerable research efforts have been directed toward understanding the underlying signaling pathways involved in glioma and developing targeted drugs.To tackle glioma,numerous studies have examined kinase-downstream signaling pathways such as RAS-RAF-MEKERK-MPAK.By targeting specific signaling pathways,heterocyclic compounds have demonstrated efficacy in glioma therapeutics.Additionally,key kinases including phosphatidylinositol 3-kinase(PI3K),serine/threonine kinase,cytoplasmic tyrosine kinase(CTK),receptor tyrosine kinase(RTK)and lipid kinase(LK)have been considered for investigation.These pathways play crucial roles in drug effectiveness in glioma treatment.Heterocyclic compounds,encompassing pyrimidine,thiazole,quinazoline,imidazole,indole,acridone,triazine,and other derivatives,have shown promising results in targeting these pathways.As part of this review,we propose exploring novel structures with low toxicity and high potency for glioma treatment.The development of these compounds should strive to overcome multidrug resistance mechanisms and efficiently penetrate the blood-brain barrier.By optimizing the chemical properties and designing compounds with enhanced drug-like characteristics,we can maximize their therapeutic value and minimize adverse effects.Considering the complex nature of glioblastoma,these novel structures should be rigorously tested and evaluated for their efficacy and safety profiles.展开更多
Microtubule-severing enzymes(MTSEs)play important roles in mitosis and meiosis of the primitive organisms.However,their roles in mammalian female meiosis,which accounts for over 80%of gamete-originated human reproduct...Microtubule-severing enzymes(MTSEs)play important roles in mitosis and meiosis of the primitive organisms.However,their roles in mammalian female meiosis,which accounts for over 80%of gamete-originated human reproductive diseases,remain unexplored.In the current study,we reported that katanin-like 2(KL2)was the only MTSE concentrating at chromosomes.Furthermore,the knockdown of KL2 significantly reduced the chromosome-based increase in the microtubule(MT)polymer,increased aberrant kinetochore-MT(K-MT)attachment,delayed meiosis,and severely affected normal fertility.We demonstrated that the inhibition of aurora B,a key kinase for correcting aberrant K-MT attachment,significantly eliminated KL2 expression from chromosomes.Additionally,KL2 interacted with phosphorylated eukaryotic elongation factor-2 kinase,and they competed for chromosome binding.Phosphorylated KL2 was also localized at spindle poles,with its phosphorylation regulated by extracellular signal-regulated kinase 1/2.In summary,the current study reveals a novel function of MTSEs in mammalian female meiosis and demonstrates that multiple kinases coordinate to regulate the levels of KL2 at chromosomes.展开更多
Recent advancements in the treatment landscape of ulcerative colitis(UC)have ushered in a new era of possibilities,particularly with the introduction of Janus kinase(JAK)-signal transducer and activator of transcripti...Recent advancements in the treatment landscape of ulcerative colitis(UC)have ushered in a new era of possibilities,particularly with the introduction of Janus kinase(JAK)-signal transducer and activator of transcription inhibitors.These novel agents offer a paradigm shift in UC management by targeting key signaling pathways involved in inflammatory processes.With approved JAK inhibitors(JAKis),such as tofacitinib,filgotinib,and upadacitinib,clinicians now have powerful tools to modulate immune responses and gene expression,potentially revolutionizing the treatment algorithm for UC.Clinical trials have demonstrated the efficacy of JAKis in inducing and maintaining remission,presenting viable options for patients who have failed conventional therapies.Real-world data support the use of JAKis not only as first-line treatments but also in subsequent lines of therapy,particularly in patients with aggressive disease phenotypes or refractory to biologic agents.The rapid onset of action and potency of JAKis have broadened the possibilities in the management strategies of UC,offering timely relief for patients with active disease and facilitating personalized treatment approaches.Despite safety concerns,including cardiovascular risks and infections,ongoing research and post-marketing surveillance will continue to refine our understanding of the risk-benefit profile of JAKis in UC management.展开更多
Gastric cancer is among the most frequently occurring cancers and a leading cause of cancer-related deaths globally.Because gastric cancer is highly heterogenous and comprised of different subtypes with distinct molec...Gastric cancer is among the most frequently occurring cancers and a leading cause of cancer-related deaths globally.Because gastric cancer is highly heterogenous and comprised of different subtypes with distinct molecular and clinical characteristics,the management of gastric cancer calls for better-defined,biomarker-guided,molecular-based treatment strategies.MET is a receptor tyrosine kinase mediating important physiologic processes,such as embryogenesis,tissue regeneration,and wound healing.However,mounting evidence suggests that aberrant MET pathway activation contributes to tumour proliferation and metastasis in multiple cancer types,including gastric cancer,and is associated with poor patient outcomes.As such,MET-targeting therapies are being actively developed and promising progress has been demonstrated,especially with MET tyrosine kinase inhibitors.This review aims to briefly introduce the role of MET alterations in gastric cancer and summarize in detail the current progress of MET tyrosine kinase inhibitors in this disease area with a focus on savolitinib,tepotinib,capmatinib,and crizotinib.Building on current knowledge,this review further discusses existing challenges in MET alterations testing,possible resistance mechanisms to MET inhibitors,and future directions of MET-targeting therapies.展开更多
BACKGROUND Diabetic retinopathy(DR)is a major ocular complication of diabetes mellitus,leading to visual impairment.Retinal pigment epithelium(RPE)injury is a key component of the outer blood retinal barrier,and its d...BACKGROUND Diabetic retinopathy(DR)is a major ocular complication of diabetes mellitus,leading to visual impairment.Retinal pigment epithelium(RPE)injury is a key component of the outer blood retinal barrier,and its damage is an important indicator of DR.Receptor for activated C kinase 1(RACK1)activates protein kinase C-ε(PKC-ε)to promote the generation of reactive oxygen species(ROS)in RPE cells,leading to apoptosis.Therefore,we hypothesize that the activation of RACK1 under hypoxic/high-glucose conditions may promote RPE cell apoptosis by modulating PKC-ε/ROS,thereby disrupting the barrier effect of the outer blood retinal barrier and contributing to the progression of DR.AIM To investigate the role and associated underlying mechanisms of RACK1 in the development of early DR.METHODS In this study,Sprague-Dawley rats and adult RPE cell line-19(ARPE-19)cells were used as in vivo and in vitro models,respectively,to explore the role of RACK1 in mediating PKC-εin early DR.Furthermore,the impact of RACK1 on apoptosis and barrier function of RPE cells was also investigated in the former model.RESULTS Streptozotocin-induced diabetic rats showed increased apoptosis and upregulated expression of RACK1 and PKC-εproteins in RPE cells following a prolonged modeling.Similarly,ARPE-19 cells exposed to high glucose and hypoxia displayed elevated mRNA and protein levels of RACK1 and PKC-ε,accompanied by an increases in ROS production,apoptosis rate,and monolayer permeability.However,silencing RACK1 significantly downregulated the expression of PKC-εand ROS,reduced cell apoptosis and permeability,and protected barrier function.CONCLUSION RACK1 plays a significant role in the development of early DR and might serve as a potential therapeutic target for DR by regulating RPE apoptosis and barrier function.展开更多
BACKGROUND We report a rare case of primary clinical presentation featuring elevated creatine kinase(CK)levels in a neonate,which is associated with the LAMA2 gene.In this case,a heterozygous mutation in exon5 of the ...BACKGROUND We report a rare case of primary clinical presentation featuring elevated creatine kinase(CK)levels in a neonate,which is associated with the LAMA2 gene.In this case,a heterozygous mutation in exon5 of the LAMA2 gene,c.715C>G(resulting in a change of nucleotide number 715 in the coding region from cytosine to gua-nine),induced an amino acid alteration p.R239G(No.239)in the patient,repre-senting a missense mutation.This observation may be elucidated by the neonatal creatine monitoring mechanism,a phenomenon not previously reported.CASE SUMMARY We analysed the case of a neonate presenting solely with elevated CK levels who was eventually discharged after supportive treatment.The chief complaint was identification of increased CK levels for 15 d and higher CK values for 1 d.Ad-mission occurred at 18 d of age,and despite prolonged treatment with creatine and vitamin C,the elevated CK levels showed limited improvement.Whole exo-me sequencing revealed the presence of a c.715C>G mutation in LAMA2 in the newborn,correlating with a clinical phenotype.However,the available informa-tion offers insufficient evidence for clinical pathogenicity.CONCLUSION Mutations in LAMA2 are associated with the clinical phenotype of increased neonatal CK levels,for which no specific treatment exists.Whole genome sequen-cing facilitates early diagnosis.展开更多
SNF1-related protein kinase 2(SnRK2)family members are essential components of the plant abscisic acid(ABA)signaling pathway initiated by osmotic stress and triggering a drought stress response.This study characterize...SNF1-related protein kinase 2(SnRK2)family members are essential components of the plant abscisic acid(ABA)signaling pathway initiated by osmotic stress and triggering a drought stress response.This study characterized the molecular properties of TaSnRK2.4 and its function in mediating adaptation to drought in Triticum aestivum.Transcripts of TaSnRK2.4 were upregulated upon drought and ABA signaling and associated with drought-and ABA-responsive cis-elements ABRE and DRE,and MYB and MYC binding sites in the promoter as indicated by reporter GUS protein staining and activity driven by truncations of the promoter.Yeast two-hybrid,BiFC,and Co-IP assays indicated that TaSnRK2.4 protein interacts with TaPP2C01 and an ABF transcription factor(TF)TaABF2.The results suggested that TaSnRK2.4 forms a functional TaPP2C01-TaSnRK2.4-TaABF2 module with its upstream and downstream partners.Transgene analysis revealed that TaSnRK2.4 and TaABF2 positively regulate drought tolerance whereas TaPP2C01 acts negatively by modulating stomatal movement,osmotic adjustment,reactive oxygen species(ROS)homeostasis,and root morphology.Expression analysis,yeast one-hybrid,and transcriptional activation assays indicated that several osmotic stress-responsive genes,including TaSLAC1-4,TaP5CS3,TaSOD5,TaCAT1,and TaPIN4,are regulated by TaABF2.Transgene analysis verified their functions in positively regulating stomatal movement(TaSLAC1-4),proline accumulation(TaP5CS3),SOD activity(TaSOD5),CAT activity(TaCAT1),and root morphology(TaPIN4).There were high correlations between plant biomass and yield with module transcripts in a wheat variety panel cultivated under drought conditions in the field.Our findings provide insights into understanding plant drought response underlying the SnRK2 signaling pathway in common wheat.展开更多
Objective:The purpose of the study was to identify the best sequence of therapy beginning with a tyrosine kinase inhibitor(TKI)as the first-line therapy for patients with metastatic renal cell carcinoma(mRCC)in terms ...Objective:The purpose of the study was to identify the best sequence of therapy beginning with a tyrosine kinase inhibitor(TKI)as the first-line therapy for patients with metastatic renal cell carcinoma(mRCC)in terms of overall survival(OS),progression-free survival(PFS),and rates of discontinuation and adverse effects during the treatment period.Methods:This is a retrospective,nationwide multicenter study of patients with mRCC after diagnosis at 10 different tertiary medical centers in Korea from January 1992 to December 2017.We focused on patients at either“favorable”or“intermediate”risk according to the International mRCC Database Consortium criteria,and they were followed up(median 335 days).Finally,a total of 1409 patients were selected as the study population.We generated a Cox proportional hazard model adjusted for covariates,and the different therapy schemes were statistically tested in terms of OS as well as PFS.In addition,frequencies of discontinuation and adverse events were compared among the therapy schemes.Results:Of the primary patterns of treatment sequences(24 sequences),“sunitinib epazopanib”and“sunitinibeeverolimuseimmunotherapy”showed the most beneficial results in both OS and PFS with significantly lower hazards than“sunitinib”,which is the most commonly treated agent in Korea.Considering that the“TKIeTKI”structure showed relatively higher discontinuation rates with higher adverse effects,the overall beneficial sequence would be“sunitinibeeverolimuseimmunotherapy”.Conclusion:Among several sequential therapy starting with TKIs,“sunitinibeeverolimuse immunotherapy”was found to be the best scheme for mRCC patients with“favorable”or“intermediate”risks.展开更多
Genetic information is transcribed from genomic DNA to mRNA,which is then translated into threedimensional proteins.mRNAs can undergo various post-transcriptional modifications,including RNA editing that alters mRNA s...Genetic information is transcribed from genomic DNA to mRNA,which is then translated into threedimensional proteins.mRNAs can undergo various post-transcriptional modifications,including RNA editing that alters mRNA sequences,ultimately affecting protein function.In this study,RNA editing was identified at the 499th base(c.499)of human vaccinia-related kinase 2(VRK2).This RNA editing changes the amino acid in the catalytic domain of VRK2 from isoleucine(with adenine base)to valine(with guanine base).Isoleucine-containing VRK2 has higher kinase activity than the valine-containing VRK2,which leads to an increase in tumor cell proliferation.Earlier we reported that VRK2 directly interacts with dystrobrevin-binding protein(dysbindin)and results in reducing its stability.Herein,we demonstrate that isoleucine-containing VRK2 decreases the level of dysbindin than valinecontaining VRK2.Dysbindin interacts with cyclin D and thereby regulates its expression and function.The reduction in the level of dysbindin by isoleucine-containing VRK2 further enhances the cyclin D expression,resulting in increased tumor growth and reduction in survival rates.It has also been observed that in patient samples,VRK2 level was elevated in breast cancer tissue compared to normal breast tissue.Additionally,the isoleucine form of VRK2 exhibited a greater increase in breast cancer tissue.Therefore,it is concluded that VRK2,especially dependent on the 167th variant amino acid,can be one of the indexes of tumor progression and proliferation.展开更多
基金supported by the National Natural Science Foundation of China, Nos.81473577 (to CGM), 81903596 (to QW), 82004028 (to LJS)China Postdoctoral Science Foundation, No.2020M680912 (to LJS)+2 种基金Open Project of The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education of China,No.2019004 (to CGM)Science and Technology Innovation Project of Shanxi Colleges of China, Nos.2019L0728 (to QW)Cultivation Project of Shanxi Universtity of Chinese Medicine of China, No.2019PY130 (to QW)
文摘Ras homolog(Rho)-associated kinases(ROCKs)belong to the serine-threonine kinase family,which plays a pivotal role in regulating the damage,survival,axon guidance,and regeneration of neurons.ROCKs are also involved in the biological effects of immune cells and glial cells,as well as the development of neurodegenerative disorders such as Alzheimer’s disease,Parkinson’s disease,and multiple sclerosis.Previous studies by us and others confirmed that ROCKs inhibitors attenuated the symptoms and progression of experimental models of the abovementioned neurodegenerative diseases by inhibiting neuroinflammation,regulating immune imbalance,repairing the blood-brain barrier,and promoting nerve repair and myelin regeneration.Fasudil,the first ROCKs inhibitor to be used clinically,has a good therapeutic effect on neurodegenerative diseases.Fasudil increases the activity of neural stem cells and mesenchymal stem cells,thus optimizing cell therapy.This review will systematically describe,for the first time,the effects of abnormal activation of ROCKs on T cells,B cells,microglia,astrocytes,oligodendrocytes,and pericytes in neurodegenerative diseases of the central nervous system,summarize the therapeutic potential of fasudil in several experimental models of neurodegenerative diseases,and clarify the possible cellular and molecular mechanisms of ROCKs inhibition.This review also proposes that fasudil is a novel potential treatment,especially in combination with cell-based therapy.Findings from this review add support for further investigation of ROCKs and its inhibitor fasudil for the treatment of neurodegenerative diseases.
基金supported by the National Natural Science Foundation of China,No.81360562
文摘Electroacupuncture is beneficial for the recovery of spinal cord injury, but the underlying mechanism is unclear. The Rho/Rho-associated kinase(ROCK) signaling pathway regulates the actin cytoskeleton by controlling the adhesive and migratory behaviors of cells that could inhibit neurite regrowth after neural injury and consequently hinder the recovery from spinal cord injury. Therefore, we hypothesized electroacupuncture could affect the Rho/ROCK signaling pathway to promote the recovery of spinal cord injury. In our experiments, the spinal cord injury in adult Sprague-Dawley rats was caused by an impact device. Those rats were subjected to electroacupuncture at Yaoyangguan(GV3), Dazhui(GV14), Zusanli(ST36) and Ciliao(BL32) and/or monosialoganglioside treatment. Behavioral scores revealed that the hindlimb motor functions improved with those treatments. Real-time quantitative polymerase chain reaction, fluorescence in situ hybridization and western blot assay showed that electroacupuncture suppressed the m RNA and protein expression of Rho-A and Rho-associated kinase Ⅱ(ROCKⅡ) of injured spinal cord. Although monosialoganglioside promoted the recovery of hindlimb motor function, monosialoganglioside did not affect the expression of Rho-A and ROCKⅡ. However, electroacupuncture combined with monosialoganglioside did not further improve the motor function or suppress the expression of Rho-A and ROCKⅡ. Our data suggested that the electroacupuncture could specifically inhibit the activation of the Rho/ROCK signaling pathway thus partially contributing to the repair of injured spinal cord. Monosialoganglioside could promote the motor function but did not suppress expression of Rho A and ROCKⅡ. There was no synergistic effect of electroacupuncture combined with monosialoganglioside.
基金Supported by National Natural Science Foundation of China(No.81470608)。
文摘AIM:To investigate the effects of a selective inhibitor of Rho-associated kinase(ROCK),Y-27632,on inbred Wuzhishan porcine corneal endothelial cells(PCECs)in vitro and in vivo studies.METHODS:Primary PCECs were trypsinized from Wuzhishan miniature porcine corneal tissues.The optimal concentration of Y-27632 on PCECs was determined through MTT and 5-ethynyl-2'-deoxyuridine(EdU)-labeling assays.Seven New Zealand rabbits were used as a corneal endothelial dysfunction model,and a PCECs suspension supplemented with Y-27632 was injected into the anterior chamber of the rabbits.The progression of rabbit corneal opacity and edema were observed by slit lamp examination.The rabbits were sacrificed,and rabbit globes were enucleated for trypan blue-alizarin red staining,hematoxylineosin staining,and immunofluorescence analysis.RESULTS:Administration of 100μmol/L Y-27632 facilitated PCECs'proliferation obviously.The rabbit corneas injected with PCECs suspension and 100μmol/L Y-27632 were restored to transparency significantly after 14d.CONCLUSION:The 100μmol/L Y-27632 treatment improves PCECs'proliferation significantly.And our results suggest that Y-27632 and PCECs can be used to treat corneal endothelial dysfunction.
基金supported by grants from the National Natural Science Foundation of China(81471200 and81000521)the National Basic Research Development Program of China(2011CB504403)
文摘Microglia are immunocompetent cells in the cen- tral nervous system that take up tissue debris and pathogens. Rho-associated kinase (ROCK) has been identified as an important regulator of uptake, proliferation, secretion, and differentiation in a number of cell types. Although ROCK plays critical roles in the microglial secretion of inflammatory factors, naigration, and morphology, its effects on microglial uptake activity have not been well characterized. In the present study, we found that treatment of BV2 microglia and primary microglia with the ROCK inhibitors Y27632 and fasudil increased uptake activity and was associated with morpholog- ical changes. Furthermore, western blots showed that this increase in uptake activity was mediated through the extracel- lular-signal-regulated kinase (ERK) signaling cascade, indi- cating the importance of ROCK in regulating microglial uptake activity.
基金supported by the National Natural Science Foundation of China,No.82003965the Science and Technology Research Project of Sichuan Provincial Administration of Traditional Chinese Medicine,No.2024MS167(to LH)+2 种基金the Xinglin Scholar Program of Chengdu University of Traditional Chinese Medicine,No.QJRC2022033(to LH)the Improvement Plan for the'Xinglin Scholar'Scientific Research Talent Program at Chengdu University of Traditional Chinese Medicine,No.XKTD2023002(to LH)the 2023 National Project of the College Students'Innovation and Entrepreneurship Training Program at Chengdu University of Traditional Chinese Medicine,No.202310633028(to FD)。
文摘The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.
基金Supported by Grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute,funded by the Ministry of Health&Welfare,Republic of Korea,No.RS-2022-KH129889.
文摘BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine receptor kinase(NTRK)gene fusionpositive uterine sarcoma,potentially aggressive and morphologically similar to fibrosarcoma,are limited due to its recent recognition.Pan-TRK immunohistochemistry(IHC)analysis serves as an effective screening tool with high sensitivity and specificity for NTRK-fusion malignancies.CASE SUMMARY We report a case of a malignant mesenchymal tumor originating from the uterine cervix,which was pan-TRK IHC-positive but lacked NTRK gene fusions,accompanied by a brief literature review.A 55-year-old woman presented to the emergency department with abdominal pain and distension,exhibiting significant ascites and multiple solid pelvic masses.Pelvic examination revealed a tumor encompassing the uterine cervix,extending to the vagina and uterine corpus.A punch biopsy of the cervix indicated NTRK sarcoma with positive immunochemical pan-TRK stain.However,subsequent next generation sequencing revealed no NTRK gene fusion,leading to a diagnosis of poorly differentiated,advanced-stage sarcoma.CONCLUSION The clinical significance of NTRK gene fusion lies in potential treatment with TRK inhibitors for positive sarcomas.Identifying such rare tumors is crucial due to the potential applicability of tropomyosin receptor kinase inhibitor treatment.
基金supported by the National Natural Science Foundation of China,No.31170941the Fundamental Research Funds for the Central Universities,No.21612424the Science and Technology Planning Project of Guangdong Province,No.2010B031600102
文摘Rho-associated protein kinase is an essential regulator of cytoskeletal dynamics during the process of neurite extension. However, whether Rho kinase regulates microtubule remodeling or the distri- bution of adhesive proteins to mediate neurite outgrowth remains unclear. By specifically modulat- ing Rho kinase activity with pharmacological agents, we studied the morpho-dynamics of neurite outgrowth. We found that lysophosphatidic acid, an activator of Rho kinase, inhibited neurite out- growth, which could be reversed by Y-27632, an inhibitor of Rho kinase. Meanwhile, reorganization of microtubules was noticed during these processes, as indicated by their significant changes in the soma and growth cone. In addition, exposure to lysophosphatidic acid led to a decreased mem- brane distribution of vinculin, a focal adhesion protein in neurons, whereas Y-27632 recruited vin- culin to the membrane. Taken together, our data suggest that Rho kinase regulates rat hippocampal neurite growth and microtubule formation via a mechanism associated with the redistribution of vinculin.
文摘AIM: To investigate the roles and interactions of rhoassociatedprotein kinase (ROCK)1 and miR-124 inhuman colorectal cancer (CRC).METHODS: Expression of ROCK1 protein wasexamined by Western blotting, and quantitativereverse transcriptase PCR was performed to measureexpression of ROCK1 mRNA and miR-124. Two cancercell lines were transfected with pre-miR-124 (mimic)and anti-miR-124 (inhibitor) and the effects onROCK1 protein and mRNA expression were observed.In addition, cell proliferation was assessed via a5-ethynyl-2′ deoxyuridine assay. Soft agar formationassay, and cell migration and invasion assays wereused to determine the effect of survivin on thetransformation and invasion activity of CRC cells.RESULTS: miR-124 was significantly downregulated inCRC compared to normal specimens (0.603 ± 0.092 vs1.147 ± 0.286, P = 0.016) and in metastatic comparedto nonmetastatic CRC specimens (0.416 ± 0.047 vs0.696 ± 0.089, P = 0.020). Expression of miR-124 wassignificantly associated with CRC metastasis, tumor Tand N stages, and tumor grade (all P < 0.05). ROCK1protein was significantly increased in CRC comparedto normal tissues (1.896 ± 0.258 vs 0.866 ± 0.136,P = 0.026), whereas ROCK1 mRNA expression wasunaltered (2.613 ± 0.251 vs 2.325 ± 0.246). miR-124and ROCK1 were inversely expressed in CRC tissuesand cell lines. ROCK1 mRNA was unaltered in cellstransfected with miR-124 mimic and miR-124 inhibitor,compared to normal controls. There was a significantreduction in ROCK1 protein in cells transfected withmiR-124 mimic and a significant increase in cells transfected with miR-124 inhibitor (P s < 0.05).Transformation and invasion of cells transfectedwith miR-124 inhibitor were significantly increasedcompared to those in normal controls (P < 0.05). Cellstransfected with miR-124 inhibitor showed increasedcell proliferation.CONCLUSION: miR-124 promotes hyperplasia andcontributes to invasion of CRC cells, but downregulatesROCK1. ROCK1 and miR-124 may play important rolesin CRC.
基金This study was supported by the Key Scientific Research Project of Shanghai Municipal Commission of Health and Family Planning(No.201640014)the project of Natural Science Foundation of Jiangxi(No.20171BAB205019)the Special Diseases Program of Pudong New Area Health System(No.PWZzb2017-06).
文摘Objective:Deleted in liver cancer 1(DLC1)is a GTPase-activating protein that is reported as a suppressor in certain human cancers.However,the detailed biological function of DLC1 is still unclear in human prostate cancer(PCa).In the present study,we aimed to explore the function of DLC1 in PCa cells.Methods:Silencing and overexpression of DLC1 were induced in an androgen-sensitive PCa cell line(LNCaP)using RNA interference and lentiviral vector transduction.The Cell Counting Kit-8 assay was performed to determine cell proliferation.The cell cycle was examined by performing a propidium iodide staining assay.Results:Our results indicated that DLC1 overexpression markedly suppressed the proliferation and cell cycle progression of LNCaP cells.Moreover,DLC1 expression was negatively correlated with Rho-associated protein kinase(ROCK)expression in LNCaP cells.Importantly,this study showed that the ROCK inhibitor Y27632 restored the function of DLC1 in LNCaP cells and reduced the tumorigenicity of LNCaP cells in vivo.Conclusion:Our results indicated that DLC1 overexpression markedly suppressed the proliferation and cell cycle progression of PCa cells and negatively correlated with ROCK expression in PCa cells and tissue.
文摘Hepatitis B virus(HBV)reactivation(HBVr)represents a severe and potentially life-threatening condition,and preventive measures are available through blood test screening or prophylactic therapy administration.The assessment of HBVr traditionally considers factors such as HBV profile,including hepatitis B surface antigen(HBsAg)and antibody to hepatitis B core antigen,along with type of medication(chemotherapy;immunomodulants).Nevertheless,consideration of possible patient’s underlying tumor and the specific malignancy type(solid or hematologic)plays a crucial role and needs to be assessed for decision-making process.
文摘BACKGROUND Epidermal growth factor receptor tyrosine kinase inhibitors(EGFR-TKIs)significantly improve the survival of patients with Epidermal growth factor receptor(EGFR)sensitive mutations in non-small cell lung cancer(NSCLC).CASE SUMMARY A 67-year-old female patient in advanced lung adenocarcinoma suffered from drug resistance after EGFR-TKIs treatment.Secondary pathological tissue biopsy confirmed squamous cell carcinoma(SCC)transformation.Patients inevitably encountered drug resistance issues after receiving EGFR-TKIs treatment for a certain period of time,while EGFR-TKIs can significantly improve the survival of patients with EGFR-sensitive mutations in NSCLC.Notably,EGFR-TKIs resistance includes primary and acquired.Pathological transformation is one of the mechanisms of acquired resistance in EGFR-TKIs,with SCC transformation being relatively rare.Our results provide more detailed results of the patient’s diagnosis and treatment process on SCC transformation after EGFR-TKIs treatment for lung adenocarcinoma.CONCLUSION Squamous cell carcinoma transformation is one of the acquired resistance mechanisms of EGFR-TKIs in advanced lung adenocarcinoma with EGFR mutations.
基金The authors are thankful to Dr.Mayur Yergeri and Science and Engineering Research Board(SERB),Government of India,New Delhi,(CRG/2019/001452).
文摘Glioblastoma,the most aggressive form of brain tumor,poses significant challenges in terms of treatment success and patient survival.Current treatment modalities for glioblastoma include radiation therapy,surgical intervention,and chemotherapy.Unfortunately,the median survival rate remains dishearteningly low at 12–15 months.One of the major obstacles in treating glioblastoma is the recurrence of tumors,making chemotherapy the primary approach for secondary glioma patients.However,the efficacy of drugs is hampered by the presence of the blood-brain barrier and multidrug resistance mechanisms.Consequently,considerable research efforts have been directed toward understanding the underlying signaling pathways involved in glioma and developing targeted drugs.To tackle glioma,numerous studies have examined kinase-downstream signaling pathways such as RAS-RAF-MEKERK-MPAK.By targeting specific signaling pathways,heterocyclic compounds have demonstrated efficacy in glioma therapeutics.Additionally,key kinases including phosphatidylinositol 3-kinase(PI3K),serine/threonine kinase,cytoplasmic tyrosine kinase(CTK),receptor tyrosine kinase(RTK)and lipid kinase(LK)have been considered for investigation.These pathways play crucial roles in drug effectiveness in glioma treatment.Heterocyclic compounds,encompassing pyrimidine,thiazole,quinazoline,imidazole,indole,acridone,triazine,and other derivatives,have shown promising results in targeting these pathways.As part of this review,we propose exploring novel structures with low toxicity and high potency for glioma treatment.The development of these compounds should strive to overcome multidrug resistance mechanisms and efficiently penetrate the blood-brain barrier.By optimizing the chemical properties and designing compounds with enhanced drug-like characteristics,we can maximize their therapeutic value and minimize adverse effects.Considering the complex nature of glioblastoma,these novel structures should be rigorously tested and evaluated for their efficacy and safety profiles.
基金supported by the Youth Program of National Natural Science Foundation of China(Grant No.82001539 to Leilei Gao)the Zhejiang Province Health Innovation Talent Project(Grant No.2021RC001 to Zhen Jin)+1 种基金the General Program of the National Natural Science Foundation of China(Grant No.31671561 to Dong Zhang)the Regional Program of National Natural Science Foundation of China(Grant No.82260126 to Xiaocong Liu).
文摘Microtubule-severing enzymes(MTSEs)play important roles in mitosis and meiosis of the primitive organisms.However,their roles in mammalian female meiosis,which accounts for over 80%of gamete-originated human reproductive diseases,remain unexplored.In the current study,we reported that katanin-like 2(KL2)was the only MTSE concentrating at chromosomes.Furthermore,the knockdown of KL2 significantly reduced the chromosome-based increase in the microtubule(MT)polymer,increased aberrant kinetochore-MT(K-MT)attachment,delayed meiosis,and severely affected normal fertility.We demonstrated that the inhibition of aurora B,a key kinase for correcting aberrant K-MT attachment,significantly eliminated KL2 expression from chromosomes.Additionally,KL2 interacted with phosphorylated eukaryotic elongation factor-2 kinase,and they competed for chromosome binding.Phosphorylated KL2 was also localized at spindle poles,with its phosphorylation regulated by extracellular signal-regulated kinase 1/2.In summary,the current study reveals a novel function of MTSEs in mammalian female meiosis and demonstrates that multiple kinases coordinate to regulate the levels of KL2 at chromosomes.
文摘Recent advancements in the treatment landscape of ulcerative colitis(UC)have ushered in a new era of possibilities,particularly with the introduction of Janus kinase(JAK)-signal transducer and activator of transcription inhibitors.These novel agents offer a paradigm shift in UC management by targeting key signaling pathways involved in inflammatory processes.With approved JAK inhibitors(JAKis),such as tofacitinib,filgotinib,and upadacitinib,clinicians now have powerful tools to modulate immune responses and gene expression,potentially revolutionizing the treatment algorithm for UC.Clinical trials have demonstrated the efficacy of JAKis in inducing and maintaining remission,presenting viable options for patients who have failed conventional therapies.Real-world data support the use of JAKis not only as first-line treatments but also in subsequent lines of therapy,particularly in patients with aggressive disease phenotypes or refractory to biologic agents.The rapid onset of action and potency of JAKis have broadened the possibilities in the management strategies of UC,offering timely relief for patients with active disease and facilitating personalized treatment approaches.Despite safety concerns,including cardiovascular risks and infections,ongoing research and post-marketing surveillance will continue to refine our understanding of the risk-benefit profile of JAKis in UC management.
基金supported by the National Natural Science Foundation of China(Grant No.81602057)the Beijing Natural Science Foundation(Grant No.Z210015)。
文摘Gastric cancer is among the most frequently occurring cancers and a leading cause of cancer-related deaths globally.Because gastric cancer is highly heterogenous and comprised of different subtypes with distinct molecular and clinical characteristics,the management of gastric cancer calls for better-defined,biomarker-guided,molecular-based treatment strategies.MET is a receptor tyrosine kinase mediating important physiologic processes,such as embryogenesis,tissue regeneration,and wound healing.However,mounting evidence suggests that aberrant MET pathway activation contributes to tumour proliferation and metastasis in multiple cancer types,including gastric cancer,and is associated with poor patient outcomes.As such,MET-targeting therapies are being actively developed and promising progress has been demonstrated,especially with MET tyrosine kinase inhibitors.This review aims to briefly introduce the role of MET alterations in gastric cancer and summarize in detail the current progress of MET tyrosine kinase inhibitors in this disease area with a focus on savolitinib,tepotinib,capmatinib,and crizotinib.Building on current knowledge,this review further discusses existing challenges in MET alterations testing,possible resistance mechanisms to MET inhibitors,and future directions of MET-targeting therapies.
基金Supported by National Natural Science Foundation of China,No.82260211Key Research and Development Project in Jiangxi Province,No.20203BBG73058Chinese Medicine Science and Technology Project in Jiangxi Province,No.2020A0166.
文摘BACKGROUND Diabetic retinopathy(DR)is a major ocular complication of diabetes mellitus,leading to visual impairment.Retinal pigment epithelium(RPE)injury is a key component of the outer blood retinal barrier,and its damage is an important indicator of DR.Receptor for activated C kinase 1(RACK1)activates protein kinase C-ε(PKC-ε)to promote the generation of reactive oxygen species(ROS)in RPE cells,leading to apoptosis.Therefore,we hypothesize that the activation of RACK1 under hypoxic/high-glucose conditions may promote RPE cell apoptosis by modulating PKC-ε/ROS,thereby disrupting the barrier effect of the outer blood retinal barrier and contributing to the progression of DR.AIM To investigate the role and associated underlying mechanisms of RACK1 in the development of early DR.METHODS In this study,Sprague-Dawley rats and adult RPE cell line-19(ARPE-19)cells were used as in vivo and in vitro models,respectively,to explore the role of RACK1 in mediating PKC-εin early DR.Furthermore,the impact of RACK1 on apoptosis and barrier function of RPE cells was also investigated in the former model.RESULTS Streptozotocin-induced diabetic rats showed increased apoptosis and upregulated expression of RACK1 and PKC-εproteins in RPE cells following a prolonged modeling.Similarly,ARPE-19 cells exposed to high glucose and hypoxia displayed elevated mRNA and protein levels of RACK1 and PKC-ε,accompanied by an increases in ROS production,apoptosis rate,and monolayer permeability.However,silencing RACK1 significantly downregulated the expression of PKC-εand ROS,reduced cell apoptosis and permeability,and protected barrier function.CONCLUSION RACK1 plays a significant role in the development of early DR and might serve as a potential therapeutic target for DR by regulating RPE apoptosis and barrier function.
基金Supported by The Suzhou Science and Technology Development Plan Guiding Project,No.SZSYYXH-2023-YB5The Suzhou Science and Technology Development Plan Project,No.SKY2023002The Suzhou Key Laboratory of Children's Structural Deformities,No.SZS2022018.
文摘BACKGROUND We report a rare case of primary clinical presentation featuring elevated creatine kinase(CK)levels in a neonate,which is associated with the LAMA2 gene.In this case,a heterozygous mutation in exon5 of the LAMA2 gene,c.715C>G(resulting in a change of nucleotide number 715 in the coding region from cytosine to gua-nine),induced an amino acid alteration p.R239G(No.239)in the patient,repre-senting a missense mutation.This observation may be elucidated by the neonatal creatine monitoring mechanism,a phenomenon not previously reported.CASE SUMMARY We analysed the case of a neonate presenting solely with elevated CK levels who was eventually discharged after supportive treatment.The chief complaint was identification of increased CK levels for 15 d and higher CK values for 1 d.Ad-mission occurred at 18 d of age,and despite prolonged treatment with creatine and vitamin C,the elevated CK levels showed limited improvement.Whole exo-me sequencing revealed the presence of a c.715C>G mutation in LAMA2 in the newborn,correlating with a clinical phenotype.However,the available informa-tion offers insufficient evidence for clinical pathogenicity.CONCLUSION Mutations in LAMA2 are associated with the clinical phenotype of increased neonatal CK levels,for which no specific treatment exists.Whole genome sequen-cing facilitates early diagnosis.
基金supported by National Key Research and Development Program of China(2022YFD1200202)State Key Laboratory of North China Crop Improvement and Regulation(NCCIR2022ZZ-7)Graduate Student Innovation Ability Training Funding Project of Hebei Province(CXZZBS2023073)。
文摘SNF1-related protein kinase 2(SnRK2)family members are essential components of the plant abscisic acid(ABA)signaling pathway initiated by osmotic stress and triggering a drought stress response.This study characterized the molecular properties of TaSnRK2.4 and its function in mediating adaptation to drought in Triticum aestivum.Transcripts of TaSnRK2.4 were upregulated upon drought and ABA signaling and associated with drought-and ABA-responsive cis-elements ABRE and DRE,and MYB and MYC binding sites in the promoter as indicated by reporter GUS protein staining and activity driven by truncations of the promoter.Yeast two-hybrid,BiFC,and Co-IP assays indicated that TaSnRK2.4 protein interacts with TaPP2C01 and an ABF transcription factor(TF)TaABF2.The results suggested that TaSnRK2.4 forms a functional TaPP2C01-TaSnRK2.4-TaABF2 module with its upstream and downstream partners.Transgene analysis revealed that TaSnRK2.4 and TaABF2 positively regulate drought tolerance whereas TaPP2C01 acts negatively by modulating stomatal movement,osmotic adjustment,reactive oxygen species(ROS)homeostasis,and root morphology.Expression analysis,yeast one-hybrid,and transcriptional activation assays indicated that several osmotic stress-responsive genes,including TaSLAC1-4,TaP5CS3,TaSOD5,TaCAT1,and TaPIN4,are regulated by TaABF2.Transgene analysis verified their functions in positively regulating stomatal movement(TaSLAC1-4),proline accumulation(TaP5CS3),SOD activity(TaSOD5),CAT activity(TaCAT1),and root morphology(TaPIN4).There were high correlations between plant biomass and yield with module transcripts in a wheat variety panel cultivated under drought conditions in the field.Our findings provide insights into understanding plant drought response underlying the SnRK2 signaling pathway in common wheat.
文摘Objective:The purpose of the study was to identify the best sequence of therapy beginning with a tyrosine kinase inhibitor(TKI)as the first-line therapy for patients with metastatic renal cell carcinoma(mRCC)in terms of overall survival(OS),progression-free survival(PFS),and rates of discontinuation and adverse effects during the treatment period.Methods:This is a retrospective,nationwide multicenter study of patients with mRCC after diagnosis at 10 different tertiary medical centers in Korea from January 1992 to December 2017.We focused on patients at either“favorable”or“intermediate”risk according to the International mRCC Database Consortium criteria,and they were followed up(median 335 days).Finally,a total of 1409 patients were selected as the study population.We generated a Cox proportional hazard model adjusted for covariates,and the different therapy schemes were statistically tested in terms of OS as well as PFS.In addition,frequencies of discontinuation and adverse events were compared among the therapy schemes.Results:Of the primary patterns of treatment sequences(24 sequences),“sunitinib epazopanib”and“sunitinibeeverolimuseimmunotherapy”showed the most beneficial results in both OS and PFS with significantly lower hazards than“sunitinib”,which is the most commonly treated agent in Korea.Considering that the“TKIeTKI”structure showed relatively higher discontinuation rates with higher adverse effects,the overall beneficial sequence would be“sunitinibeeverolimuseimmunotherapy”.Conclusion:Among several sequential therapy starting with TKIs,“sunitinibeeverolimuse immunotherapy”was found to be the best scheme for mRCC patients with“favorable”or“intermediate”risks.
基金supported by the BK21 FOUR funded by the Ministry of Education,Republic of Korea,the National Research Foundation of Korea(NRF-2022R1F1A1066642,RS-2023-00272063)grant funded by the Korean government(MSIT),and POSTECH Basic Science Research Institute Grant(NRF-2021R1A6A1A10042944).Research was also supported by funds donated by Dr.Jae Kyu Lee and Mr.Jason Gim.Following are results of a study on the“Leaders in INdustry-University Cooperation 3.0”Project,supported by the Ministry of Education and National Research Foundation of Korea.
文摘Genetic information is transcribed from genomic DNA to mRNA,which is then translated into threedimensional proteins.mRNAs can undergo various post-transcriptional modifications,including RNA editing that alters mRNA sequences,ultimately affecting protein function.In this study,RNA editing was identified at the 499th base(c.499)of human vaccinia-related kinase 2(VRK2).This RNA editing changes the amino acid in the catalytic domain of VRK2 from isoleucine(with adenine base)to valine(with guanine base).Isoleucine-containing VRK2 has higher kinase activity than the valine-containing VRK2,which leads to an increase in tumor cell proliferation.Earlier we reported that VRK2 directly interacts with dystrobrevin-binding protein(dysbindin)and results in reducing its stability.Herein,we demonstrate that isoleucine-containing VRK2 decreases the level of dysbindin than valinecontaining VRK2.Dysbindin interacts with cyclin D and thereby regulates its expression and function.The reduction in the level of dysbindin by isoleucine-containing VRK2 further enhances the cyclin D expression,resulting in increased tumor growth and reduction in survival rates.It has also been observed that in patient samples,VRK2 level was elevated in breast cancer tissue compared to normal breast tissue.Additionally,the isoleucine form of VRK2 exhibited a greater increase in breast cancer tissue.Therefore,it is concluded that VRK2,especially dependent on the 167th variant amino acid,can be one of the indexes of tumor progression and proliferation.