BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effect...BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effects of OPN on the proliferation,invasion and migration of GC cells and its possible mechanism.METHODS The mRNA and protein expression of OPN in the GC cells were analyzed by realtime quantitative-reverse transcription polymerase chain reaction and western blotting,and observe the effect of varying degree expression OPN on the proliferation and other behaviors of GC.Next,the effects of OPN knockdown on GC cells migration and invasion were examined.The short hairpin RNA(shRNA)and negative control shRNA targeting OPN-shRNA were transfected into the cells according to the manufacturer’s instructions.Non transfected cells were classified as control in the identical transfecting process.24 h after RNA transfection cell proliferation activity was detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay,and cell invasiveness and migration were detected by Trans well assay.Meanwhile,the expression of protein kinase B(AKT),matrix metalloproteinase 2(MMP-2)and vascular endothelial growth factor(VEGF)in the human GC cell lines was detected by reverse transcription polymerase chain reaction and western blotting.RESULTS The results of this study revealed that OPN mRNA and protein expression levels were highly expressed in SGC-7901 cells.OPN knockdown by specific shRNA noticeably reduced the capabilities of proliferation,invasion and migration of SGC-7901 cells.Moreover,in the experiments of investigating the underlying mechanism,results showed that OPN knockdown could down-regulated the expression of MMP-2 and VEGF,it also decreased the phosphorylation of AKT.Meanwhile,the protein expression levels of MMP-2,VEGF and phosphorylated AKT was noticeable lower than that in control group in the GC cells after they were added to phosphatidylinositol-3-kinase(PI3K)inhibitor(LY294002).CONCLUSION These results suggested that OPN though PI3K/AKT/mammalian target of rapamycin signal pathway to upregulate MMP-2 and VEGF expression,which contribute SGC-7901 cells to proliferation,invasion and migration.Thus,our results demonstrate that OPN may serve as a novel prognostic biomarkers as well as a potential therapeutic targets for GC.展开更多
The family members of the mitogen-activated protein (MAP) kinases mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the four main sub-groups, the p38 group of MAP kinases, serve...The family members of the mitogen-activated protein (MAP) kinases mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the four main sub-groups, the p38 group of MAP kinases, serve as a nexus for signal transduction and play a vital role in numerous biological processes. In this review, we highlight the known characteristics and components of the p38 pathway along with the mechanism and consequences of p38 activation. We focus on the role of p38 as a signal transduction mediator and examine the evidence linking p38 to inflammation, cell cycle, cell death, development, cell differentiation, senescence and tumorigenesis in specific cell types. Upstream and downstream components of p38 are described and questions remaining to be answered are posed. Finally, we propose several directions for future research on p38.展开更多
AIMTo investigate whether the abnormal differentiation of the pterygium epithelium is related to the extracellular signal-regulated kinase (ERK) signaling pathway in vitro.METHODSThe expression levels of phosphorylate...AIMTo investigate whether the abnormal differentiation of the pterygium epithelium is related to the extracellular signal-regulated kinase (ERK) signaling pathway in vitro.METHODSThe expression levels of phosphorylated ERK (P-ERK), keratin family members including K19 and K10 and the ocular master control gene Pax-6 were measured in 16 surgically excised pterygium tissues and 12 eye bank conjunctiva. In colony-forming cell assays, the differences in clone morphology and in K10, K19, P-ERK and Pax-6 expression between the head and body were investigated. When cocultured with the ERK signaling pathway inhibitor PD98059, the changes in clone morphology, colony-forming efficiency, differentiated marker K10, K19 and Pax-6 expression and P-ERK protein expression level were examined by immunoreactivity and Western blot analysis.RESULTSThe expression of K19 and Pax-6 decreased in the pterygium, especially in the head. No staining of K10 was found in the normal conjunctiva epithelium, but it was found to be expressed in the superficial cells in the head of the pterygium. Characteristic upregulation of P-ERK was observed by immunohistochemistry. The clone from the head with more differentiated cells in the center expressed more K10, and the clone from the body expressed more K19. The P-ERK protein level increased in the pterygium epithelium compared with conjunctiva and decreased when cocultured with PD98059. The same medium with the ERK inhibitor PD98059 was more effective in promoting clonal growth than conventional medium with 3T3 murine feeder layers. It was observed that the epithelium clone co-cultured with the inhibitor had decreased K10 expression and increased K19 and Pax-6 expression.CONCLUSIONWe suggest ERK signaling pathway activation might play a role in the pterygium epithelium abnormal differentiation.展开更多
BACKGROUND Intestinal inflammation is a common digestive tract disease, which is usually treated with hormone medicines. Hormone medicines are effective to some extent, but long-term use of them may bring about many c...BACKGROUND Intestinal inflammation is a common digestive tract disease, which is usually treated with hormone medicines. Hormone medicines are effective to some extent, but long-term use of them may bring about many complications.AIM To explore the protective effects of panax notoginseng saponin(PNS) against dextran sulfate sodium(DSS)-induced intestinal inflammatory injury through phosphoinositide-3-kinase protein kinase B(PI3K/AKT) signaling pathway inhibition in rats.METHODS Colitis rat models were generated via DSS induction, and rats were divided into control(no modeling), DSS, DSS + PNS 50 mg/k, and DSS + PNS 100 mg/kg groups. Then, the intestinal injury, oxidative stress parameters, inflammatory indices, tight junction proteins, apoptosis, macrophage polarization, and TLR4/AKT signaling pathway in colon tissues from rats in each of the groups were detected. The PI3 K/AKT signaling pathway in the colon tissue of rats was blocked using the PI3K/AKT signaling pathway inhibitor, LY294002.RESULTS Compared with rats in the control group, rats in the DSS group showed significantly shortened colon lengths, and significantly increased disease activity indices, oxidative stress reactions and inflammatory indices, as well as significantly decreased expression of tight junction-associated proteins. In addition, the DSS group showed significantly increased apoptotic cell numbers,and showed significantly increased M1 macrophages in spleen and colon tissues.They also showed significantly decreased M2 macrophages in colon tissues, as well as activation of the PI3K/AKT signaling pathway(all P < 0.05). Compared with rats in the DSS group, rats in the DSS + PNS group showed significantly lengthened colon lengths, decreased disease activity indices, and significantly alleviated oxidative stress reactions and inflammatory responses. In addition, this group showed significantly increased expression of tight junction-associated proteins, significantly decreased apoptotic cell numbers, and significantly decreased M1 macrophages in spleen and colon tissues. This group further showed significantly increased M2 macrophages in colon tissues, and significantly suppressed activation of the PI3K/AKT signaling pathway, as well as a dose dependency(all P < 0.05). When the PI3K/AKT signaling pathway was inhibited, the apoptosis rate of colon tissue cells in the DSS + LY294002 group was significantly lower than that of the DSS group(P < 0.05).CONCLUSION PNS can protect rats against DSS-induced intestinal inflammatory injury by inhibiting the PI3K/AKT signaling pathway, and therefore may be potentially used in the future as a drug for colitis.展开更多
Our preliminary studies confirmed that an active principle region of Buyang Huanwu decoction, comprising alkaloid, polysaccharide, aglycon, glucoside and volatile oil, can induce bone marrow mesenchymal stem cell diff...Our preliminary studies confirmed that an active principle region of Buyang Huanwu decoction, comprising alkaloid, polysaccharide, aglycon, glucoside and volatile oil, can induce bone marrow mesenchymal stem cell differentiation into neurons. Mitogen-activated protein kinase signaling was identified as one of the key pathways underlying this differentiation process. The present study shows phosphorylated extracellular signal-regulated protein kinase and phosphorylated p38 protein expression was increased after differentiation. Cellular signaling pathway blocking agents, PD98059 and SB203580, inhibited extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways respectively, mRNA and protein expression of the neuronal marker, neuron specific enolase, and neural stem cell marker, nestin, were decreased in bone marrow mesenchymal stem cells after treatment with the active principle region of Buyang Huanwu decoction. Experimental findings indicate that, extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways participate in bone marrow mesenchymal stem cell differentiation into neuron-like cells, induced by the active principle region of Buyang Huanwu decoction.展开更多
Dietary flavonoids are abundant in natural plants and possess multiple pharmacological and nutritional activities.In this study,apigenin,luteolin,and baicalein were chosen to evaluate their anti-diabetic effect in hig...Dietary flavonoids are abundant in natural plants and possess multiple pharmacological and nutritional activities.In this study,apigenin,luteolin,and baicalein were chosen to evaluate their anti-diabetic effect in high-glucose and dexamethasone induced insulin-resistant(IR)HepG2 cells.All flavonoids improves the glucose consumption and glycogen synthesis abilities in IR-HepG2 cells via activating glucose transporter protein 4(GLUT4)and phosphor-glycogen synthase kinase(GSK-3β).These fl avonoids signifi cantly inhibited the production of reactive oxygen species(ROS)and advanced glycation end-products(AGEs),which were closely related to the suppression of the phosphorylation form of NF-κB and P65.The expression levels of insulin receptor substrate-1(IRS-1),insulin receptor substrate-2(IRS-2)and phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)pathway in IR-HepG2 cells were all partially activated by the fl avonoids,with variable effects.Furthermore,the intracellular metabolic conditions of the fl avonoids were also evaluated.展开更多
The RON receptor tyrosine kinase, a member of the MET proto-oncogene family, is a pathogenic factor im- plicated in tumor malignancy. Specifically, aberrations in RON signaling result in increased cancer cell growth, ...The RON receptor tyrosine kinase, a member of the MET proto-oncogene family, is a pathogenic factor im- plicated in tumor malignancy. Specifically, aberrations in RON signaling result in increased cancer cell growth, survival, invasion, angiogenesis, and drug resistance. Biochemical events such as ligand binding, receptor over- expression, generation of structure-defected variants, and point mutations in the kinase domain contribute to RON signaling activation. Recently, functional crosstalk between RON and signaling proteins such as MET and EFGR has emerged as an additional mechanism for RON activation, which is critical for tumorigenic develop- ment. The RON signaling crosstalk acts either as a regulatory feedback loop that strengthens or enhances tumor- igenic phenotype of cancer cells or serves as a signaling compensatory pathway providing a growth/survival ad- vantage for cancer cells to escape targeted therapy. Moreover, viral oncoproteins derived from Friend leukemia or Epstein-Barr viruses interact with RON to drive viral oncogenesis. In cancer cells, RON signaling is integrated into cellular signaling network essential for cancer cell growth and survival. These activities provide the mo- lecular basis of targeting RON for cancer treatment. In this review, we will discuss recent data that uncover the mechanisms of RON activation in cancer cells, review evidence of RON signaling crosstalk relevant to cancer malignancy, and emphasize the significance of the RON signaling addiction by cancer cells for tumor therapy. Understanding aberrant RON signaling will not only provide insight into the mechanisms of tumor pathogenesis, but also lead to the development of novel strategies for molecularly targeted cancer treatment.展开更多
Objective:To investigate the role of oxidative stress in human renal tubular epithelial cells(HK-2)induced by high glucose and the underlying signal pathway in vitro.Methods:MYPT1,pro-caspase-3,PGC-1α,and Drpl protei...Objective:To investigate the role of oxidative stress in human renal tubular epithelial cells(HK-2)induced by high glucose and the underlying signal pathway in vitro.Methods:MYPT1,pro-caspase-3,PGC-1α,and Drpl protein expressions were measured by Western blot.MnSOD2,Drp1 and PGC-1αmRNA expressions were detected by real time PCR.Results:Results showed that high glucose significantly up-regulated the protein expressions of MYPT1,pro-caspase-3 and the mRNA expression of MnSOD2 in HK-2 cells;while Rho kinase inhibitor fasudil and ROCK1 siRNA inhibited protein expressions of pro-caspase-3 and the mRNA expression of MnSOD2 in HK-2 cells induced by high glucose.Importantly,fasudil and ROCK1 siRNA markedly inhibited the expressions of mitochondrial motor proteins Drp1 and mitochondrial gene PGC-la in HK-2 cell=s induced by high glucose.Conclusions:Our findings suggest that Rho kinase signal pathway is involved in mitochondrial oxidative damage and apoptosis in high glucose-induced renal tubular epithelial cells by regulating mitochondrial motor proteins Drp1 and mitochondrial gene PGC-1α.Targeting Rho kinase signal pathway might be a potential strategy for the treatment of diabetic nephropathy.展开更多
The Janus kinase and signal transducer and activator of transcription (JAK/STAT) signal transduction pathway is involved in sepsis-induced functional damage to the heart, liver, kidney, and other organs. However, th...The Janus kinase and signal transducer and activator of transcription (JAK/STAT) signal transduction pathway is involved in sepsis-induced functional damage to the heart, liver, kidney, and other organs. However, the cellular and molecular mechanisms underlying sepsis-induced brain damage remain elusive. In the present study, we found severe loss of neurons in the hippocampal CA1 region in rats with sepsis-induced brain damage following intraperitoneal injection of endotoxin, The expression of toll-like receptor 4, tumor necrosis factor a, and interleukin-6 was significantly increased in brain tissues following lipopolysaccharide exposure. AG490 (JAK2 antagonist) and rapamycin (STAT3 antagonist) significantly reduced neuronal loss and suppressed the increased expression of toll-like receptor 4, tumor necrosis factor a, and interleukin-6 in the hippocampal CA1 region in sepsis-induced brain damaged rats. Overall, these data suggest that blockade of the JAK/STAT signal transduction pathway is neuroprotective in sepsis-induced brain damage via the inhibition of toll-like receptor 4, tumor necrosis factor a, and interleukin-6 exoression.展开更多
BACKGROUND Colon cancer(CC)is one of the most common malignant tumors in the gastrointestinal system.Overall,CC had the third highest incidence but the second highest mortality rate globally in 2020.Nowadays,CC is mai...BACKGROUND Colon cancer(CC)is one of the most common malignant tumors in the gastrointestinal system.Overall,CC had the third highest incidence but the second highest mortality rate globally in 2020.Nowadays,CC is mainly treated with capecitabine chemotherapy regimen,supplemented by radiotherapy,immunotherapy and targeted therapy,but there are still limitations,so Chinese medicine plays an important role.AIM To investigate the effects of invigorating-spleen and anticancer prescription(ISAP)on body weight,tumor inhibition rate and expression levels of proteins in extracellular-signal-regulated kinase(ERK)/mitogen-activated protein kinase(MAPK)signaling pathway in CC mice model.METHODS The CC mice model were established and the mice were randomly divided into 5 groups,including the control group,capecitabine group,the low-dose,mediumdose and high-dose groups of ISAP,with 8 mice in each group,respectively.After 2 weeks of intervention,the body weight and tumor inhibition rate of mice were observed,and the expression of RAS,ERK,phosphorylated ERK(p-ERK),C-MYC and matrix metalloproteinase 2(MMP2)proteins in the tissues of tumors were detected.RESULTS Compared with the control group,the differences of body weight before and after treatment was much smaller in the groups of ISAP,with the smallest difference in the high-dose group of ISAP,while the capecitabine group had the greatest difference,indicating ISAP had a significant inhibiting effect on the growth of transplanted tumor in mice.The expression of RAS protein was decreased in the low-and medium-dose groups of ISAP,and the change of p-ERK was significant in the medium-and high-dose groups of ISAP.MMP2 protein expression was significantly decreased in both the low-dose and medium-dose groups of ISAP.There were no significant changes in ERK in the ISAP group compared to the capecitabine group,while RAS,MMP2,and C-MYC protein expression were reduced in the ISAP group.The expression level of C-MYC protein decreased after treated with ISAP,and the decrease was the most significant in the medium-dose group of ISAP.CONCLUSION ISAP has a potential inhibiting effect on transplanted tumor in mice,and could maintain the general conditions,physical strength and body weight of mice.The expression levels of RAS,p-ERK,MMP2 and c-myc were also decreased to a certain extent.By inhibiting the expression of upstream proteins,the expression levels of downstream proteins in ERK/MAPK signaling pathway were significantly decreased.Therefore,it can be concluded that ISAP may exert an anti-tumor effect by blocking the ERK/MAPK signaling pathway and inhibiting the expression of MMP2 and c-myc proteins.展开更多
Tongluojiunao (TLJN) is an herbal medicine consisting of two main components, geniposide and ginsenoside Rg1. TLJN has been shown to protect primary cultured hippocampal neurons. How-ever, its mechanism of action re...Tongluojiunao (TLJN) is an herbal medicine consisting of two main components, geniposide and ginsenoside Rg1. TLJN has been shown to protect primary cultured hippocampal neurons. How-ever, its mechanism of action remains unclear. In the present study, primary cultured hippocampal neurons treated with Aβ1-42 (10 μmol/L) signiifcantly increased the release of lactate dehydroge-nase, which was markedly reduced by TLJN (2 μL/mL), speciifcally by the component geniposide (26 μmol/L), but not ginsenoside Rg1 (2.5 μmol/L). hTe estrogen receptor inhibitor, ICI182780 (1 μmol/L), did not block TLJN-or geniposide-mediated decrease of lactate dehydrogenase under Aβ1-42-exposed conditions. However, the phosphatidyl inositol 3-kinase or mitogen-activated protein kinase pathway inhibitor, LY294002 (50 μmol/L) or U0126 (10 μmol/L), respectively blo cked the decrease of lactate dehydrogenase mediated by TLJN or geniposide. hTerefore, these results suggest that the non-classical estrogen pathway (i.e., phosphatidyl inositol 3-kinase or mitogen-activated protein kinase) is involved in the neuroprotective effect of TLJN, speciifcally its component, geniposide, against Aβ1-42-mediated cell death in primary cultured hippocampal neurons.展开更多
Portal hypertension(PHT) is an important consequence of liver cirrhosis, which can lead to complications that adversely affect a patient's quality of life and survival, such as upper gastrointestinal bleeding, asc...Portal hypertension(PHT) is an important consequence of liver cirrhosis, which can lead to complications that adversely affect a patient's quality of life and survival, such as upper gastrointestinal bleeding, ascites, and portosystemic encephalopathy. In recent years, advances in molecular biology have led to major discoveries in the pathological processes of PHT, including the signaling pathways that may be involved: PI3 K-AKT-mTOR, RhoA/Rho-kinase, JAK2/STAT3, and farnesoid X receptor. However, the pathogenesis of PHT is complex and there are numerous pathways involved. Therefore, the targeting of signaling pathways for medical management is lagging. This article summarizes the progress that has been made in understanding the signaling pathways in PHT, and provides ideas for treatment of the disorder.展开更多
Following electroacupuncture at Baihui (DU 20) and Dazhui (DU 14) in a rat model of cerebral ischemia/reperfusion, extracellular-signal-regulated kinase expression in cerebral cortex and corpus striatum, serum glu...Following electroacupuncture at Baihui (DU 20) and Dazhui (DU 14) in a rat model of cerebral ischemia/reperfusion, extracellular-signal-regulated kinase expression in cerebral cortex and corpus striatum, serum glutathione reductase, glutathione peroxidase activity, and serum glutathione content were elevated, and neurobehavioral scores improved. However, these effects were antagonized by mitogen-activated protein kinase inhibitor PD98059. Results indicated that electroacupuncture reversed free radical chain reactions and oxidative stress injury caused by cerebral ischemia/reperfusion, thereby providing neuroprotection. This process could correlate with the mitogen-activated protein kinase signal transduction pathway.展开更多
Objective: To test whether IL-1 RI/My088-TIR mimic AS-1 can work as a new compound that targeted at blocking MyD88- dependent signaling pathway, we investigated the physical structure and biological function of AS-1....Objective: To test whether IL-1 RI/My088-TIR mimic AS-1 can work as a new compound that targeted at blocking MyD88- dependent signaling pathway, we investigated the physical structure and biological function of AS-1. Methods:The crystallographic structure of AS-1 was examined by 1^H nuclear magnetic resonance. The toxicity of AS-1 was measured with Methyl thiazolyl tetrazolium (MTT) assay. The effect of AS-1 on phosphorylation state of p38 MAPK and IRAK-1 was observed with Western blot. Results:The crystallographic details of AS-1 demonstrated that it was a tri-peptide sequence[(F/Y)-(V/L/I)-(P/G)] of the IL-1R I -TIR domain BBloop. No toxicity of AS-1 was shown to HEK 293A cells. The phosphorylation of p38 MAPK, induced by IL-1β significantly increased from those in the control group. AS-1 significantly reduced the phosphorylation of p38 MAPK induced by IL-1β. IL-1β increased the phosphorylation of IRAK-1 significantly, which was prevented by AS-1. Conclusion:AS-1 is a competitive mimic between IL-1R I-TIR and MyD88-TIR domain, which most likely interferes with MyD88-dependent signaling pathway.展开更多
Aortic valve calcification is a common disease in the elderly, but its cellular and molecular mechanisms are not clear. In order to verify the hypothesis that Wnt/β-catenin signaling pathway is involved in the proces...Aortic valve calcification is a common disease in the elderly, but its cellular and molecular mechanisms are not clear. In order to verify the hypothesis that Wnt/β-catenin signaling pathway is involved in the process of calcification of aortic valve, porcine aortic valve interstitial cells(VICs) were isolated, cultured and stimulated with oxidized low density lipoprotein(ox-LDL) for 48 h to induce the differentiation of VICs into osteoblast-like cells. The key proteins and genes of Wnt/β-catenin signaling pathway, such as glycogen synthase kinase 3β(GSK-3β) and β-catenin, were detected by using Western blotting and real-time polymerase chain reaction(PCR). The results showed that the VICs managed to differentiate into osteoblast-like cells after the stimulation with ox-LDL and the levels of proteins and genes of GSK-3β and β-catenin were increased significantly in VICs after stimulation for 48 h(P0.05). It is suggested that Wnt/β-catenin signaling pathway may play a key role in the differentiation of VICs into osteoblast-like cells and make great contribution to aortic valve calcification.展开更多
Objective:The aim of the study was to investigate the effect of c-Jun N-terminal protein kinase(JNK) signaling pathway on influencing the sensitivity to radiotherapy of human nasopharyngeal carcinoma CNE cells.Methods...Objective:The aim of the study was to investigate the effect of c-Jun N-terminal protein kinase(JNK) signaling pathway on influencing the sensitivity to radiotherapy of human nasopharyngeal carcinoma CNE cells.Methods:Human nasopharyngeal carcinoma CNE multicellular spheroids(MCS) were constructed with three dimensional cell culture methods.Western blot was employed to analyze the activity of JNK signaling pathway in MCS after X-ray irradiation,and the expression of caspase-3 protein before and after using SP600125(a special inhibitor of JNK).X-ray induced cell apoptosis in MCS before and after treated with SP600125 were detected by TUNEL.Results:The level of JNK phosphorylation in MCS was a dynamic course after radiation,and there was a phosphorylation peaks at 2 h later,the apoptotic rate of MCS(P < 0.05) and the expression of caspase-3 protein(P < 0.05) were significantly increased after treated with SP600125.Conclusion:The transient activation of JNK played a important role in sensitivity to radiotherapy of CNE MCS via mediating survival signals,blocking this pathway accelerate cell apoptosis,which may be related to the increased expression of caspase-3.展开更多
[Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signal...[Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signaling pathway.[Methods]Sixty sexually mature female SD rats were irradiated with ^(60)Co-γ-ray(6.0 Gy,LD 40)for 24 h at one time.These rats were randomly divided into model group,Progynova group[0.18(g·kg)/d],Progynova[0.09(g·kg)/d]+Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill medium dose[9.45(g·kg)/d)]group and Zuogui Pill low dose[4.725(g·kg)/d]group.The administration(once a day)lasted 21 d.The rat serum[follicle-stimulating hormone(FSH),luteinizing hormone(LH)and estradiol(E_(2))]were detected by Enzyme-linked immunosorbent assay(ELISA).The morphological changes of ovary were observed by hematoxylin-eosin(HE)staining.The apoptosis rate of granulosa cells was detected by terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labeling(TUNEL).The protein expression of phosphorylated(p)-PI3K,p-Akt,p-mTOR,B-cell lymphoma-2(Bcl-2),and Bcl-2-associated X protein(Bax)in ovarian tissues were detected by Western blot.[Results]Compared with the normal group,the model group showed significant increase in the serum FSH(P<0.01),significant decrease in serum E_(2)(P<0.05),and decrease in the number of early follicles and luteum in the ovary(P<0.01).Besides,the apoptosis rate of granulosa cells increased significantly(P<0.01);the expression of p-PI3K,p-Akt,p-mTOR and Bcl-2 in ovarian tissue decreased significantly,while the expression of Bax increased significantly(P<0.01).Compared with the model group,the number of early follicles in the ovary increased and the apoptosis rate of granulosa cells decreased after intervention in each administration group.In addition,the protein expressions of p-PI3K,p-Akt,p-mTOR and Bcl-2 increased,while the expression of Bax decreased,especially in Progynova+Zuogui Pill high dose group,the differences were statistically significant(P<0.05,P<0.01).[Conclusions]Zuogui Pill may protect the radiation-injured ovary through activating the expression of PI3K/Akt/mTOR protein in ovarian tissue,increasing the amount of Bcl-2 protein and inhibiting the expression of Bax protein.展开更多
Objective:To examine the therapeutic effect of Fangji Fuling Decoction(FFD) on sepsis through network pharmacological analysis combined with in vitro and in vivo experiments.Methods:A sepsis mouse model was constructe...Objective:To examine the therapeutic effect of Fangji Fuling Decoction(FFD) on sepsis through network pharmacological analysis combined with in vitro and in vivo experiments.Methods:A sepsis mouse model was constructed through intraperitoneal injection of 20 mg/kg lipopolysaccharide(LPS).RAW264.7 cells were stimulated by 250 ng/m L LPS to establish an in vitro cell model.Network pharmacology analysis identified the key molecular pathway associated with FFD in sepsis.Through ectopic expression and depletion experiments,the effect of FFD on multiple organ damage in septic mice,as well as on cell proliferation and apoptosis in relation to the mitogen-activated protein kinase 14/Forkhead Box O 3A(MAPK14/FOXO3A) signaling pathway,was analyzed.Results:FFD reduced organ damage and inflammation in LPS-induced septic mice and suppressed LPS-induced macrophage apoptosis and inflammation in vitro(P<0.05).Network pharmacology analysis showed that FFD could regulate the MAPK14/FOXO signaling pathway during sepsis.As confirmed by in vitro cell experiments,FFD inhibited the MAPK14 signaling pathway or FOXO3A expression to relieve LPS-induced macrophage apoptosis and inflammation(P<0.05).Furthermore,FFD inhibited the MAPK14/FOXO3A signaling pathway to inhibit LPS-induced macrophage apoptosis in the lung tissue of septic mice(P<0.05).Conclusion:FFD could ameliorate the LPS-induced inflammatory response in septic mice by inhibiting the MAPK14/FOXO3A signaling pathway.展开更多
Objective To investigate the role of ginsenoside Rd(GRd)in acute myeloid leukemia(AML)cell differentiation.Methods AML cells were treated with GRd(25,50,100 and 200µg/mL),retinoic acid(RA,0.1g/L)and PD98059(20 mg...Objective To investigate the role of ginsenoside Rd(GRd)in acute myeloid leukemia(AML)cell differentiation.Methods AML cells were treated with GRd(25,50,100 and 200µg/mL),retinoic acid(RA,0.1g/L)and PD98059(20 mg/mL)for 72 h,cell survival was detected by methylthiazolyldiphenyl-tetrazolium bromide and colony formation assays,and cell cycle was detected by flow cytometry.Cell morphology and differentiation were observed by Wright-Giemsa staining,peroxidase chemical staining and cellular immunochemistry assay,respectively.The protein expression levels of GATA binding protein 1(GATA-1),purine rich Box-1(PU.1),phosphorylated-extracellular signal-related kinase(p-ERK),ERK,phosphorylated-glycogen synthase kinase-3β(p-GSK3β),GSK3βand signal transducer and activator of transcription 1(STAT1)were detected by Western blot.Thirty-six mice were randomly divided into 3 groups using a random number table:model control group(non-treated),GRd group[treated with 200 mg/(kg·d)GRd]and homoharringtonine(HTT)group[treated with 1 mg/(kg·d)HTT].A tumor-bearing nude mouse model was established,and tumor weight and volume were recorded.Changes of subcutaneous tumor tissue were observed after hematoxylin and eosin staining.WT1 and GATA-1 expressions were detected by immunohistochemical staining.Results The cell survival was inhibited by GRd in a dose-dependent manner and GRd caused G0/G1 cell arrest(p<0.05).GRd treatment induced leukemia cell differentiation,showing increased expressions of peroxidase and specific proteins concerning erythrogenic or granulocytic differentiation(p<0.05).GRd treatment elicited upregulation of p-ERK,p-GSK-3βand STAT1 expressions in cells,and reversed the effects of PD98059 on inhibiting the expressions of peroxidase,GATA-1 and PU.1(P<0.05).After GRd treatment,tumor weight and volume of mice were decreased,and tumor cells underwent massive apoptosis and necrosis(P<0.05).WT1 level was decreased,and GATA-1 level was significantly increased in subcutaneous tumor tissues(P<0.05 or P<0.01).Conclusion GRd might induce the differentiation of AML cells via regulating the ERK/GSK-3βsignaling pathway.展开更多
文摘BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effects of OPN on the proliferation,invasion and migration of GC cells and its possible mechanism.METHODS The mRNA and protein expression of OPN in the GC cells were analyzed by realtime quantitative-reverse transcription polymerase chain reaction and western blotting,and observe the effect of varying degree expression OPN on the proliferation and other behaviors of GC.Next,the effects of OPN knockdown on GC cells migration and invasion were examined.The short hairpin RNA(shRNA)and negative control shRNA targeting OPN-shRNA were transfected into the cells according to the manufacturer’s instructions.Non transfected cells were classified as control in the identical transfecting process.24 h after RNA transfection cell proliferation activity was detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay,and cell invasiveness and migration were detected by Trans well assay.Meanwhile,the expression of protein kinase B(AKT),matrix metalloproteinase 2(MMP-2)and vascular endothelial growth factor(VEGF)in the human GC cell lines was detected by reverse transcription polymerase chain reaction and western blotting.RESULTS The results of this study revealed that OPN mRNA and protein expression levels were highly expressed in SGC-7901 cells.OPN knockdown by specific shRNA noticeably reduced the capabilities of proliferation,invasion and migration of SGC-7901 cells.Moreover,in the experiments of investigating the underlying mechanism,results showed that OPN knockdown could down-regulated the expression of MMP-2 and VEGF,it also decreased the phosphorylation of AKT.Meanwhile,the protein expression levels of MMP-2,VEGF and phosphorylated AKT was noticeable lower than that in control group in the GC cells after they were added to phosphatidylinositol-3-kinase(PI3K)inhibitor(LY294002).CONCLUSION These results suggested that OPN though PI3K/AKT/mammalian target of rapamycin signal pathway to upregulate MMP-2 and VEGF expression,which contribute SGC-7901 cells to proliferation,invasion and migration.Thus,our results demonstrate that OPN may serve as a novel prognostic biomarkers as well as a potential therapeutic targets for GC.
文摘The family members of the mitogen-activated protein (MAP) kinases mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the four main sub-groups, the p38 group of MAP kinases, serve as a nexus for signal transduction and play a vital role in numerous biological processes. In this review, we highlight the known characteristics and components of the p38 pathway along with the mechanism and consequences of p38 activation. We focus on the role of p38 as a signal transduction mediator and examine the evidence linking p38 to inflammation, cell cycle, cell death, development, cell differentiation, senescence and tumorigenesis in specific cell types. Upstream and downstream components of p38 are described and questions remaining to be answered are posed. Finally, we propose several directions for future research on p38.
基金Supported by National Natural Science Foundation of China (No.81100649)
文摘AIMTo investigate whether the abnormal differentiation of the pterygium epithelium is related to the extracellular signal-regulated kinase (ERK) signaling pathway in vitro.METHODSThe expression levels of phosphorylated ERK (P-ERK), keratin family members including K19 and K10 and the ocular master control gene Pax-6 were measured in 16 surgically excised pterygium tissues and 12 eye bank conjunctiva. In colony-forming cell assays, the differences in clone morphology and in K10, K19, P-ERK and Pax-6 expression between the head and body were investigated. When cocultured with the ERK signaling pathway inhibitor PD98059, the changes in clone morphology, colony-forming efficiency, differentiated marker K10, K19 and Pax-6 expression and P-ERK protein expression level were examined by immunoreactivity and Western blot analysis.RESULTSThe expression of K19 and Pax-6 decreased in the pterygium, especially in the head. No staining of K10 was found in the normal conjunctiva epithelium, but it was found to be expressed in the superficial cells in the head of the pterygium. Characteristic upregulation of P-ERK was observed by immunohistochemistry. The clone from the head with more differentiated cells in the center expressed more K10, and the clone from the body expressed more K19. The P-ERK protein level increased in the pterygium epithelium compared with conjunctiva and decreased when cocultured with PD98059. The same medium with the ERK inhibitor PD98059 was more effective in promoting clonal growth than conventional medium with 3T3 murine feeder layers. It was observed that the epithelium clone co-cultured with the inhibitor had decreased K10 expression and increased K19 and Pax-6 expression.CONCLUSIONWe suggest ERK signaling pathway activation might play a role in the pterygium epithelium abnormal differentiation.
基金National Natural Science Foundation of China,No.81704059Scientific Research Project of Hebei Province Traditional Chinese Medicine Administration,No.2017130。
文摘BACKGROUND Intestinal inflammation is a common digestive tract disease, which is usually treated with hormone medicines. Hormone medicines are effective to some extent, but long-term use of them may bring about many complications.AIM To explore the protective effects of panax notoginseng saponin(PNS) against dextran sulfate sodium(DSS)-induced intestinal inflammatory injury through phosphoinositide-3-kinase protein kinase B(PI3K/AKT) signaling pathway inhibition in rats.METHODS Colitis rat models were generated via DSS induction, and rats were divided into control(no modeling), DSS, DSS + PNS 50 mg/k, and DSS + PNS 100 mg/kg groups. Then, the intestinal injury, oxidative stress parameters, inflammatory indices, tight junction proteins, apoptosis, macrophage polarization, and TLR4/AKT signaling pathway in colon tissues from rats in each of the groups were detected. The PI3 K/AKT signaling pathway in the colon tissue of rats was blocked using the PI3K/AKT signaling pathway inhibitor, LY294002.RESULTS Compared with rats in the control group, rats in the DSS group showed significantly shortened colon lengths, and significantly increased disease activity indices, oxidative stress reactions and inflammatory indices, as well as significantly decreased expression of tight junction-associated proteins. In addition, the DSS group showed significantly increased apoptotic cell numbers,and showed significantly increased M1 macrophages in spleen and colon tissues.They also showed significantly decreased M2 macrophages in colon tissues, as well as activation of the PI3K/AKT signaling pathway(all P < 0.05). Compared with rats in the DSS group, rats in the DSS + PNS group showed significantly lengthened colon lengths, decreased disease activity indices, and significantly alleviated oxidative stress reactions and inflammatory responses. In addition, this group showed significantly increased expression of tight junction-associated proteins, significantly decreased apoptotic cell numbers, and significantly decreased M1 macrophages in spleen and colon tissues. This group further showed significantly increased M2 macrophages in colon tissues, and significantly suppressed activation of the PI3K/AKT signaling pathway, as well as a dose dependency(all P < 0.05). When the PI3K/AKT signaling pathway was inhibited, the apoptosis rate of colon tissue cells in the DSS + LY294002 group was significantly lower than that of the DSS group(P < 0.05).CONCLUSION PNS can protect rats against DSS-induced intestinal inflammatory injury by inhibiting the PI3K/AKT signaling pathway, and therefore may be potentially used in the future as a drug for colitis.
基金sponsored by the National Natural Science Foundation of China,No.81102595the Natural Science Foundation of Guangxi,No.2012GXNSFAA053113
文摘Our preliminary studies confirmed that an active principle region of Buyang Huanwu decoction, comprising alkaloid, polysaccharide, aglycon, glucoside and volatile oil, can induce bone marrow mesenchymal stem cell differentiation into neurons. Mitogen-activated protein kinase signaling was identified as one of the key pathways underlying this differentiation process. The present study shows phosphorylated extracellular signal-regulated protein kinase and phosphorylated p38 protein expression was increased after differentiation. Cellular signaling pathway blocking agents, PD98059 and SB203580, inhibited extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways respectively, mRNA and protein expression of the neuronal marker, neuron specific enolase, and neural stem cell marker, nestin, were decreased in bone marrow mesenchymal stem cells after treatment with the active principle region of Buyang Huanwu decoction. Experimental findings indicate that, extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways participate in bone marrow mesenchymal stem cell differentiation into neuron-like cells, induced by the active principle region of Buyang Huanwu decoction.
基金supported by National Natural Science Foundation of China(32072212)Multi-Year Research Grant of University of Macao(MYRG2018-00169-ICMS)+5 种基金Science and Technology Development Fund of Macao(FDCT)(0098/2020/A)MICINN supporting the Ramón y Cajal grant for M.A.Prieto(RYC-201722891)Jianbo Xiao(RYC2020-030365-I)Xunta de Galicia supporting the Axudas Conecta Peme,the IN852A 2018/58 Neuro Food Project,the program EXCELENCIA-ED431F 2020/12the pre-doctoral grants of P.García-Oliveira(ED481A-2019/295)to Ibero-American Program on Science and Technology(CYTED-AQUA-CIBUS,P317RT0003).
文摘Dietary flavonoids are abundant in natural plants and possess multiple pharmacological and nutritional activities.In this study,apigenin,luteolin,and baicalein were chosen to evaluate their anti-diabetic effect in high-glucose and dexamethasone induced insulin-resistant(IR)HepG2 cells.All flavonoids improves the glucose consumption and glycogen synthesis abilities in IR-HepG2 cells via activating glucose transporter protein 4(GLUT4)and phosphor-glycogen synthase kinase(GSK-3β).These fl avonoids signifi cantly inhibited the production of reactive oxygen species(ROS)and advanced glycation end-products(AGEs),which were closely related to the suppression of the phosphorylation form of NF-κB and P65.The expression levels of insulin receptor substrate-1(IRS-1),insulin receptor substrate-2(IRS-2)and phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)pathway in IR-HepG2 cells were all partially activated by the fl avonoids,with variable effects.Furthermore,the intracellular metabolic conditions of the fl avonoids were also evaluated.
基金supported in part by National Institutes of Health grantR01 CA91980 (MHW)a grant from the Amarillo Area Foundation(MHW)supported by NIH grants R01 CA112029 and CA121211
文摘The RON receptor tyrosine kinase, a member of the MET proto-oncogene family, is a pathogenic factor im- plicated in tumor malignancy. Specifically, aberrations in RON signaling result in increased cancer cell growth, survival, invasion, angiogenesis, and drug resistance. Biochemical events such as ligand binding, receptor over- expression, generation of structure-defected variants, and point mutations in the kinase domain contribute to RON signaling activation. Recently, functional crosstalk between RON and signaling proteins such as MET and EFGR has emerged as an additional mechanism for RON activation, which is critical for tumorigenic develop- ment. The RON signaling crosstalk acts either as a regulatory feedback loop that strengthens or enhances tumor- igenic phenotype of cancer cells or serves as a signaling compensatory pathway providing a growth/survival ad- vantage for cancer cells to escape targeted therapy. Moreover, viral oncoproteins derived from Friend leukemia or Epstein-Barr viruses interact with RON to drive viral oncogenesis. In cancer cells, RON signaling is integrated into cellular signaling network essential for cancer cell growth and survival. These activities provide the mo- lecular basis of targeting RON for cancer treatment. In this review, we will discuss recent data that uncover the mechanisms of RON activation in cancer cells, review evidence of RON signaling crosstalk relevant to cancer malignancy, and emphasize the significance of the RON signaling addiction by cancer cells for tumor therapy. Understanding aberrant RON signaling will not only provide insight into the mechanisms of tumor pathogenesis, but also lead to the development of novel strategies for molecularly targeted cancer treatment.
基金supported by National Natural Science Foundation of China(No.81560124)Hainan Key Research and Development Projects(ZDYF2018131,ZDYF2017113,ZDYF2017114)+1 种基金Hainan Science and Technology Planned Project of Youth Outstanding Ability of Innovation(201704)Hainan Health Family Planning Industry Project(13A210277)
文摘Objective:To investigate the role of oxidative stress in human renal tubular epithelial cells(HK-2)induced by high glucose and the underlying signal pathway in vitro.Methods:MYPT1,pro-caspase-3,PGC-1α,and Drpl protein expressions were measured by Western blot.MnSOD2,Drp1 and PGC-1αmRNA expressions were detected by real time PCR.Results:Results showed that high glucose significantly up-regulated the protein expressions of MYPT1,pro-caspase-3 and the mRNA expression of MnSOD2 in HK-2 cells;while Rho kinase inhibitor fasudil and ROCK1 siRNA inhibited protein expressions of pro-caspase-3 and the mRNA expression of MnSOD2 in HK-2 cells induced by high glucose.Importantly,fasudil and ROCK1 siRNA markedly inhibited the expressions of mitochondrial motor proteins Drp1 and mitochondrial gene PGC-la in HK-2 cell=s induced by high glucose.Conclusions:Our findings suggest that Rho kinase signal pathway is involved in mitochondrial oxidative damage and apoptosis in high glucose-induced renal tubular epithelial cells by regulating mitochondrial motor proteins Drp1 and mitochondrial gene PGC-1α.Targeting Rho kinase signal pathway might be a potential strategy for the treatment of diabetic nephropathy.
文摘The Janus kinase and signal transducer and activator of transcription (JAK/STAT) signal transduction pathway is involved in sepsis-induced functional damage to the heart, liver, kidney, and other organs. However, the cellular and molecular mechanisms underlying sepsis-induced brain damage remain elusive. In the present study, we found severe loss of neurons in the hippocampal CA1 region in rats with sepsis-induced brain damage following intraperitoneal injection of endotoxin, The expression of toll-like receptor 4, tumor necrosis factor a, and interleukin-6 was significantly increased in brain tissues following lipopolysaccharide exposure. AG490 (JAK2 antagonist) and rapamycin (STAT3 antagonist) significantly reduced neuronal loss and suppressed the increased expression of toll-like receptor 4, tumor necrosis factor a, and interleukin-6 in the hippocampal CA1 region in sepsis-induced brain damaged rats. Overall, these data suggest that blockade of the JAK/STAT signal transduction pathway is neuroprotective in sepsis-induced brain damage via the inhibition of toll-like receptor 4, tumor necrosis factor a, and interleukin-6 exoression.
基金Liaoning Provincial Science and Technology Department Project,No.2023JH2/101700149Open Fund Project of Liaoning University of Traditional Chinese Medicine,No.zyzx2205.
文摘BACKGROUND Colon cancer(CC)is one of the most common malignant tumors in the gastrointestinal system.Overall,CC had the third highest incidence but the second highest mortality rate globally in 2020.Nowadays,CC is mainly treated with capecitabine chemotherapy regimen,supplemented by radiotherapy,immunotherapy and targeted therapy,but there are still limitations,so Chinese medicine plays an important role.AIM To investigate the effects of invigorating-spleen and anticancer prescription(ISAP)on body weight,tumor inhibition rate and expression levels of proteins in extracellular-signal-regulated kinase(ERK)/mitogen-activated protein kinase(MAPK)signaling pathway in CC mice model.METHODS The CC mice model were established and the mice were randomly divided into 5 groups,including the control group,capecitabine group,the low-dose,mediumdose and high-dose groups of ISAP,with 8 mice in each group,respectively.After 2 weeks of intervention,the body weight and tumor inhibition rate of mice were observed,and the expression of RAS,ERK,phosphorylated ERK(p-ERK),C-MYC and matrix metalloproteinase 2(MMP2)proteins in the tissues of tumors were detected.RESULTS Compared with the control group,the differences of body weight before and after treatment was much smaller in the groups of ISAP,with the smallest difference in the high-dose group of ISAP,while the capecitabine group had the greatest difference,indicating ISAP had a significant inhibiting effect on the growth of transplanted tumor in mice.The expression of RAS protein was decreased in the low-and medium-dose groups of ISAP,and the change of p-ERK was significant in the medium-and high-dose groups of ISAP.MMP2 protein expression was significantly decreased in both the low-dose and medium-dose groups of ISAP.There were no significant changes in ERK in the ISAP group compared to the capecitabine group,while RAS,MMP2,and C-MYC protein expression were reduced in the ISAP group.The expression level of C-MYC protein decreased after treated with ISAP,and the decrease was the most significant in the medium-dose group of ISAP.CONCLUSION ISAP has a potential inhibiting effect on transplanted tumor in mice,and could maintain the general conditions,physical strength and body weight of mice.The expression levels of RAS,p-ERK,MMP2 and c-myc were also decreased to a certain extent.By inhibiting the expression of upstream proteins,the expression levels of downstream proteins in ERK/MAPK signaling pathway were significantly decreased.Therefore,it can be concluded that ISAP may exert an anti-tumor effect by blocking the ERK/MAPK signaling pathway and inhibiting the expression of MMP2 and c-myc proteins.
基金supported by the National Natural Science Foundation of China No.81072901the New Teacher Fund for Doctor Station,Ministry of Education,No.20120013110013+1 种基金grants from the Nautical Traditional Chinese Medicine Discipline,No.522/0100604054grants from the Nautical Traditional Chinese Medicine Collaborative Innovation Center,No.522/0100604299
文摘Tongluojiunao (TLJN) is an herbal medicine consisting of two main components, geniposide and ginsenoside Rg1. TLJN has been shown to protect primary cultured hippocampal neurons. How-ever, its mechanism of action remains unclear. In the present study, primary cultured hippocampal neurons treated with Aβ1-42 (10 μmol/L) signiifcantly increased the release of lactate dehydroge-nase, which was markedly reduced by TLJN (2 μL/mL), speciifcally by the component geniposide (26 μmol/L), but not ginsenoside Rg1 (2.5 μmol/L). hTe estrogen receptor inhibitor, ICI182780 (1 μmol/L), did not block TLJN-or geniposide-mediated decrease of lactate dehydrogenase under Aβ1-42-exposed conditions. However, the phosphatidyl inositol 3-kinase or mitogen-activated protein kinase pathway inhibitor, LY294002 (50 μmol/L) or U0126 (10 μmol/L), respectively blo cked the decrease of lactate dehydrogenase mediated by TLJN or geniposide. hTerefore, these results suggest that the non-classical estrogen pathway (i.e., phosphatidyl inositol 3-kinase or mitogen-activated protein kinase) is involved in the neuroprotective effect of TLJN, speciifcally its component, geniposide, against Aβ1-42-mediated cell death in primary cultured hippocampal neurons.
基金Supported by the National Natural Science Foundation of China,No.81573948
文摘Portal hypertension(PHT) is an important consequence of liver cirrhosis, which can lead to complications that adversely affect a patient's quality of life and survival, such as upper gastrointestinal bleeding, ascites, and portosystemic encephalopathy. In recent years, advances in molecular biology have led to major discoveries in the pathological processes of PHT, including the signaling pathways that may be involved: PI3 K-AKT-mTOR, RhoA/Rho-kinase, JAK2/STAT3, and farnesoid X receptor. However, the pathogenesis of PHT is complex and there are numerous pathways involved. Therefore, the targeting of signaling pathways for medical management is lagging. This article summarizes the progress that has been made in understanding the signaling pathways in PHT, and provides ideas for treatment of the disorder.
基金the Major Program of National Natural Science Foundation of China, No. 90209027 the National Natural Science Foundation of China, No. 30772836 the Natural Science Foundation of Jiangsu Province, No. BE2010769
文摘Following electroacupuncture at Baihui (DU 20) and Dazhui (DU 14) in a rat model of cerebral ischemia/reperfusion, extracellular-signal-regulated kinase expression in cerebral cortex and corpus striatum, serum glutathione reductase, glutathione peroxidase activity, and serum glutathione content were elevated, and neurobehavioral scores improved. However, these effects were antagonized by mitogen-activated protein kinase inhibitor PD98059. Results indicated that electroacupuncture reversed free radical chain reactions and oxidative stress injury caused by cerebral ischemia/reperfusion, thereby providing neuroprotection. This process could correlate with the mitogen-activated protein kinase signal transduction pathway.
基金This study was supported by the National Natural Science Foundation of China(No.30571842)
文摘Objective: To test whether IL-1 RI/My088-TIR mimic AS-1 can work as a new compound that targeted at blocking MyD88- dependent signaling pathway, we investigated the physical structure and biological function of AS-1. Methods:The crystallographic structure of AS-1 was examined by 1^H nuclear magnetic resonance. The toxicity of AS-1 was measured with Methyl thiazolyl tetrazolium (MTT) assay. The effect of AS-1 on phosphorylation state of p38 MAPK and IRAK-1 was observed with Western blot. Results:The crystallographic details of AS-1 demonstrated that it was a tri-peptide sequence[(F/Y)-(V/L/I)-(P/G)] of the IL-1R I -TIR domain BBloop. No toxicity of AS-1 was shown to HEK 293A cells. The phosphorylation of p38 MAPK, induced by IL-1β significantly increased from those in the control group. AS-1 significantly reduced the phosphorylation of p38 MAPK induced by IL-1β. IL-1β increased the phosphorylation of IRAK-1 significantly, which was prevented by AS-1. Conclusion:AS-1 is a competitive mimic between IL-1R I-TIR and MyD88-TIR domain, which most likely interferes with MyD88-dependent signaling pathway.
基金supported by the National Natural Science Foundation of China(No.81070190)
文摘Aortic valve calcification is a common disease in the elderly, but its cellular and molecular mechanisms are not clear. In order to verify the hypothesis that Wnt/β-catenin signaling pathway is involved in the process of calcification of aortic valve, porcine aortic valve interstitial cells(VICs) were isolated, cultured and stimulated with oxidized low density lipoprotein(ox-LDL) for 48 h to induce the differentiation of VICs into osteoblast-like cells. The key proteins and genes of Wnt/β-catenin signaling pathway, such as glycogen synthase kinase 3β(GSK-3β) and β-catenin, were detected by using Western blotting and real-time polymerase chain reaction(PCR). The results showed that the VICs managed to differentiate into osteoblast-like cells after the stimulation with ox-LDL and the levels of proteins and genes of GSK-3β and β-catenin were increased significantly in VICs after stimulation for 48 h(P0.05). It is suggested that Wnt/β-catenin signaling pathway may play a key role in the differentiation of VICs into osteoblast-like cells and make great contribution to aortic valve calcification.
文摘Objective:The aim of the study was to investigate the effect of c-Jun N-terminal protein kinase(JNK) signaling pathway on influencing the sensitivity to radiotherapy of human nasopharyngeal carcinoma CNE cells.Methods:Human nasopharyngeal carcinoma CNE multicellular spheroids(MCS) were constructed with three dimensional cell culture methods.Western blot was employed to analyze the activity of JNK signaling pathway in MCS after X-ray irradiation,and the expression of caspase-3 protein before and after using SP600125(a special inhibitor of JNK).X-ray induced cell apoptosis in MCS before and after treated with SP600125 were detected by TUNEL.Results:The level of JNK phosphorylation in MCS was a dynamic course after radiation,and there was a phosphorylation peaks at 2 h later,the apoptotic rate of MCS(P < 0.05) and the expression of caspase-3 protein(P < 0.05) were significantly increased after treated with SP600125.Conclusion:The transient activation of JNK played a important role in sensitivity to radiotherapy of CNE MCS via mediating survival signals,blocking this pathway accelerate cell apoptosis,which may be related to the increased expression of caspase-3.
基金Supported by National Natural Science Foundation of China(81760806)Project of Traditional Chinese Medicine Administration of Gansu Province(GZK-2019-28)Innovation Ability Improvement Project of Higher Education Institutions of Gansu Province(2019B-103)。
文摘[Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signaling pathway.[Methods]Sixty sexually mature female SD rats were irradiated with ^(60)Co-γ-ray(6.0 Gy,LD 40)for 24 h at one time.These rats were randomly divided into model group,Progynova group[0.18(g·kg)/d],Progynova[0.09(g·kg)/d]+Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill medium dose[9.45(g·kg)/d)]group and Zuogui Pill low dose[4.725(g·kg)/d]group.The administration(once a day)lasted 21 d.The rat serum[follicle-stimulating hormone(FSH),luteinizing hormone(LH)and estradiol(E_(2))]were detected by Enzyme-linked immunosorbent assay(ELISA).The morphological changes of ovary were observed by hematoxylin-eosin(HE)staining.The apoptosis rate of granulosa cells was detected by terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labeling(TUNEL).The protein expression of phosphorylated(p)-PI3K,p-Akt,p-mTOR,B-cell lymphoma-2(Bcl-2),and Bcl-2-associated X protein(Bax)in ovarian tissues were detected by Western blot.[Results]Compared with the normal group,the model group showed significant increase in the serum FSH(P<0.01),significant decrease in serum E_(2)(P<0.05),and decrease in the number of early follicles and luteum in the ovary(P<0.01).Besides,the apoptosis rate of granulosa cells increased significantly(P<0.01);the expression of p-PI3K,p-Akt,p-mTOR and Bcl-2 in ovarian tissue decreased significantly,while the expression of Bax increased significantly(P<0.01).Compared with the model group,the number of early follicles in the ovary increased and the apoptosis rate of granulosa cells decreased after intervention in each administration group.In addition,the protein expressions of p-PI3K,p-Akt,p-mTOR and Bcl-2 increased,while the expression of Bax decreased,especially in Progynova+Zuogui Pill high dose group,the differences were statistically significant(P<0.05,P<0.01).[Conclusions]Zuogui Pill may protect the radiation-injured ovary through activating the expression of PI3K/Akt/mTOR protein in ovarian tissue,increasing the amount of Bcl-2 protein and inhibiting the expression of Bax protein.
文摘Objective:To examine the therapeutic effect of Fangji Fuling Decoction(FFD) on sepsis through network pharmacological analysis combined with in vitro and in vivo experiments.Methods:A sepsis mouse model was constructed through intraperitoneal injection of 20 mg/kg lipopolysaccharide(LPS).RAW264.7 cells were stimulated by 250 ng/m L LPS to establish an in vitro cell model.Network pharmacology analysis identified the key molecular pathway associated with FFD in sepsis.Through ectopic expression and depletion experiments,the effect of FFD on multiple organ damage in septic mice,as well as on cell proliferation and apoptosis in relation to the mitogen-activated protein kinase 14/Forkhead Box O 3A(MAPK14/FOXO3A) signaling pathway,was analyzed.Results:FFD reduced organ damage and inflammation in LPS-induced septic mice and suppressed LPS-induced macrophage apoptosis and inflammation in vitro(P<0.05).Network pharmacology analysis showed that FFD could regulate the MAPK14/FOXO signaling pathway during sepsis.As confirmed by in vitro cell experiments,FFD inhibited the MAPK14 signaling pathway or FOXO3A expression to relieve LPS-induced macrophage apoptosis and inflammation(P<0.05).Furthermore,FFD inhibited the MAPK14/FOXO3A signaling pathway to inhibit LPS-induced macrophage apoptosis in the lung tissue of septic mice(P<0.05).Conclusion:FFD could ameliorate the LPS-induced inflammatory response in septic mice by inhibiting the MAPK14/FOXO3A signaling pathway.
基金Supported by the General Program of National Natural Science Foundation of China under Grant(No.81873113)the Natural Science Foundation of Zhejiang Province(No.LY18H290004)。
文摘Objective To investigate the role of ginsenoside Rd(GRd)in acute myeloid leukemia(AML)cell differentiation.Methods AML cells were treated with GRd(25,50,100 and 200µg/mL),retinoic acid(RA,0.1g/L)and PD98059(20 mg/mL)for 72 h,cell survival was detected by methylthiazolyldiphenyl-tetrazolium bromide and colony formation assays,and cell cycle was detected by flow cytometry.Cell morphology and differentiation were observed by Wright-Giemsa staining,peroxidase chemical staining and cellular immunochemistry assay,respectively.The protein expression levels of GATA binding protein 1(GATA-1),purine rich Box-1(PU.1),phosphorylated-extracellular signal-related kinase(p-ERK),ERK,phosphorylated-glycogen synthase kinase-3β(p-GSK3β),GSK3βand signal transducer and activator of transcription 1(STAT1)were detected by Western blot.Thirty-six mice were randomly divided into 3 groups using a random number table:model control group(non-treated),GRd group[treated with 200 mg/(kg·d)GRd]and homoharringtonine(HTT)group[treated with 1 mg/(kg·d)HTT].A tumor-bearing nude mouse model was established,and tumor weight and volume were recorded.Changes of subcutaneous tumor tissue were observed after hematoxylin and eosin staining.WT1 and GATA-1 expressions were detected by immunohistochemical staining.Results The cell survival was inhibited by GRd in a dose-dependent manner and GRd caused G0/G1 cell arrest(p<0.05).GRd treatment induced leukemia cell differentiation,showing increased expressions of peroxidase and specific proteins concerning erythrogenic or granulocytic differentiation(p<0.05).GRd treatment elicited upregulation of p-ERK,p-GSK-3βand STAT1 expressions in cells,and reversed the effects of PD98059 on inhibiting the expressions of peroxidase,GATA-1 and PU.1(P<0.05).After GRd treatment,tumor weight and volume of mice were decreased,and tumor cells underwent massive apoptosis and necrosis(P<0.05).WT1 level was decreased,and GATA-1 level was significantly increased in subcutaneous tumor tissues(P<0.05 or P<0.01).Conclusion GRd might induce the differentiation of AML cells via regulating the ERK/GSK-3βsignaling pathway.