期刊文献+
共找到24,445篇文章
< 1 2 250 >
每页显示 20 50 100
Fertilization and Soil Ploughing Practices under Changing Physical Environment Lead to Soil Organic Carbon Dynamics under Conservation Agriculture in Rice-Wheat Cropping System: A Scoping Review
1
作者 Salwinder Singh Dhaliwal Arvind Kumar Shukla +8 位作者 Sanjib Kumar Behera Sarwan Kumar Dubey Agniva Mandal Mehakpreet Kaur Randhawa Sharanjit Kaur Brar Gagandeep Kaur Amardeep Singh Toor Sohan Singh Walia Priyadarshani Arun Khambalkar 《Agricultural Sciences》 2024年第1期82-113,共32页
Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the ... Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the loss of soil-organic-carbon (SOC), which further enhances soil fertility. Different fractions of SOC pools react to the alterations in management practices and indicate changes in SOC dynamics as compared to total C in the soil. Higher SOC levels in soil have been observed in case of reduced/no-till (NT) practices than conventional tillage (CT). However, between CT and zero tillage/NT, total SOC stocks diminished with an increase in soil depth, which demonstrated that the benefits of SOC are more pronounced in the topsoil under NT. Soil aggregation provides physical protection to C associated with different-sized particles, thus, the improvement in soil aggregation through CA is an effective way to mitigate soil C loss. Along with less soil disturbance, residual management, suitable crop rotation, rational application of manures and fertilizers, and integrated nutrient management have been found to be effective in not only improving soil C stock but also enhancing the soil health and productivity. Thus, CA can be considered as a potential method in the build-up of SOC of soil in rice-wheat system. 展开更多
关键词 TILLAGE Conservation Agriculture Soil Organic Carbon Carbon Fractions rice-wheat System Organic Amendments
下载PDF
Experiences and Research Perspectives on Sustainable Development of Rice-Wheat Cropping Systems in the Chengdu Plain, China 被引量:2
2
作者 ZHENG Jia-guo CHI Zhong-zhi JIANG Xin-lu TANG Yong-lu ZHANG Hong 《Agricultural Sciences in China》 CAS CSCD 2010年第9期1317-1325,共9页
The rice and wheat cropping pattern is one of the main cropping systems in the world. A large number of research results showed that successive cropping of rice and wheat resulted in a series of problems such as hinde... The rice and wheat cropping pattern is one of the main cropping systems in the world. A large number of research results showed that successive cropping of rice and wheat resulted in a series of problems such as hindering nutrition absorption, gradual degeneration of soil fertility, decline of soil organic matter, and increased incidence of diseases and pests. In China, especially in the Chengdu plain where rice-wheat cropping system is practiced, productivity and soil fertility was enhanced and sustained. This paper reviews the relevant data and experiences on rice-wheat cropping in the Chengdu Plain from 1977 to 2006. The principal sustainable strategies used for rice-wheat cropping systems in Chengdu Plain included: 1) creating a favorable environment and viable rotations; 2) balanced fertilization for maintenance of sustainable soil productivity; 3) improvement of crop management for higher efficiency; and 4) use the newest cultivars and cultivation techniques to upgrade the production level. Future research is also discussed in the paper as: 1) the constant topic: a highly productive and efficient rice-wheat cropping system for sustainable growth; 2) the future trend: simplified cultivation techniques for the rice-wheat cropping system; 3) the foundation: basic research for continuous innovation needed for intensive cropping. It is concluded that in the rice-wheat cropping system, a scientific and reasonable tillage/cultivation method can not only avoid the degradation of soil productivity, but also maintain sustainable growth in the long run. 展开更多
关键词 rice-wheat cropping system principle strategies ROTATION sustainable soil productivity SIMPLIFICATION cultivation techniques Chengdu Plain
下载PDF
Low N apparent surplus with higher rice yield under long-term fertilizer postponing in the rice-wheat cropping system 被引量:2
3
作者 Yan Zhou Lei Xu +6 位作者 Jianwei Zhang Weiwei Li Yu Jiang Songhan Wang Yanfeng Ding Zhenghui Liu Ganghua Li 《The Crop Journal》 SCIE CSCD 2022年第4期1178-1186,共9页
Nitrogen(N)fertilization increases rice yield,but inappropriate N fertilizer application increases N loss and the risk of environmental pollution.Short-term fertilizer postponing(FP)generally reduces N apparent surplu... Nitrogen(N)fertilization increases rice yield,but inappropriate N fertilizer application increases N loss and the risk of environmental pollution.Short-term fertilizer postponing(FP)generally reduces N apparent surplus and increases rice yields,but the effects of long-term FP on N surplus and rice yields remain unknown.Our study was the first to investigate the impacts of long-term FP(11 years)on N apparent surplus and rice yields.FP effects in the short term(≤6 years)did not affect rice yields,whereas FP effects in the long term(>6 years)increased rice yields by 13.9%compared with conventional fertilization(CF).FP did not affect panicles per unit area,1000-kernel weight,and filled-kernel rate,but spikelets per panicle increased over time due to spikelet formation stimulation.FP also reduced the N apparent surplus over time more strongly than CF owing to higher N accumulation and N utilization efficiency.FP effects in the long term also significantly increased soil organic matter,total N,and NH4_(+)^(-)N content.Our results were supported by a pot experiment,showing that rice yields in soils with a history of FP were significantly higher than those for soils without a history of FP,indicating that FP increased rice yields more strongly in later years mainly because of soil quality improvement.Our findings suggest that longterm FP can reduce N loss while increasing rice yields by improving soil quality. 展开更多
关键词 Fertilizer postponing N apparent surplus Rice yield Spikelets per panicle rice-wheat cropping systems
下载PDF
Application of Micronutrients in Rice-Wheat Cropping System of South Asia 被引量:2
4
作者 Faisal NADEEM Muhammad FAROOQ 《Rice science》 SCIE CSCD 2019年第6期356-371,共16页
Rice-wheat cropping system (RWCS) is one of the most important cropping systems in South Asia. However, sustainability of this system is under threat owing to several factors, of which deficiency of micronutrients par... Rice-wheat cropping system (RWCS) is one of the most important cropping systems in South Asia. However, sustainability of this system is under threat owing to several factors, of which deficiency of micronutrients particularly zinc (Zn), boron (B) and manganese (Mn) is one of the major problems. Continuous rotation of rice and wheat, imbalanced fertilizer use and little/no use of micronutrient-enriched fertilizers induce deficiencies of Zn, B and Mn in the RWCS of South Asia. Here we review that (i) imbalanced fertilizer use and organic matter depletion deteriorate soil structure resulting in low efficiency of applied macro- and micro-nutrients in RWCS.(ii) The micronutrients (Zn, B and Mn) are essentially involved in metabolism of rice and wheat plants, including chlorophyll synthesis, photosynthesis, enzyme activation and membrane integrity.(iii) Availability and uptake of Zn, B and Mn from rhizosphere depend on the physico-chemical soil properties (which differ under aerobic and anaerobic conditions) including soil pH, soil organic matter, soil moisture and interaction of these micronutrients with other nutrients.(iv) Plant ability to uptake and utilize the nutrients is affected by several plant factors such as root architecture, root hairs, transport kinetics parameter and root exudates.(v) Crop management and application of these microelements can help correct the micronutrients deficiency and enhance their grain concentration. 展开更多
关键词 MICRONUTRIENT DEFICIENCY rice-wheat cropping system AGRONOMIC approach
下载PDF
Phosphorus losses via surface runoff in rice-wheat cropping systems as impacted by rainfall regimes and fertilizer applications 被引量:8
5
作者 LIU Jian ZUO Qiang +6 位作者 ZHAI Li-mei LUO Chun-yan LIU Hong-bin WANG Hong-yuan LIU Shen ZOU Guo-yuan REN Tian-zhi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第3期667-677,共11页
Phosphorus(P) losses from agricultural soils contribute to eutrophication of surface waters. This field plot study investigated effects of rainfall regimes and P applications on P loss by surface runoff from rice(O... Phosphorus(P) losses from agricultural soils contribute to eutrophication of surface waters. This field plot study investigated effects of rainfall regimes and P applications on P loss by surface runoff from rice(Oryza sativa L.) and wheat(Triticum aestivum L.) cropping systems in Lake Taihu region, China. The study was conducted on two types of paddy soils(Hydromorphic at Anzhen site, Wuxi City, and Degleyed at Xinzhuang site, Changshu City, Jiangsu Province) with different P status, and it covered 3 years with low, high and normal rainfall regimes. Four rates of mineral P fertilizer, i.e., no P(control), 30 kg P ha^(–1) for rice and 20 kg P ha^(–1) for wheat(P_(30+20)), 75 plus 40(P_(75+40)), and 150 plus 80(P_(150+80)), were applied as treatments. Runoff water from individual plots and runoff events was recorded and analyzed for total P and dissolved reactive P concentrations. Losses of total P and dissolved reactive P significantly increased with rainfall depth and P rates(P〈0.0001). Annual total P losses ranged from 0.36–0.92 kg ha^–1 in control to 1.13–4.67 kg ha^–1 in P150+80 at Anzhen, and correspondingly from 0.36–0.48 kg h^–1 to 1.26–1.88 kg ha^–1 at Xinzhuang, with 16–49% of total P as dissolved reactive P. In particular, large amounts of P were lost during heavy rainfall events that occurred shortly after P applications at Anzhen. On average of all P treatments, rice growing season constituted 37–86% of annual total P loss at Anzhen and 28–44% of that at Xinzhuang. In both crop seasons, P concentrations peaked in the first runoff events and decreased with time. During rice growing season, runoff P concentrations positively correlated(P〈0.0001) with P concentrations in field ponding water that was intentionally enclosed by construction of field bund. The relative high P loss during wheat growing season at Xinzhuang was due to high soil P status. In conclusion, P should be applied at rates balancing crop removal(20–30 kg P ha^–1 in this study) and at time excluding heavy rains. Moreover, irrigation and drainage water should be appropriately managed to reduce runoff P losses from rice-wheat cropping systems. 展开更多
关键词 double cropping system intensive agriculture Lake Taihu region phosphorus loss surface runoff water quality
下载PDF
Mechanized Transplanting of Rice(Oryza sativa L.)in Nonpuddled and No-Till Conditions in the Rice-Wheat Cropping System in Haryana,India 被引量:2
6
作者 Baldev Raj Kamboj Dharam Bir Yadav +4 位作者 Ashok Yadav Narender Kumar Goel Gurjeet Gill Ram K.Malik Bhagirath Singh Chauhan 《American Journal of Plant Sciences》 2013年第12期2409-2413,共5页
The common practice of establishing rice in the rice-wheat system in India is manual transplanting of seedlings in the puddled soil. Besides being costly, cumbersome, and time consuming, puddling results in degradatio... The common practice of establishing rice in the rice-wheat system in India is manual transplanting of seedlings in the puddled soil. Besides being costly, cumbersome, and time consuming, puddling results in degradation of soil and the formation of a hard pan, which impedes root growth of subsequent upland crops. In addition, decreased availability and increasing cost of labor have increased the cost of rice cultivation through conventional methods. Because of these concerns, there is a need for mechanized transplanting of rice which is less labor-intensive and can ensure optimum plant population under nonpuddled and/or no-till conditions. A large number of on-farm trials were conducted at farmers’ fields in Haryana, India, from 2006 to 2010 to evaluate the performance of the mechanical transplanted rice (MTR) under nonpuddled and no-till situations as compared to conventional puddled transplant rice (CPTR). Compared with CPTR, nonpuddled MTR produced 3%-11% higher grain yield in different years. Rice cultivars, viz. HKR47, HKR127, PR113, PR114, PB1, PB1121, CSR30, and Arize6129, performed consistently better under nonpuddled MTR as compared to CPTR. Performance of different cultivars (PR113, PR114, HKR47, and Pusa 44) was also better under no-till MTR as compared to CPTR. The “basmati” cultivar CSR30 performed equally in no-till MTR and CPTR systems. The results of our study suggest that rice can be easily grown under nonpuddled and no-till conditions with yield advantages over the CPTR system. Even in the case of similar yield between CPTR and MTR systems, the MTR system will help in reducing labor requirement and ultimately, will increase overall profits to farmers. 展开更多
关键词 Farmer Participatory Research Self Propelled Paddy Transplanter Double No-Till rice-wheat System Nonpuddled Transplanted Rice
下载PDF
Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat-cotton cropping system 被引量:2
7
作者 Changqin Yang Xiaojing Wang +6 位作者 Jianan Li Guowei Zhang Hongmei Shu Wei Hu Huanyong Han Ruixian Liu Zichun Guo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期669-679,共11页
Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cott... Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cotton(Gossypium hirsutum L.)cropping system remains uncertain.The objective of this study was to quantify the long-term(10 years)impact of carbon(C)input on SOC sequestration,soil aggregation and crop yields in a wheat-cotton cropping system in the Yangtze River Valley,China.Five treatments were arranged with a single-factor randomized design as follows:no straw return(Control),return of wheat straw only(Wt),return of cotton straw only(Ct),return of 50%wheat and 50%cotton straw(Wh-Ch)and return of 100%wheat and 100%cotton straw(Wt-Ct).In comparison to the Control,the SOC content increased by 8.4 to 20.2%under straw return.A significant linear positive correlation between SOC sequestration and C input(1.42-7.19 Mg ha^(−1)yr^(−1))(P<0.05)was detected.The percentages of aggregates of sizes>2 and 1-2 mm at the 0-20 cm soil depth were also significantly elevated under straw return,with the greatest increase of the aggregate stability in the Wt-Ct treatment(28.1%).The average wheat yields increased by 12.4-36.0%and cotton yields increased by 29.4-73.7%,and significantly linear positive correlations were also detected between C input and the yields of wheat and cotton.The average sustainable yield index(SYI)reached a maximum value of 0.69 when the C input was 7.08 Mg ha^(−1)yr^(−1),which was close to the maximum value(SYI of 0.69,C input of 7.19 Mg ha^(−1)yr^(-1))in the Wt-Ct treatment.Overall,the return of both wheat and cotton straw was the best strategy for improving SOC sequestration,soil aggregation,yields and their sustainability in the wheat-cotton rotation system. 展开更多
关键词 straw return crop yields SOC soil aggregates wheat-cotton cropping system
下载PDF
Fate of Nitrogen from Organic and Inorganic Sources in Rice-Wheat Rotation Cropping System 被引量:5
8
作者 CHEN Yi,WU Chun-yan,TANG Xu,YANG Sheng-mao and WANG Jia-yu Institute of Environmental Resources and Soil Fertilizer,Zhejiang Academy of Agricultural Sciences,Hangzhou 310021,P.R.China 《Agricultural Sciences in China》 CSCD 2010年第7期1017-1025,共9页
The lower availability of N is one of the most important limiting factors impeding crop yield enhancement among the various factors that affect crop yield under the multiple-cropping agroecosystem in China.In this stu... The lower availability of N is one of the most important limiting factors impeding crop yield enhancement among the various factors that affect crop yield under the multiple-cropping agroecosystem in China.In this study,the recovery of a single application of 15N-labeled fertilizer or residues in rice-wheat cropping system was determined,in order to provide theoretical foundation for the nitrogen management in sustainable agricultural production.A continuous trace experiment was conducted for 15N microplots by using randomized block design with four treatments and four replications(T1 = 15N-labeled fertilizer with crop residue incorporation,T2 = 15N-labeled residues,T3 = 14N fertilizer to generate unlabeled crop residue,and T4 = 15Nlabeled fertilizer without crop residue incorporation).Our results showed that,on average,17.17 and 12.01% of crop N was derived from N fertilizer and 15N-labeled residues,respectively during the first growing season,suggesting that approximately 82.83 or 87.99% of crop N was derived directly from soil N pool.There was a larger difference in the 15N recovery pattern in crop when N was applied as fertilizer or residues,i.e.,most of crop N derived from N fertilizer was absorbed in the first growing season(92.04%),and the relevant value was 38.03% when 15N-labeled residues were applied.This implied that most of N fertilizer was recovered in the present cropping season,while a longer residue effect will be found for 15N-labeled residues.Thus,the average recovery of N fertilizer and N residue in the soil after the first growing season was 33.46 and 85.64%,respectively.The recovery of applied N in soil when N was applied as residues was significantly higher than that when N was applied as fertilizer.There was a larger difference in the total 15N recovery in plant and soil when N was applied as fertilizer or residues.By the end of the fifth or sixth cropping season,the total 15N recovery in plant and soil when N was applied as fertilizer or residues were estimated at 64.38 and 79.11%,respectively.On the contrary,there was little difference between the practices of residue incorporation and residue removal following the N fertilizer application.N fertilizer appeared to be more readily available to crops than residue-N,and residue-N replenished soil N pool,especially N in soil organic matter,much more than N fertilizer after six growing seasons.Therefore,residue-N is a better source for sustaining N content of soil organic matter.Thus,one possible management practice is to use both organic and inorganic N sources simultaneously to improve the use efficiency of N while protecting the sustainability of soil. 展开更多
关键词 crop residue fertilizer fate 15N isotope nitrogen fertilizer rice field
下载PDF
Optimizing trade-offs between light transmittance and intraspecific competition under varying crop layouts in a maize-soybean strip relay cropping system
9
作者 Liang Feng Kai Shi +8 位作者 Xin Liu Huan Yang Tian Pu Yushan Wu Taiwen Yong Feng Yang Xiaochun Wang Kees Jan van Groenigen Wenyu Yang 《The Crop Journal》 SCIE CSCD 2024年第6期1780-1790,共11页
Light is one of the most important environmental factors for plant growth and development.In relay cropping systems,crop layouts influence light distribution,affecting light use efficiency(LUE).However,the response of... Light is one of the most important environmental factors for plant growth and development.In relay cropping systems,crop layouts influence light distribution,affecting light use efficiency(LUE).However,the response of light interception,light conversion,and LUE for relay maize and relay soybean to different crop layouts remains unclear.We aimed to quantify the effect of crop layout on intraspecific and interspecific competition,light interception,light conversion,LUE,and land productivity between relay maize and relay soybean.We conducted a field experiment for four consecutive years from 2017 to 2020 in Sichuan province,China,comparing different crop layouts(bandwidth 2.0 m,row ratio 2:2;bandwidth 2.4 m,row ratio 2:3;bandwidth 2.8 m,row ratio 2:4),with sole maize and sole soybean as controls.The results showed that relay maize in the 2.0 m bandwidth layout had the largest leaf area index and plant biomass,the lowest intraspecific competitive intensity and the highest aggressiveness.Compared to a bandwidth of 2.0 m,a bandwidth of 2.8 m significantly decreased relay maize leaf area index by 11%and plant biomass by 24%,while a 2.4 m bandwidth caused roughly half these reductions.The 2.0 m bandwidth layout also significantly improved crop light interception and LUE compared to sole maize.The light interception,light interception rate,light conversion rate and LUE in relay maize all decreased significantly with increasing bandwidth,but they increased in relay soybean.The increased light transmittance to the lower and middle canopy with increasing bandwidth did not compensate for the loss of relay maize yield caused by increased intraspecific competition.However,it enhanced the yield of relay soybeans.Increasing the bandwidth by 80 cm increased the relay maize intraspecific competition by 580%,and reduced maize yield by 33%,light interception by 12%,and LUE by 18%.In contrast,the relay soybean intraspecific competition was reduced by 64%,and the soybean yield was increased by 26%,light interception by 32%and LUE by 46%.Relay cropping systems with a 2.0 m bandwidth optimize the trade-off between light transmittance and intraspecific competition of relay crops.These systems achieve the highest LUE,group yield and economic benefits,making them a recommended crop layout for the southwest regions of China.Our study offers valuable insights for developing strip relay cropping systems that maximize light utilization and contributes to the theoretical understanding of efficient sunlight use in relay cropping practices. 展开更多
关键词 crop layout Relay cropping MAIZE Intraspecific-interspecific relationships Land productivity
下载PDF
Optimization of inter-seasonal nitrogen allocation increases yield and resource-use efficiency in a water-limited wheat-maize cropping system in the North China Plain
10
作者 Xiaonan Zhou Chenghang Du +7 位作者 Haoran Li Zhencai Sun Yifei Chen Zhiqiang Gao Zhigan Zhao Yinghua Zhang Zhimin Wang Ying Liu 《The Crop Journal》 SCIE CSCD 2024年第3期907-914,共8页
Winter wheat–summer maize cropping system in the North China Plain often experiences droughtinduced yield reduction in the wheat season and rainwater and nitrogen(N)fertilizer losses in the maize season.This study ai... Winter wheat–summer maize cropping system in the North China Plain often experiences droughtinduced yield reduction in the wheat season and rainwater and nitrogen(N)fertilizer losses in the maize season.This study aimed to identify an optimal interseasonal water-and N-management strategy to alleviate these losses.Four ratios of allocation of 360 kg N ha^(-1)between the wheat and maize seasons under one-time presowing root-zone irrigation(W0)and additional jointing and anthesis irrigation(W2)in wheat and one irrigation after maize sowing were set as follows:N1(120:240),N2(180:180),N3(240:120)and N4(300:60).The results showed that under W0,the N3 treatment produced the highest annual yield,crop water productivity(WPC),and nitrogen partial factor productivity(PFPN).Increased N allocation in wheat under W0 improved wheat yield without affecting maize yield,as surplus nitrate after wheat harvest was retained in the topsoil layers and available for the subsequent maize.Under W2,annual yield was largest in the N2 treatment.The risk of nitrate leaching increased in W2 when N application rate in wheat exceeded that of the N2 treatment,especially in the wet year.Compared to W2N2,the W0N3 maintained 95.2%grain yield over two years.The WPCwas higher in the W0 treatment than in the W2 treatment.Therefore,following limited total N rate,an appropriate fertilizer N transfer from maize to wheat season had the potential of a“triple win”for high annual yield,WPCand PFPN in a water-limited wheat–maize cropping system. 展开更多
关键词 cropping system Water-saving irrigation North China Plain Nitrogen optimization Sustainable intensification
下载PDF
The microbial community,nutrient supply and crop yields differ along a potassium fertilizer gradient under wheat-maize double-cropping systems
11
作者 Zeli Li Fuli Fang +10 位作者 Liang Wu Feng Gao Mingyang Li Benhang Li Kaidi Wu Xiaomin Hu Shuo Wang Zhanbo Wei Qi Chen Min Zhang Zhiguang Liu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3592-3609,共18页
Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In thi... Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In this long-term field experiment(2008-2019),we researched bacterial and fungal diversity,composition,and community assemblage in the soil along a K fertilizer gradient in the wheat season(K0,no K fertilizer;K1,45 kg ha^(-1) K_(2)O;K_(2),90 kg ha^(-1)K_(2)O;K3,135 kg ha^(-1)K_(2)O)and in the maize season(K0,no K fertilizer;K_(1),150 kg ha^(-1) K_(2)O;K_(2),300 kg ha^(-1)K_(2)O;K_(3),450 kg ha^(-1)K_(2)O)using bacterial 16S rRNA and fungal internally transcribed spacer(ITS)data.We observed that environmental variables,such as mean annual soil temperature(MAT)and precipitation,available K,ammonium,nitrate,and organic matter,impacted the soil bacterial and fungal communities,and their impacts varied with fertilizer treatments and crop species.Furthermore,the relative abundance of bacteria involved in soil nutrient transformation(phylum Actinobacteria and class Alphaproteobacteria)in the wheat season was significantly increased compared to the maize season,and the optimal K fertilizer dosage(K2 treatment)boosted the relative bacterial abundance of soil nutrient transformation(genus Lactobacillus)and soil denitrification(phylum Proteobacteria)bacteria in the wheat season.The abundance of the soil bacterial community promoting root growth and nutrient absorption(genus Herbaspirillum)in the maize season was improved compared to the wheat season,and the K2 treatment enhanced the bacterial abundance of soil nutrient transformation(genus MND1)and soil nitrogen cycling(genus Nitrospira)genera in the maize season.The results indicated that the bacterial and fungal communities in the double-cropping system exhibited variable sensitivities and assembly mechanisms along a K fertilizer gradient,and microhabitats explained the largest amount of the variation in crop yields,and improved wheat?maize yields by 11.2-22.6 and 9.2-23.8%with K addition,respectively.These modes are shaped contemporaneously by the different meteorological factors and soil nutrient changes in the K fertilizer gradients. 展开更多
关键词 potassium fertilizer gradient microbial community wheat-maize double cropping climate change yield
下载PDF
Impact on Soil Organic C and Total Soil N from Cool- and Warm-Season Legumes Used in a Green Manure-Forage Cropping System
12
作者 Clark B. Neely Francis M. Rouquette Jr. +3 位作者 Cristine L.S. Morgan Frank M. Hons William L. Rooney Gerald R. Smith 《Agricultural Sciences》 2024年第3期333-357,共25页
Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their... Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their seasonal biomass production can be managed to complement forage grasses. Our research objectives were to evaluate both warm- and cool-season annual forage legumes as green manure for biomass, N content, ability to enhance soil organic carbon (SOC) and soil N, and impact on post season forage grass crops. Nine warm-season forage legumes (WSL) were spring planted and incorporated as green manure in the fall. Forage rye (Secale cereale L.) was planted following the incorporation of WSL treatments. Eight cool-season forage legumes (CSL) were fall planted in previously fallow plots and incorporated as green manure in late spring. Sorghum-sudangrass (Sorghum bicolor x Sorghum bicolor var. sudanense) was planted over all treatments in early summer after forage rye harvest and incorporation of CSL treatments. Sorghum-sudangrass was harvested in June, August and September, and treatments were evaluated for dry matter and N concentration. Soil cores were taken from each plot, split into depths of 0 to 15, 15 to 30 and 30 to 60 cm, and soil C and N were measured using combustion analysis. Nylon mesh bags containing plant samples were buried at 15 cm and used to evaluate decomposition rate of above ground legume biomass, including change in C and N concentrations. Mungbean (Vigna radiata L. [Wilczek]) had the highest shoot biomass yield (6.24 t DM ha<sup>-1</sup>) and contributed the most total N (167 kg∙ha<sup>-1</sup>) and total C (3043 kg∙ha<sup>-1</sup>) of the WSL tested. Decomposition rate of WSL biomass was rapid in the first 10 weeks and very slow afterward. Winter pea (Pisum sativum L. spp. sativum), arrow leaf clover (Trifolium vesiculosum Savi.), and crimson clover (Trifolium incarnatum L.) were the most productive CSL in this trial. Austrian winter pea produced 8.41 t DM ha<sup>-1</sup> with a total N yield of 319 kg N ha<sup>-1</sup> and total C production of 3835 kg C ha<sup>-1</sup>. The WSL treatments had only small effects on rye forage yield and N concentration, possibly due to mineralization of N from a large SOC pool already in place. The CSL treatments also had only minimal effects on sorghum-sudangrass forage production. Winter pea, arrow leaf and crimson clover were productive cool season legumes and could be useful as green manure crops. Mungbean and cowpea (Vigna unguiculata [L.] Walp.) were highly productive warm season legumes but may include more production risk in green manure systems due to soil moisture competition. 展开更多
关键词 Annual Legumes Soil N Soil Organic C Green Manure Deer Browse Forage cropping Systems
下载PDF
Satellite Multi-Temporal Data and Cropping Pattern Approach for Green Gram Crop Management in the Lower Midland Zone IV and V in Kenya
13
作者 Kalekye Hilda Manzi Shadrack Ngene Joseph P. Gweyi-Onyango 《Advances in Remote Sensing》 2024年第2期41-71,共31页
Creation of a spectral signature reflectance data, which aids in the identification of the crops is important in determining size and location crop fields. Therefore, we developed a spectral signature reflectance for ... Creation of a spectral signature reflectance data, which aids in the identification of the crops is important in determining size and location crop fields. Therefore, we developed a spectral signature reflectance for the vegetative stage of the green gram (Vigna. radiata L.) over 5 years (2020, 2018, 2017, 2015, and 2013) for agroecological zone IV and V in Kenya. The years chosen were those whose satellite resolution data was available for the vegetative stage of crop growth in the short rain season (October, November, December (OND)). We used Landsat 8 OLI satellite imagery in this study. Cropping pattern data for the study area were evaluated by calculating the Top of Atmosphere reflectance. Farms geo-referencing, along with field data collection, was undertaken to extract Top of Atmosphere reflectance for bands 2, 3, 4 and 7. We also carried a spectral similarity assessment on the various cropping patterns. The spectral reflectance ranged from 0.07696 - 0.09632, 0.07466 - 0.09467, 0.0704047 - 0.12188,0.19822 - 0.24387, 0.19269 - 0.26900, and 0.11354 - 0.20815 for bands 2, 3, 4, 5, 6, and 7 for green gram, respectively. The results showed a dissimilarity among the various cropping patterns. The lowest dissimilarity index was 0.027 for the maize (Zea mays L.) bean (Phaseolus vulgaris) versus the maize-pigeon pea (Cajanus cajan) crop, while the highest dissimilarity index was 0.443 for the maize bean versus the maize bean and cowpea cropping patterns. High crop dissimilarities experienced across the cropping pattern through these spectral reflectance values confirm that the green gram was potentially identifiable. The results can be used in crop type identification in agroecological lower midland zone IV and V for mung bean management. This study therefore suggests that use of reflectance data in remote sensing of agricultural ecosystems would aid in planning, management, and crop allocation to different ecozones. 展开更多
关键词 MULTI-TEMPORAL cropping Patterns Spectral Signatures Landsat 8 crop Identification
下载PDF
Several Cotton Rotation and Intercropping Systems in Cotton Planting Area of Eastern Henan Province
14
作者 Yubei DU Zongyan CHU +6 位作者 Yuxuan TANG Mingjuan CHANG Chao WU Yanan ZHAN Suling LIU Xiaohong SI Yuqin ZHOU 《Plant Diseases and Pests》 2024年第4期40-42,共3页
In recent years,the area dedicated to cotton cultivation in eastern Henan Province has experienced a continuous decline.Developing efficient multi-cropping systems for cotton and increasing the multiple cropping index... In recent years,the area dedicated to cotton cultivation in eastern Henan Province has experienced a continuous decline.Developing efficient multi-cropping systems for cotton and increasing the multiple cropping index represent effective strategies to stabilize the cotton planting area and enhance the income of cotton farmers.This paper presents an overview of intercropping systems and the benefits associated with cotton rotation and intercropping practices.Specifically,it discusses the"early maturing cotton-wheat"rotation system,the"cotton-watermelon"intercropping system,the"cotton-Dutch bean"intercropping system,and the"early maturing cotton-peanut-garlic"intercropping system. 展开更多
关键词 COTTON INTERcropping crop rotation Wheat Dutch bean WATERMELON
下载PDF
Effects of Continuous Cropping on Soil Microbial Flora and Research Progress of Continuous Cropping Obstacle Reduction Techniques
15
作者 Qingmei LI Zebin CHEN +6 位作者 Yue YAN Shengguang XU Zhiwei FAN Li LIN Song JIN Tianfang WANG Zaixiang ZHU 《Agricultural Biotechnology》 2024年第5期49-54,共6页
Continuous cropping can bring economic benefits in a short time and meet the growing demand of agricultural products such as grain,but long-term continuous cropping will accelerate soil degradation,lead to the reducti... Continuous cropping can bring economic benefits in a short time and meet the growing demand of agricultural products such as grain,but long-term continuous cropping will accelerate soil degradation,lead to the reduction of crop yield and the increase of disease rate,and destroy the balance of soil microbial structure.Therefore,it is not conducive to the sustainable development of soil ecosystem.In this paper,the problems caused by continuous cropping,such as imbalance of soil microbial flora,decrease of biodiversity,accumulation of root exudates and their effects on soil fertility and crop growth,were summarized,and some measures were suggested to alleviate the obstacles of continuous cropping,such as reasonable rotation,adjustment of intercropping planting mode and application of biological fertilizers.Moreover,the paper also looked forward to the development trend of continuous cropping obstacle reduction techniques,including the integration and application of biological techniques,the promotion of green ecological techniques and the application of intelligent management system.This study provides theoretical basis and technical support for the research of continuous cropping obstacle reduction techniques and promote the healthy and sustainable development of modern agriculture. 展开更多
关键词 SOIL MICROORGANISM Continuous cropping obstacle Reduction technique Soil improvement
下载PDF
Impact of Continuous Cropping on Soil Phenolic Acid Substances and Research Progress on Continuous Cropping Obstacle Reduction Techniques
16
作者 Yue YAN Zebin CHEN +6 位作者 Qingmei LI Shengguang XU Zhiwei FAN Li LIN Song JIN Tianfang WANG Zaixiang ZHU 《Agricultural Biotechnology》 2024年第4期57-62,共6页
At present,long-term continuous cropping in agricultural production has formed a relatively common development trend.With the increase of continuous cropping years,soil phenolic acids are also affected to varying degr... At present,long-term continuous cropping in agricultural production has formed a relatively common development trend.With the increase of continuous cropping years,soil phenolic acids are also affected to varying degrees.This paper summarized the effects of continuous cropping on soil phenolic acids and the research progress of continuous cropping obstacle reduction techniques,aiming at providing theoretical basis and technical support for the research of continuous cropping obstacle reduction techniques and promoting the healthy and sustainable development of modern agriculture. 展开更多
关键词 SOIL Phenolic acid Continuous cropping obstacle Reduction technique soil improvement
下载PDF
Research Progress on Effects of Continuous Cropping on Soil Microbial Florae and Its Restoration
17
作者 Zaixiang ZHU Zebin CHEN +5 位作者 Shengguang XU Zhiwei FAN Li LIN Tianfang WANG Qingmei LI Yue YAN 《Agricultural Biotechnology》 2024年第2期75-80,共6页
Continuous cropping has become a common form of agricultural production at present, but with the increase of continuous cropping years, continuous cropping obstacles such as soil-borne diseases and plant growth potent... Continuous cropping has become a common form of agricultural production at present, but with the increase of continuous cropping years, continuous cropping obstacles such as soil-borne diseases and plant growth potential decline are becoming more and more common. At present, the causes of continuous cropping obstacles and continuous cropping restoration have become a hot issue in agricultural research. This paper summarized the effects of continuous cropping obstacles on soil microbial community structure and main technical methods to repair continuous cropping obstacles, such as agricultural measure management, microbial balance adjustment and soil improvement, aiming to provide theoretical reference for protecting the sustainable utilization of soil ecosystem and ensuring the stability of crop production. 展开更多
关键词 Continuous cropping obstacle Rhizosphere soil MICROORGANISM Soil remediation Soil improvement
下载PDF
Effects of long-term straw incorporation on nematode community composition and metabolic footprint in a rice–wheat cropping system 被引量:3
18
作者 CHEN Yun-feng XIA Xian-ge +4 位作者 HU Cheng LIU Dong-hai QIAO Yan LI Shuang-lai FAN Xian-peng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第8期2265-2276,共12页
Soil nematode communities can provide valuable information about the structure and functions of soil food webs,and are sensitive to agricultural practices,including short-term straw incorporation.However,currently,suc... Soil nematode communities can provide valuable information about the structure and functions of soil food webs,and are sensitive to agricultural practices,including short-term straw incorporation.However,currently,such effects under longterm straw incorporation conditions at different fertility levels are largely unknown.Thus,we conducted a 13-year ongoing experiment to evaluate the effects of long-term straw incorporation on the structure and functions of the soil food web in low and high fertility soils through analyzing its effects on nematode communities,food web indices and metabolic footprints.Four treatments were included:straw removal(–S)under non-fertilized(–NPK)or fertilized(+NPK)conditions;and straw incorporation(+S)under–NPK or+NPK conditions.Soil samples from a 0–20 cm depth layer were collected when wheat and rice were harvested.Compared with straw removal,straw incorporation increased the abundances of total nematodes,bacterivores,plant-parasites and omnivores-predators,as well the relative abundances of omnivores-predators with increases of 73.06,89.29,95.31,238.98,and 114.61%in–NPK soils and 16.23,2.23,19.01,141.38,and 90.23%in+NPK soils,respectively.Regardless of sampling times and fertilization effects,straw incorporation increased the diversity and community stability of nematodes,as indicated by the Shannon-Weaver diversity index and maturity index.Enrichment and structure index did not show significant responses to straw incorporation,but a slight increase was observed in the structure index.The analysis of nematode metabolic footprints showed that straw incorporation increased the plant-parasite footprint and structure footprint by 97.27 and 305.39%in–NPK soils and by 11.29 and 149.56%in+NPK soils,but did not significantly influence enrichment,bacterivore and fungivore footprints.In conclusion,long-term straw incorporation,particularly under a low fertility level,favored the soil nematodes and regulated the soil food web mainly via a top-down effect. 展开更多
关键词 soil nematodes community composition metabolic footprint straw incorporation rice-wheat cropping system top-down effect
下载PDF
An Econometric Analysis on the Effect of Climate Change on Wheat Cropping Area in China 被引量:3
19
作者 侯麟科 张同龙 +1 位作者 蔡颖萍 崔永伟 《Agricultural Science & Technology》 CAS 2012年第3期686-688,共3页
[Objective] This study aimed to explore the impact of climate change on wheat cropping by using province-specific historical data during 1996-2007. [Method] We established a panel data econometric model with lagged wh... [Objective] This study aimed to explore the impact of climate change on wheat cropping by using province-specific historical data during 1996-2007. [Method] We established a panel data econometric model with lagged wheat cropping area and province-specific fixed-effects model to control the unobserved factors. [Result] The results showed that the temperature positively affects wheat cropping area, while precipitation does not have such impact. [Conclusion] The study provided empirical evidence for analysis of the determinants of wheat cropping area in China. 展开更多
关键词 Climate change Wheat cropping area Fixed-effects model
下载PDF
Analysis of the Causes of Continuous Cropping Obstacles for Atractylodes macrocephala Koidz in Pingjiang County and Its Control Methods 被引量:1
20
作者 宋荣 邓凯 +2 位作者 朱校奇 周佳民 曹亮 《Agricultural Science & Technology》 CAS 2015年第3期462-466,共5页
First at all, it introduced the concept and the damages of continuous cropping obstacle. Then, it analyzed the causes of continuous cropping obstacles for Atractylodes macrocephala Koidz. In the end, in order to provi... First at all, it introduced the concept and the damages of continuous cropping obstacle. Then, it analyzed the causes of continuous cropping obstacles for Atractylodes macrocephala Koidz. In the end, in order to provide guidance for pro- moting sustainable development of Atractylodes macrocephala Koidz industry in Pingjiang County, it put forward some control methods for eliminating continuous cropping obstacles of Atractylodes macrocephala Koidz, including breeding varieties with high resistance; applying rotation cropping and intercropping reasonable; rational fertilization and soil disinfection; introducing antagonistic bacterial and eliminating au- tointoxication. 展开更多
关键词 Atractylodes macrocephala Koidz Continuous cropping obstacles CAUSE DAMAGE Control method Pingjiang County
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部