In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by con...In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by considering the rock layer.A safety factor is defined foy the rib,and it is observed that the safety factor exhibits a positive correlation with the thickness and strength of the inter-band rock.A calculation method for determining critical parameters of the rock layer is presented to ensure the rib stability.It is revealed that incomplete propagation of the fracture at the hard rock constitutes a fundamental prerequisite for ensuring the rib stability.The influence of the position of the inter-band rock in the coal seam on failure mechanism of the rib was thoroughly investigated by developing a series of physical models for the rib at the face area.The best position for the inter-band rock in the coal seam is at a height of 1.5 m away from the roof line,which tends to provide a good stability state for the rib.For different inter-band rock positions,two ways of controlling rib by increasing supports stiffness and flexible grouting reinforcement are proposed.展开更多
This study deals with base pressure management in a duct for various values of the Mach number(M),namely,Mach number corresponding to sonic and four supersonic conditions.In addition to the Mach number,the nozzle pres...This study deals with base pressure management in a duct for various values of the Mach number(M),namely,Mach number corresponding to sonic and four supersonic conditions.In addition to the Mach number,the nozzle pressure ratio(NPR),the area ratio,the rib dimension,and the duct length are influential parameters.The following specific values are examined at M=1,1.36,1.64,and 2,and NPRs between 1.5 and 10.The base pressure is determined by positioning ribs of varying heights at predetermined intervals throughout the length of the square duct.When the level of expansion is varied,it is seen that the base pressure initially drops for overexpanded flows and increases for under-expanded flows.When ribs are present,the flow field in the duct and pressure inside the duct fluctuate as the base pressure rises.Under-expanded flows can achieve a base pressure value that is suitably high without experiencing excessive changes in the duct flow in terms of static pressure if a rib height around 10%of the duct height close to the nozzle exit is considered.Rectangular rib passive control does not negatively affect the duct’s flow field.展开更多
Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the succ...Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the successful application of the new method.In order to realize the stability control of the roadway surrounding rock,the mechanical model of the roof and rib support structure is established,and the influence mechanism of the automatically formed roadway parameters on the compound force is revealed.On this basis,the roof and rib support structure technology of confined lightweight concrete is proposed,and its mechanical tests under different eccentricity are carried out.The results show that the bearing capacity of confined lightweight concrete specimens is basically the same as that of ordinary confined concrete specimens.The bearing capacity of confined lightweight concrete specimens under different eccentricities is 1.95 times higher than those of U-shaped steel specimens.By comparing the test results with the theoretical calculated results of the confined concrete,the calculation method of the bearing capacity for the confined lightweight concrete structure is selected.The design method of confined lightweight concrete support structure is established,and is successfully applied in the extra-large mine,Ningtiaota Coal Mine,China.展开更多
Background:Autologous costal grafts are used universally in clinical practice for rhinoplasty and reconstruction.However,surgeons worldwide have not agreed on the details of graft harvesting,including rib selection,si...Background:Autologous costal grafts are used universally in clinical practice for rhinoplasty and reconstruction.However,surgeons worldwide have not agreed on the details of graft harvesting,including rib selection,side preference,operation mode,cutting methods,and handling of the periosteum and perichondrium.This study aimed to provide an overview of the novel techniques used for auto-rib harvesting in rhinoplasty within the past 5 years and identify potential avenues for future research.Methods:We searched for related articles in PubMed,Embase,and Web of Science from 2019 to 2023,summa-rized crucial but controversial steps in recent practice,and analyzed their theoretical basis and clinical feasibility.Results:Auto-rib and cartilage open harvest is still mainstream in rhinoplasty and reconstruction,with the 5th to 8th ribs and cartilage being the most used.The laparoscopic harvest is gaining attention,being second only to the open harvest,with the 9th/10th ribs and cartilages being particularly convenient.The clinical applications of full-cut and split-cut methods differ in their advantages.Except for some special reasons,almost all studies tended to preserve the periosteum and perichondrium in situ,and few surgeons chose to harvest the grafts on the left side.Conclusion:Multiple techniques have emerged,requiring surgeons to balance the benefits and risks of various strategies at each step.New theories and techniques should be fully tested promptly and in clinical practice before wide application.Overall,a professional consensus is needed for better directivity,precision,and stability in clinical practice.展开更多
In order to study the residual stress distribution law of welded joints of arch ribs of large-span steel pipe concrete arch bridges,numerical simulation of temperature,stress and strain fields based on ABAQUS for weld...In order to study the residual stress distribution law of welded joints of arch ribs of large-span steel pipe concrete arch bridges,numerical simulation of temperature,stress and strain fields based on ABAQUS for welded joints of arch-ribbed steel tubes using 7-,8-and 9-layer welds is carried out and its accuracy is demonstrated.The steel pipe welding temperature changes,residual stress distribution,different processes residual stress changes in the law,the prediction of post-weld residual stress distribution and deformation are studied in this paper.The results show that the temperature field values and test results are more consistent with the accuracy of numerical simulation of welding,the welding process is mainly in the form of heat transfer;Residual high stresses are predominantly distributed in the Fusion zone(FZ)and Heat-affected zone(HAZ),with residual stress levels tending to decrease from the center of the weld along the axial path,the maximum stress appears in the FZ and HAZ junction;The number of welding layers has an effect on the residual stress distribution,the number of welding layers increases,the residual stress tends to decrease,while the FZ and HAZ high stress area range shrinks;Increasing the number of plies will increase the amount of residual distortion.展开更多
Background: Costal fracture surgical is still a debate, therefore we shall select between early and delay surgical management. Case Report: We are reporting two cases of post road traffic clash delay ribs fractures os...Background: Costal fracture surgical is still a debate, therefore we shall select between early and delay surgical management. Case Report: We are reporting two cases of post road traffic clash delay ribs fractures osteosynthesis involving a 63-year-old man with multistage fractures on the left and pulmonary pinning of one of the costal arches, complicated by a homolateral haemothorax and a 41-year-old man with a bilateral flail chest. Conclusion: The simple postoperative course and the immediate postoperative improvement in the patient’s clinical respiratory condition enabled us to discuss the time frame for management, in this case the indication for early or later surgery.展开更多
Objective: To explore the application value of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation. Methods: Seventy-five patients admitted to our Department of Trauma Su...Objective: To explore the application value of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation. Methods: Seventy-five patients admitted to our Department of Trauma Surgery from June 2022 to April 2024 who underwent rib fracture osteotomy and internal fixation were selected. According to the types of drainage tubes left in the patients after the operation, they were divided into the observation group (35 cases who were left with disposable grooved negative pressure drainage tubes) and the control group (40 cases who were left with closed silicone thoracic drainage tubes). Comparison of chest drainage, pain, postoperative complications, secondary chest penetration rate, drain placement time, hospitalization time, and treatment costs were compared between the two groups. Results: The total postoperative chest drainage volume of the observation group was less than that of the control group (P < 0.05);the degree of pain, the incidence of postoperative complications, and the rate of secondary chest puncture in the observation group were lower than that of the control group three days after the operation (P < 0.05);and the time of drain placement in the observation group was shorter than that of the control group (P < 0.05). Conclusion: The application of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation can significantly improve patients’ postoperative pain and discomfort, reduce complications, lower the rate of secondary chest penetration, promote patients’ postoperative recovery, decrease the amount of postoperative chest drainage, and shorten the time of drain placement, which is worthy of clinical promotion and application.展开更多
Researchers from the National Institute for Occupational Safety and Health(NIOSH)are developing a coal pillar rib rating(CPRR)technique to measure the integrity of coal ribs.The CPRR characterizes the rib composition ...Researchers from the National Institute for Occupational Safety and Health(NIOSH)are developing a coal pillar rib rating(CPRR)technique to measure the integrity of coal ribs.The CPRR characterizes the rib composition and evaluates its impact on the inherent stability of the coal ribs.The CPRR utilizes four parameters:rib homogeneity,bedding condition,face cleat orientation with respect to entry direction,and rib height.All these parameters are measurable in the field.A rib data collecting procedure and a simple sheet to calculate the CPRR were developed.The developed CPRR can be used as a rib quality mapping tool in underground coal mines and to determine the potential of local rib instabilities and support requirements associated with overburden depth.CPRR calculations were conducted for 22 surveyed solid coal ribs,mainly composed of coal units.Based on this study,the rib performance was classified into four categories.A preliminary minimum primary rib support density(PRSD)line was obtained from these surveyed cases.Two sample cases are presented that illustrate the data collection form and CPRR calculations.展开更多
The National Institute for Occupational Safety and Health(NIOSH)conducted a comprehensive monitoring program in a room-and-pillar mine located in Southern Virginia.The deformation and the stress change in an instrumen...The National Institute for Occupational Safety and Health(NIOSH)conducted a comprehensive monitoring program in a room-and-pillar mine located in Southern Virginia.The deformation and the stress change in an instrumented pillar were monitored during the progress of pillar retreat mining at two sites of different geological conditions and depths of cover.The main objectives of the monitoring program were to better understand the stress transfer and load shedding on coal pillars and to quantify the rib deformation due to pillar retreat mining;and to examine the effect of rib geology and overburden depth on coal rib performance.The instrumentation at both sites included pull-out tests to measure the anchorage capacity of rib bolts,load cells mounted on rib bolts to monitor the induced loads in the bolts,borehole pressure cells(BPCs)installed at various depths in the study pillar to measure the change in vertical pressure within the pillar,and roof and rib extensometers installed to quantify the vertical displacement of the roof and the horizontal displacement of the rib that would occur during the retreat mining process.The outcome from the monitoring program provides insight into coal pillar rib support optimization at various depths and geological conditions.Also,this study contributes to the NIOSH rib support database in U.S coal mines and provides essential data for rib support design.展开更多
The paper summarizes the four different construction schemes based on engineering cases for the arch rib construction of continuous beam-arch composite bridges for high-speed railways.These methods include in-situ ass...The paper summarizes the four different construction schemes based on engineering cases for the arch rib construction of continuous beam-arch composite bridges for high-speed railways.These methods include in-situ assembly,segmental lifting,incremental launching and longitudinal moving,and vertical rotation.The temporary structural designs,process methods,and technological equipment for each construction scheme are described in detail.The advantages and disadvantages of each scheme and its application scope under various conditions are analyzed,and opinions and suggestions for guiding the application of each scheme are proposed.The comparison and selection analyses show that the four arch rib construction schemes have certain applicability under different conditions such as bridge site status,bridge span,and construction environment.With the continuous increase of bridge span and progress of construction technological equipment,the arch rib construction technology is developing towards the overall erection direction.This leads to more obvious technical advantages of the segmental lifting method,incremental launching and longitudinal moving method,and vertical rotation method.Therefore,it is necessary to select the best construction scheme according to the construction status and technical conditions during application.展开更多
Ensuring rib stability during pillar extraction is of prime importance in bord and pillar(B&P) method of underground coal mining with caving. Rib stability has been assessed here by way of assessing factor of safe...Ensuring rib stability during pillar extraction is of prime importance in bord and pillar(B&P) method of underground coal mining with caving. Rib stability has been assessed here by way of assessing factor of safety(FOS), a ratio of the strength of rib to stress on it. Earlier formulations for rib stability when applied to case studies gave very low FOS value suggesting significant ground control problems, which were contrary to the field observations. This has necessitated the need to revisit the concept of rib stability. The stress coming on the rib is estimated with the use of numerical modeling technique using the FLAC^(3D) software. The methodology of assessing rib-stability with the help of suggested rib-strength formulation has been validated at eight Indian coal mines. The outcome of this study finds relevance and importance in ensuring underground coal liquidation with improved safety and conservation.展开更多
Fragment containing the whole riboflavin(rib)operons of B.cereus ATCC14579 was detected from GenBank and annotated.The rib operon of ATCC14579 was cloned with Pn,its native promoter,or with P43,the vegetative growth p...Fragment containing the whole riboflavin(rib)operons of B.cereus ATCC14579 was detected from GenBank and annotated.The rib operon of ATCC14579 was cloned with Pn,its native promoter,or with P43,the vegetative growth promoter,into the plasmid.Expression analysis showed that heterologous rib operon was operative in B.subtilis.Integrative plasmid with P43-rib fragment was integrated into the chromosome of B.subtilis RH33,yielding transformant B.subtilis PY.With optimized medium components,4.3 g·L -1 of riboflavin was achieved in batch culture of B.subtilis PY,which was 27%enhancement compared to the host strain.Real-time reverse transcription polymerase chain reaction(RT-PCR)analysis indicated that the transcriptional level of ribA maintained 2.8-fold higher with the expression of herterologous rib operon.Furthermore,the stability of B.subtilis PY was increased form 45%to 87%.The high transcriptional level of rib gene and higher stability of B.subtilis PY could explain the increased riboflavin production.展开更多
The fabrication of Bragg gratings on silicon-on-insulator (SOI) rib waveguides using electron-beam lithography is presented. The grating waveguide is optimally designed for actual photonic integration. Experimental ...The fabrication of Bragg gratings on silicon-on-insulator (SOI) rib waveguides using electron-beam lithography is presented. The grating waveguide is optimally designed for actual photonic integration. Experimental and theoretical evaluations of the Bragg grating are demonstrated. By thinning the SOl device layer and deeply etching the Bragg grating, a large grating coupling coefficient of 30cm^-1 is obtained.展开更多
基金financial support from the National Key Research and Development Program of China (No.2023YFC2907501)the National Natural Science Foundation of China (No.52374106)the Fundamental Research Funds for the Central Universities (No.2023ZKPYNY01)。
文摘In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by considering the rock layer.A safety factor is defined foy the rib,and it is observed that the safety factor exhibits a positive correlation with the thickness and strength of the inter-band rock.A calculation method for determining critical parameters of the rock layer is presented to ensure the rib stability.It is revealed that incomplete propagation of the fracture at the hard rock constitutes a fundamental prerequisite for ensuring the rib stability.The influence of the position of the inter-band rock in the coal seam on failure mechanism of the rib was thoroughly investigated by developing a series of physical models for the rib at the face area.The best position for the inter-band rock in the coal seam is at a height of 1.5 m away from the roof line,which tends to provide a good stability state for the rib.For different inter-band rock positions,two ways of controlling rib by increasing supports stiffness and flexible grouting reinforcement are proposed.
文摘This study deals with base pressure management in a duct for various values of the Mach number(M),namely,Mach number corresponding to sonic and four supersonic conditions.In addition to the Mach number,the nozzle pressure ratio(NPR),the area ratio,the rib dimension,and the duct length are influential parameters.The following specific values are examined at M=1,1.36,1.64,and 2,and NPRs between 1.5 and 10.The base pressure is determined by positioning ribs of varying heights at predetermined intervals throughout the length of the square duct.When the level of expansion is varied,it is seen that the base pressure initially drops for overexpanded flows and increases for under-expanded flows.When ribs are present,the flow field in the duct and pressure inside the duct fluctuate as the base pressure rises.Under-expanded flows can achieve a base pressure value that is suitably high without experiencing excessive changes in the duct flow in terms of static pressure if a rib height around 10%of the duct height close to the nozzle exit is considered.Rectangular rib passive control does not negatively affect the duct’s flow field.
基金Project(2023YFC2907600)supported by the National Key Research and Development Program of ChinaProjects(42077267,42277174,52074164)supported by the National Natural Science Foundation of ChinaProject(2024JCCXSB01)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the successful application of the new method.In order to realize the stability control of the roadway surrounding rock,the mechanical model of the roof and rib support structure is established,and the influence mechanism of the automatically formed roadway parameters on the compound force is revealed.On this basis,the roof and rib support structure technology of confined lightweight concrete is proposed,and its mechanical tests under different eccentricity are carried out.The results show that the bearing capacity of confined lightweight concrete specimens is basically the same as that of ordinary confined concrete specimens.The bearing capacity of confined lightweight concrete specimens under different eccentricities is 1.95 times higher than those of U-shaped steel specimens.By comparing the test results with the theoretical calculated results of the confined concrete,the calculation method of the bearing capacity for the confined lightweight concrete structure is selected.The design method of confined lightweight concrete support structure is established,and is successfully applied in the extra-large mine,Ningtiaota Coal Mine,China.
文摘Background:Autologous costal grafts are used universally in clinical practice for rhinoplasty and reconstruction.However,surgeons worldwide have not agreed on the details of graft harvesting,including rib selection,side preference,operation mode,cutting methods,and handling of the periosteum and perichondrium.This study aimed to provide an overview of the novel techniques used for auto-rib harvesting in rhinoplasty within the past 5 years and identify potential avenues for future research.Methods:We searched for related articles in PubMed,Embase,and Web of Science from 2019 to 2023,summa-rized crucial but controversial steps in recent practice,and analyzed their theoretical basis and clinical feasibility.Results:Auto-rib and cartilage open harvest is still mainstream in rhinoplasty and reconstruction,with the 5th to 8th ribs and cartilage being the most used.The laparoscopic harvest is gaining attention,being second only to the open harvest,with the 9th/10th ribs and cartilages being particularly convenient.The clinical applications of full-cut and split-cut methods differ in their advantages.Except for some special reasons,almost all studies tended to preserve the periosteum and perichondrium in situ,and few surgeons chose to harvest the grafts on the left side.Conclusion:Multiple techniques have emerged,requiring surgeons to balance the benefits and risks of various strategies at each step.New theories and techniques should be fully tested promptly and in clinical practice before wide application.Overall,a professional consensus is needed for better directivity,precision,and stability in clinical practice.
基金Sponsored by the National Natural Science Foundation of China(Grant No.52268048)the Guangxi Key Technology Research and Development Program(Grant No.GUI-KEAB23026101)the Guangxi Science and Technology Major Special Project(Grant No.GUI-KEAA22068066).
文摘In order to study the residual stress distribution law of welded joints of arch ribs of large-span steel pipe concrete arch bridges,numerical simulation of temperature,stress and strain fields based on ABAQUS for welded joints of arch-ribbed steel tubes using 7-,8-and 9-layer welds is carried out and its accuracy is demonstrated.The steel pipe welding temperature changes,residual stress distribution,different processes residual stress changes in the law,the prediction of post-weld residual stress distribution and deformation are studied in this paper.The results show that the temperature field values and test results are more consistent with the accuracy of numerical simulation of welding,the welding process is mainly in the form of heat transfer;Residual high stresses are predominantly distributed in the Fusion zone(FZ)and Heat-affected zone(HAZ),with residual stress levels tending to decrease from the center of the weld along the axial path,the maximum stress appears in the FZ and HAZ junction;The number of welding layers has an effect on the residual stress distribution,the number of welding layers increases,the residual stress tends to decrease,while the FZ and HAZ high stress area range shrinks;Increasing the number of plies will increase the amount of residual distortion.
文摘Background: Costal fracture surgical is still a debate, therefore we shall select between early and delay surgical management. Case Report: We are reporting two cases of post road traffic clash delay ribs fractures osteosynthesis involving a 63-year-old man with multistage fractures on the left and pulmonary pinning of one of the costal arches, complicated by a homolateral haemothorax and a 41-year-old man with a bilateral flail chest. Conclusion: The simple postoperative course and the immediate postoperative improvement in the patient’s clinical respiratory condition enabled us to discuss the time frame for management, in this case the indication for early or later surgery.
文摘Objective: To explore the application value of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation. Methods: Seventy-five patients admitted to our Department of Trauma Surgery from June 2022 to April 2024 who underwent rib fracture osteotomy and internal fixation were selected. According to the types of drainage tubes left in the patients after the operation, they were divided into the observation group (35 cases who were left with disposable grooved negative pressure drainage tubes) and the control group (40 cases who were left with closed silicone thoracic drainage tubes). Comparison of chest drainage, pain, postoperative complications, secondary chest penetration rate, drain placement time, hospitalization time, and treatment costs were compared between the two groups. Results: The total postoperative chest drainage volume of the observation group was less than that of the control group (P < 0.05);the degree of pain, the incidence of postoperative complications, and the rate of secondary chest puncture in the observation group were lower than that of the control group three days after the operation (P < 0.05);and the time of drain placement in the observation group was shorter than that of the control group (P < 0.05). Conclusion: The application of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation can significantly improve patients’ postoperative pain and discomfort, reduce complications, lower the rate of secondary chest penetration, promote patients’ postoperative recovery, decrease the amount of postoperative chest drainage, and shorten the time of drain placement, which is worthy of clinical promotion and application.
文摘Researchers from the National Institute for Occupational Safety and Health(NIOSH)are developing a coal pillar rib rating(CPRR)technique to measure the integrity of coal ribs.The CPRR characterizes the rib composition and evaluates its impact on the inherent stability of the coal ribs.The CPRR utilizes four parameters:rib homogeneity,bedding condition,face cleat orientation with respect to entry direction,and rib height.All these parameters are measurable in the field.A rib data collecting procedure and a simple sheet to calculate the CPRR were developed.The developed CPRR can be used as a rib quality mapping tool in underground coal mines and to determine the potential of local rib instabilities and support requirements associated with overburden depth.CPRR calculations were conducted for 22 surveyed solid coal ribs,mainly composed of coal units.Based on this study,the rib performance was classified into four categories.A preliminary minimum primary rib support density(PRSD)line was obtained from these surveyed cases.Two sample cases are presented that illustrate the data collection form and CPRR calculations.
基金The authors want to thank Todd Minoski for preparing the data collection system and James Addis and Cynthia Hollerich for help with installing the test instruments.
文摘The National Institute for Occupational Safety and Health(NIOSH)conducted a comprehensive monitoring program in a room-and-pillar mine located in Southern Virginia.The deformation and the stress change in an instrumented pillar were monitored during the progress of pillar retreat mining at two sites of different geological conditions and depths of cover.The main objectives of the monitoring program were to better understand the stress transfer and load shedding on coal pillars and to quantify the rib deformation due to pillar retreat mining;and to examine the effect of rib geology and overburden depth on coal rib performance.The instrumentation at both sites included pull-out tests to measure the anchorage capacity of rib bolts,load cells mounted on rib bolts to monitor the induced loads in the bolts,borehole pressure cells(BPCs)installed at various depths in the study pillar to measure the change in vertical pressure within the pillar,and roof and rib extensometers installed to quantify the vertical displacement of the roof and the horizontal displacement of the rib that would occur during the retreat mining process.The outcome from the monitoring program provides insight into coal pillar rib support optimization at various depths and geological conditions.Also,this study contributes to the NIOSH rib support database in U.S coal mines and provides essential data for rib support design.
文摘The paper summarizes the four different construction schemes based on engineering cases for the arch rib construction of continuous beam-arch composite bridges for high-speed railways.These methods include in-situ assembly,segmental lifting,incremental launching and longitudinal moving,and vertical rotation.The temporary structural designs,process methods,and technological equipment for each construction scheme are described in detail.The advantages and disadvantages of each scheme and its application scope under various conditions are analyzed,and opinions and suggestions for guiding the application of each scheme are proposed.The comparison and selection analyses show that the four arch rib construction schemes have certain applicability under different conditions such as bridge site status,bridge span,and construction environment.With the continuous increase of bridge span and progress of construction technological equipment,the arch rib construction technology is developing towards the overall erection direction.This leads to more obvious technical advantages of the segmental lifting method,incremental launching and longitudinal moving method,and vertical rotation method.Therefore,it is necessary to select the best construction scheme according to the construction status and technical conditions during application.
文摘Ensuring rib stability during pillar extraction is of prime importance in bord and pillar(B&P) method of underground coal mining with caving. Rib stability has been assessed here by way of assessing factor of safety(FOS), a ratio of the strength of rib to stress on it. Earlier formulations for rib stability when applied to case studies gave very low FOS value suggesting significant ground control problems, which were contrary to the field observations. This has necessitated the need to revisit the concept of rib stability. The stress coming on the rib is estimated with the use of numerical modeling technique using the FLAC^(3D) software. The methodology of assessing rib-stability with the help of suggested rib-strength formulation has been validated at eight Indian coal mines. The outcome of this study finds relevance and importance in ensuring underground coal liquidation with improved safety and conservation.
基金Supported by the National Natural Science Foundation of China(20536040) the State Key Development Program for Basic Research of China(2007CB707802) the Development Project of Science and Technology of Tianjin(05YFGZGX04500)
文摘Fragment containing the whole riboflavin(rib)operons of B.cereus ATCC14579 was detected from GenBank and annotated.The rib operon of ATCC14579 was cloned with Pn,its native promoter,or with P43,the vegetative growth promoter,into the plasmid.Expression analysis showed that heterologous rib operon was operative in B.subtilis.Integrative plasmid with P43-rib fragment was integrated into the chromosome of B.subtilis RH33,yielding transformant B.subtilis PY.With optimized medium components,4.3 g·L -1 of riboflavin was achieved in batch culture of B.subtilis PY,which was 27%enhancement compared to the host strain.Real-time reverse transcription polymerase chain reaction(RT-PCR)analysis indicated that the transcriptional level of ribA maintained 2.8-fold higher with the expression of herterologous rib operon.Furthermore,the stability of B.subtilis PY was increased form 45%to 87%.The high transcriptional level of rib gene and higher stability of B.subtilis PY could explain the increased riboflavin production.
文摘The fabrication of Bragg gratings on silicon-on-insulator (SOI) rib waveguides using electron-beam lithography is presented. The grating waveguide is optimally designed for actual photonic integration. Experimental and theoretical evaluations of the Bragg grating are demonstrated. By thinning the SOl device layer and deeply etching the Bragg grating, a large grating coupling coefficient of 30cm^-1 is obtained.