Gastric cancer is one of the most frequent and lethal malignancies worldwide because of high frequency of metastasis. Tumor cell motility and invasion play fundamental roles in cancer metastasis. Recent studies have r...Gastric cancer is one of the most frequent and lethal malignancies worldwide because of high frequency of metastasis. Tumor cell motility and invasion play fundamental roles in cancer metastasis. Recent studies have revealed that the Rho/Rho-associated protein kinases(ROCK) pathway plays a critical role in the regulation of cancer cell motility and invasion. In addition,the Rho/ROCK pathway plays important roles in invasion and metastasis on the basis of its predominant function of cell cytoskeletal regulation in gastric cancer. According to the current understanding of tumor motility,there are two modes of tumor cell movement:mesenchymal and amoeboid. In addition,cancer cell movement can be interchangeable between the mesenchymal and amoeboid movements under certain conditions. Control of cell motility through the actin cytoskeleton creates the potential for regulating tumor cell metastasis. In this review we discuss Rho GTPases and ROCK signaling and describe the mechanisms of Rho/ROCK activity with regard to motility and metastasis in gastric cancer.In addition,we provide an insight of the therapeutic potential of targeting the Rho/ROCK pathway.展开更多
The structural plasticity of synaptic terminals contributes to normal nervous system function but also to neural degeneration, in the form of terminal retraction, and regeneration, due to process growth. Synaptic morp...The structural plasticity of synaptic terminals contributes to normal nervous system function but also to neural degeneration, in the form of terminal retraction, and regeneration, due to process growth. Synaptic morphological change is mediated through the actin cytoskeleton, which is enriched in axonal and dendritic terminals. Whereas the three RhoGTPases, RhoA, Cdc42 and Rac, function as upstream signaling nodes sensitive to extracellular stimuli, LIMK-cofilin activity serves as a common downstream effector to up-regulate actin turnover, which is necessary for both polymerization and depolymerization. The dual effects of LIMK activity make LIMK a potential target of therapeutic intervention for iniury-induced synaptic plasticity, as LIMK inhibition can stabilize actin cytoskeleton and preserve existing structure. This therapeutic benefit of LIMK inhibition has been demonstrated in animal models of injury-induced axon retraction and neuritic sprouting by rod photoreceptors. A better understanding of the regulation of LIMK-cofilin activity and the interaction with the microtubular cytoskeleton may open new ways to promote synaptic regeneration that can benefit neuronal degenerative disease.展开更多
Neurons are the most extensive and polarized cells that display a unique single long axon and multiple dendrites, which are compartments exhibiting structural and functional differences. Polarity occurs early in neuro...Neurons are the most extensive and polarized cells that display a unique single long axon and multiple dendrites, which are compartments exhibiting structural and functional differences. Polarity occurs early in neuronal development and it is maintained by complex subcellular mechanisms throughout cell life. A well-defined and controlled spatio-temporal program of cellular and molecular events strictly regulates the formation of the axon and dendrites from a non-polarized cell. This event is critical for an adequate neuronal wiring and therefore for the normal functioning of the nervous system. Neuronal polarity is very sensitive to the harmful effects of different factors present in the environment. In this regard, rotenone is a crystalline, colorless and odorless isoflavone used as insecticide, piscicide and broad spectrum pesticide commonly used earlier in agriculture. In the present review we will summarize the toxicity mechanism caused by this pesticide in different neuronal cell types, focusing on a particular biological mechanism whereby rotenone could impair neuronal polarization in cultured hippocampal neurons. Recent advances suggest that the inhibition of axonogenesis produced by rotenone could be related with its effect on microtubule dynamics, the actin cytoskeleton and their regulatory pathways, particularly affecting the small RhoGTPase RhoA. Unveiling the mechanism by which rotenone produces neurotoxicity will be instrumental to understand the cellular mechanisms involved in neurodegenerative diseases influenced by this environmental pollutant, which may lead to research focused on the design of new therapeutic strategies.展开更多
基金Supported by KAKENHI Grant-in-Aid for Scientific Research,No.23390329the National Cancer Center Research and Development Fund,No.23-A-9
文摘Gastric cancer is one of the most frequent and lethal malignancies worldwide because of high frequency of metastasis. Tumor cell motility and invasion play fundamental roles in cancer metastasis. Recent studies have revealed that the Rho/Rho-associated protein kinases(ROCK) pathway plays a critical role in the regulation of cancer cell motility and invasion. In addition,the Rho/ROCK pathway plays important roles in invasion and metastasis on the basis of its predominant function of cell cytoskeletal regulation in gastric cancer. According to the current understanding of tumor motility,there are two modes of tumor cell movement:mesenchymal and amoeboid. In addition,cancer cell movement can be interchangeable between the mesenchymal and amoeboid movements under certain conditions. Control of cell motility through the actin cytoskeleton creates the potential for regulating tumor cell metastasis. In this review we discuss Rho GTPases and ROCK signaling and describe the mechanisms of Rho/ROCK activity with regard to motility and metastasis in gastric cancer.In addition,we provide an insight of the therapeutic potential of targeting the Rho/ROCK pathway.
基金supported by NIH grant EY021542 and the F.M.Kirby Foundation
文摘The structural plasticity of synaptic terminals contributes to normal nervous system function but also to neural degeneration, in the form of terminal retraction, and regeneration, due to process growth. Synaptic morphological change is mediated through the actin cytoskeleton, which is enriched in axonal and dendritic terminals. Whereas the three RhoGTPases, RhoA, Cdc42 and Rac, function as upstream signaling nodes sensitive to extracellular stimuli, LIMK-cofilin activity serves as a common downstream effector to up-regulate actin turnover, which is necessary for both polymerization and depolymerization. The dual effects of LIMK activity make LIMK a potential target of therapeutic intervention for iniury-induced synaptic plasticity, as LIMK inhibition can stabilize actin cytoskeleton and preserve existing structure. This therapeutic benefit of LIMK inhibition has been demonstrated in animal models of injury-induced axon retraction and neuritic sprouting by rod photoreceptors. A better understanding of the regulation of LIMK-cofilin activity and the interaction with the microtubular cytoskeleton may open new ways to promote synaptic regeneration that can benefit neuronal degenerative disease.
文摘Neurons are the most extensive and polarized cells that display a unique single long axon and multiple dendrites, which are compartments exhibiting structural and functional differences. Polarity occurs early in neuronal development and it is maintained by complex subcellular mechanisms throughout cell life. A well-defined and controlled spatio-temporal program of cellular and molecular events strictly regulates the formation of the axon and dendrites from a non-polarized cell. This event is critical for an adequate neuronal wiring and therefore for the normal functioning of the nervous system. Neuronal polarity is very sensitive to the harmful effects of different factors present in the environment. In this regard, rotenone is a crystalline, colorless and odorless isoflavone used as insecticide, piscicide and broad spectrum pesticide commonly used earlier in agriculture. In the present review we will summarize the toxicity mechanism caused by this pesticide in different neuronal cell types, focusing on a particular biological mechanism whereby rotenone could impair neuronal polarization in cultured hippocampal neurons. Recent advances suggest that the inhibition of axonogenesis produced by rotenone could be related with its effect on microtubule dynamics, the actin cytoskeleton and their regulatory pathways, particularly affecting the small RhoGTPase RhoA. Unveiling the mechanism by which rotenone produces neurotoxicity will be instrumental to understand the cellular mechanisms involved in neurodegenerative diseases influenced by this environmental pollutant, which may lead to research focused on the design of new therapeutic strategies.