Using generalized Riccati transformation, some new oscillation criteria for damped linear differential equations are established. These results improve and generalize some known oscillation criteria due to A.Wintner, ...Using generalized Riccati transformation, some new oscillation criteria for damped linear differential equations are established. These results improve and generalize some known oscillation criteria due to A.Wintner, I.V.Kamenev for the undamped linear differential equations, and Sobol, J.S.W.Wong for the damped linear differential equations.展开更多
In this article, the Riccati Equation is considered. Various techniques of finding analytical solutions are explored. Those techniques consist mainly of making a change of variable or the use of Differential Transform...In this article, the Riccati Equation is considered. Various techniques of finding analytical solutions are explored. Those techniques consist mainly of making a change of variable or the use of Differential Transform. It is shown that the nonconstant rational functions whose numerator and denominator are of degree 1, cannot be solutions to the Riccati equation. Two applications of the Riccati equation are discussed. The first one deals with Quantum Mechanics and the second one deal with Physics.展开更多
In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existe...In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existence of eventually positive solutions having upper bounds and tending to zero.Third,we obtain new oscillation criteria by employing the Potzsche chain rule.Then,using the generalized Riccati transformation technique and averaging method,we establish the Philos-type oscillation criteria.Surprisingly,the integral value of the Philos-type oscillation criteria,which guarantees that all unbounded solutions oscillate,is greater than θ_(4)(t_(1),T).The results of Theorem 3.5 and Remark 3.6 are novel.Finally,we offer four examples to illustrate our results.展开更多
基金This research was supported by NNSF of China under Grant 10371135 and China Postdoctoral Science Foundation under Grant 2004035033.
文摘Using generalized Riccati transformation, some new oscillation criteria for damped linear differential equations are established. These results improve and generalize some known oscillation criteria due to A.Wintner, I.V.Kamenev for the undamped linear differential equations, and Sobol, J.S.W.Wong for the damped linear differential equations.
文摘In this article, the Riccati Equation is considered. Various techniques of finding analytical solutions are explored. Those techniques consist mainly of making a change of variable or the use of Differential Transform. It is shown that the nonconstant rational functions whose numerator and denominator are of degree 1, cannot be solutions to the Riccati equation. Two applications of the Riccati equation are discussed. The first one deals with Quantum Mechanics and the second one deal with Physics.
基金supported by the National Natural Science Foundation of China(12071491,12001113)。
文摘In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existence of eventually positive solutions having upper bounds and tending to zero.Third,we obtain new oscillation criteria by employing the Potzsche chain rule.Then,using the generalized Riccati transformation technique and averaging method,we establish the Philos-type oscillation criteria.Surprisingly,the integral value of the Philos-type oscillation criteria,which guarantees that all unbounded solutions oscillate,is greater than θ_(4)(t_(1),T).The results of Theorem 3.5 and Remark 3.6 are novel.Finally,we offer four examples to illustrate our results.