The Accelerated Hermitian/skew-Hermitian type Richardson(AHSR)iteration methods are presented for solving non-Hermitian positive definite linear systems with three schemes,by using Anderson mixing.The upper bounds of ...The Accelerated Hermitian/skew-Hermitian type Richardson(AHSR)iteration methods are presented for solving non-Hermitian positive definite linear systems with three schemes,by using Anderson mixing.The upper bounds of spectral radii of iteration matrices are studied,and then the convergence theories of the AHSR iteration methods are established.Furthermore,the optimal iteration parameters are provided,which can be computed exactly.In addition,the application to the model convection-diffusion equation is depicted and numerical experiments are conducted to exhibit the effectiveness and confirm the theoretical analysis of the AHSR iteration methods.展开更多
This paper deals with the design and analysis of adaptive wavelet method for the Stokes problem. First, the limitation of Richardson iteration is explained and the multiplied matrix M0 in the paper of Bramble and Pasc...This paper deals with the design and analysis of adaptive wavelet method for the Stokes problem. First, the limitation of Richardson iteration is explained and the multiplied matrix M0 in the paper of Bramble and Pasciak is proved to be the simplest possible in an appropiate sense. Similar to the divergence operator, an exact application of its dual is shown; Second, based on these above observations, an adaptive wavelet algorithm for the Stokes problem is designed. Error analysis and computational complexity are given; Finally, since our algorithm is mainly to deal with an elliptic and positive definite operator equation, the last section is devoted to the Galerkin solution of an elliptic and positive definite equation. It turns out that the upper bound for error estimation may be improved.展开更多
A novel lower-complexity construction scheme of quasi-cyclic low-density parity-check(QC-LDPC) codes for optical transmission systems is proposed based on the structure of the parity-check matrix for the Richardson-Ur...A novel lower-complexity construction scheme of quasi-cyclic low-density parity-check(QC-LDPC) codes for optical transmission systems is proposed based on the structure of the parity-check matrix for the Richardson-Urbanke(RU) algorithm. Furthermore, a novel irregular QC-LDPC(4 288, 4 020) code with high code-rate of 0.937 is constructed by this novel construction scheme. The simulation analyses show that the net coding gain(NCG) of the novel irregular QC-LDPC(4 288,4 020) code is respectively 2.08 d B, 1.25 d B and 0.29 d B more than those of the classic RS(255, 239) code, the LDPC(32 640, 30 592) code and the irregular QC-LDPC(3 843, 3 603) code at the bit error rate(BER) of 10^(-6). The irregular QC-LDPC(4 288, 4 020) code has the lower encoding/decoding complexity compared with the LDPC(32 640, 30 592) code and the irregular QC-LDPC(3 843, 3 603) code. The proposed novel QC-LDPC(4 288, 4 020) code can be more suitable for the increasing development requirements of high-speed optical transmission systems.展开更多
基金Supported by National Science Foundation of China(Grant Nos.41725017 and 42004085)Guangdong Basic and Applied Basic Research Foundation(Grant No.2019A1515110184)the National Key R&D Program of the Ministry of Science and Technology of China(Grant Nos.2020YFA0713400 and 2020YFA0713401)。
文摘The Accelerated Hermitian/skew-Hermitian type Richardson(AHSR)iteration methods are presented for solving non-Hermitian positive definite linear systems with three schemes,by using Anderson mixing.The upper bounds of spectral radii of iteration matrices are studied,and then the convergence theories of the AHSR iteration methods are established.Furthermore,the optimal iteration parameters are provided,which can be computed exactly.In addition,the application to the model convection-diffusion equation is depicted and numerical experiments are conducted to exhibit the effectiveness and confirm the theoretical analysis of the AHSR iteration methods.
基金Supported by the Natural Science Foundation of Beijing(No.1082003).
文摘This paper deals with the design and analysis of adaptive wavelet method for the Stokes problem. First, the limitation of Richardson iteration is explained and the multiplied matrix M0 in the paper of Bramble and Pasciak is proved to be the simplest possible in an appropiate sense. Similar to the divergence operator, an exact application of its dual is shown; Second, based on these above observations, an adaptive wavelet algorithm for the Stokes problem is designed. Error analysis and computational complexity are given; Finally, since our algorithm is mainly to deal with an elliptic and positive definite operator equation, the last section is devoted to the Galerkin solution of an elliptic and positive definite equation. It turns out that the upper bound for error estimation may be improved.
基金supported by the National Natural Science Foundation of China(Nos.61472464 and 61471075)the Program for Innovation Team Building at Institutions of Higher Education in Chongqing(No.J2013-46)+1 种基金the Natural Science Foundation of Chongqing Science and Technology Commission(Nos.cstc2015jcyjA 0554 and cstc2013jcyjA 40017)the Program for Postgraduate Science Research and Innovation of Chongqing University of Posts and Telecommunications(Chongqing Municipal Education Commission)(No.CYS14144)
文摘A novel lower-complexity construction scheme of quasi-cyclic low-density parity-check(QC-LDPC) codes for optical transmission systems is proposed based on the structure of the parity-check matrix for the Richardson-Urbanke(RU) algorithm. Furthermore, a novel irregular QC-LDPC(4 288, 4 020) code with high code-rate of 0.937 is constructed by this novel construction scheme. The simulation analyses show that the net coding gain(NCG) of the novel irregular QC-LDPC(4 288,4 020) code is respectively 2.08 d B, 1.25 d B and 0.29 d B more than those of the classic RS(255, 239) code, the LDPC(32 640, 30 592) code and the irregular QC-LDPC(3 843, 3 603) code at the bit error rate(BER) of 10^(-6). The irregular QC-LDPC(4 288, 4 020) code has the lower encoding/decoding complexity compared with the LDPC(32 640, 30 592) code and the irregular QC-LDPC(3 843, 3 603) code. The proposed novel QC-LDPC(4 288, 4 020) code can be more suitable for the increasing development requirements of high-speed optical transmission systems.