期刊文献+
共找到330篇文章
< 1 2 17 >
每页显示 20 50 100
A RIEMANN-HILBERT APPROACH TO THE INITIAL-BOUNDARY PROBLEM FOR DERIVATIVE NONLINEAR SCHRDINGER EQUATION 被引量:4
1
作者 徐建 范恩贵 《Acta Mathematica Scientia》 SCIE CSCD 2014年第4期973-994,共22页
We use the Fokas method to analyze the derivative nonlinear Schrodinger (DNLS) equation iqt (x, t) = -qxx (x, t)+(rq^2)x on the interval [0, L]. Assuming that the solution q(x, t) exists, we show that it ca... We use the Fokas method to analyze the derivative nonlinear Schrodinger (DNLS) equation iqt (x, t) = -qxx (x, t)+(rq^2)x on the interval [0, L]. Assuming that the solution q(x, t) exists, we show that it can be represented in terms of the solution of a matrix Riemann- Hilbert problem formulated in the plane of the complex spectral parameter ξ. This problem has explicit (x, t) dependence, and it has jumps across {ξ∈C|Imξ^4 = 0}. The relevant jump matrices are explicitely given in terms of the spectral functions {a(ξ), b(ξ)}, {A(ξ), B(ξ)}, and {A(ξ), B(ξ)}, which in turn are defined in terms of the initial data q0(x) = q(x, 0), the bound- ary data g0(t)= q(0, t), g1(t) = qx(0, t), and another boundary values f0(t) = q(L, t), f1(t) = qx(L, t). The spectral functions are not independent, but related by a compatibility condition, the so-called global relation. 展开更多
关键词 riemann-hilbert problem DNLS equation global relation finite interval initial-boundary value problem
下载PDF
THE RIEMANN-HILBERT BOUNDARY VALUE PROBLEM FOR THE MOISIL-THEODORSCO SYSTEM 被引量:8
2
作者 杨丕文 《数学物理学报(A辑)》 CSCD 北大核心 2006年第B12期1057-1063,共7页
This article studies the inhomogeneous Moisil-Theodorsco system in the space R3, gives the integral expression of its solution, proves the Holder continuity of the solution. Moreover the author studies the Riemann-Hil... This article studies the inhomogeneous Moisil-Theodorsco system in the space R3, gives the integral expression of its solution, proves the Holder continuity of the solution. Moreover the author studies the Riemann-Hilbert boundary value problem for the Moisil-Theodorsco system in a cylindrical domain of R3, and gives the solvability conditions and the integral expressions of solutions. The Holder continuity of the solutions is proved. 展开更多
关键词 黎曼-希尔伯特边界值问题 Moisil-Theodorsco系统 整式 算子 HOELDER连续
下载PDF
RIEMANN-HILBERT PROBLEMS OF A SIX-COMPONENT MKDV SYSTEM AND ITS SOLITON SOLUTIONS 被引量:2
3
作者 Wen-Xiu MA 《Acta Mathematica Scientia》 SCIE CSCD 2019年第2期509-523,共15页
Based on a 4 x 4 matrix spectral problem, an AKNS soliton hierarchy with six potentials is generated. Associated with this spectral problem, a kind of Riemann-Hilbert problems is formulated for a six-component system ... Based on a 4 x 4 matrix spectral problem, an AKNS soliton hierarchy with six potentials is generated. Associated with this spectral problem, a kind of Riemann-Hilbert problems is formulated for a six-component system of mKdV equations in the resulting AKNS hierarchy. Soliton solutions to the considered system of coupled mKdV equations are computed, through a reduced Riemann-Hilbert problem where an identity jump matrix is taken. 展开更多
关键词 INTEGRABLE HIERARCHY riemann-hilbert problem SOLITON solution
下载PDF
A Class of Quasi-Linear Riemann-Hilbert Problems for General Holomorphic Functions in the Unit Disk 被引量:2
4
作者 Xiao-qin Wen Ming-zhong Li 《Advances in Manufacturing》 SCIE CAS 2000年第4期270-274,共5页
In this paper, a class of quasi linear Riemann Hilbert problems for general holomorphic functions in the unit disk was studied. Under suitable hypotheses, the existence of solutions of the Hardy class H 2 to this p... In this paper, a class of quasi linear Riemann Hilbert problems for general holomorphic functions in the unit disk was studied. Under suitable hypotheses, the existence of solutions of the Hardy class H 2 to this problem was proved by means of Tikhonov's fixed point theorem and corresponding theories for general holomorphic functions. 展开更多
关键词 quasi linear Riemann hilbert problems fixed point existence theo
下载PDF
Approximate Solutions to the Discontinuous Riemann-Hilbert Problem of Elliptic Systems of First Order Complex Equations 被引量:1
5
作者 Guochun Wen Yanhui Zhang Dechang Chen 《Applied Mathematics》 2014年第10期1546-1556,共11页
Several approximate methods have been used to find approximate solutions of elliptic systems of first order equations. One common method is the Newton imbedding approach, i.e. the parameter extension method. In this a... Several approximate methods have been used to find approximate solutions of elliptic systems of first order equations. One common method is the Newton imbedding approach, i.e. the parameter extension method. In this article, we discuss approximate solutions to discontinuous Riemann-Hilbert boundary value problems, which have various applications in mechanics and physics. We first formulate the discontinuous Riemann-Hilbert problem for elliptic systems of first order complex equations in multiply connected domains and its modified well-posedness, then use the parameter extensional method to find approximate solutions to the modified boundary value problem for elliptic complex systems of first order equations, and then provide the error estimate of approximate solutions for the discontinuous boundary value problem. 展开更多
关键词 DISCONTINUOUS riemann-hilbert problem ELLIPTIC Systems of First Order Complex EQUATIONS Esti-mates and EXISTENCE of Solutions Multiply Connected DOMAINS
下载PDF
Hilbert’s First Problem and the New Progress of Infinity Theory
6
作者 Xijia Wang 《Journal of Applied Mathematics and Physics》 2023年第4期891-904,共14页
In the 19th century, Cantor created the infinite cardinal number theory based on the “1-1 correspondence” principle. The continuum hypothesis is proposed under this theoretical framework. In 1900, Hilbert made it th... In the 19th century, Cantor created the infinite cardinal number theory based on the “1-1 correspondence” principle. The continuum hypothesis is proposed under this theoretical framework. In 1900, Hilbert made it the first problem in his famous speech on mathematical problems, which shows the importance of this question. We know that the infinitesimal problem triggered the second mathematical crisis in the 17-18th centuries. The Infinity problem is no less important than the infinitesimal problem. In the 21st century, Sergeyev introduced the Grossone method from the principle of “whole is greater than part”, and created another ruler for measuring infinite sets. The discussion in this paper shows that, compared with the cardinal number method, the Grossone method enables infinity calculation to achieve a leap from qualitative calculation to quantitative calculation. According to Grossone theory, there is neither the largest infinity and infinitesimal, nor the smallest infinity and infinitesimal. Hilbert’s first problem was caused by the immaturity of the infinity theory. 展开更多
关键词 hilbert’s First problem Cardinal Numbers Method Grossone Method Continuum Paradox Infinity Theory
下载PDF
Riemann-Hilbert problem for first order complex equations of mixed type with degenerate curve
7
作者 WEN Guo-chun 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2010年第3期253-263,共11页
This paper considers the Riemann-Hilbert problem for linear mixed(elliptichyperbolic) complex equations of first order with degenerate curve in a simply connected domain. We first give the representation theorem and... This paper considers the Riemann-Hilbert problem for linear mixed(elliptichyperbolic) complex equations of first order with degenerate curve in a simply connected domain. We first give the representation theorem and uniqueness of solutions for such boundary value problem. Then by using the methods of successive iteration and parameter extension, the existence of solutions for this problem is proved. 展开更多
关键词 riemann-hilbert problem mixed complex equations of first order degenerate curve.
下载PDF
Equivalence of three kinds of well-posed-ness of discontinuous Riemann-Hilbert problem for elliptic complex equation in multiply connected domains
8
作者 WEN Guo-chun 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2014年第2期183-193,共11页
In this article, we first introduce the general linear elliptic complex equation of first order with certain conditions, and then propose discontinuous Riemann-Hilbert problem and some kinds of modified well-posed-nes... In this article, we first introduce the general linear elliptic complex equation of first order with certain conditions, and then propose discontinuous Riemann-Hilbert problem and some kinds of modified well-posed-ness for the complex equation. Then we verify the equivalence of three kinds of well-posed-ness. The discontinuous boundary value problem possesses many applications in mechanics and physics etc. 展开更多
关键词 Discontinuous riemann-hilbert problems linear elliptic complex equation equivalence of threekinds of well-posed-ness multiply connected domains.
下载PDF
A RIEMANN-HILBERT PROBLEM IN A RIEMANN SURFACE
9
作者 Spyridon Kamvissis 《Acta Mathematica Scientia》 SCIE CSCD 2011年第6期2233-2246,共14页
One of the inspirations behind Peter Lax's interest in dispersive integrable systems, as the small dispersion parameter goes to zero, comes from systems of ODEs discretizing 1-dimensional compressible gas dynamics [... One of the inspirations behind Peter Lax's interest in dispersive integrable systems, as the small dispersion parameter goes to zero, comes from systems of ODEs discretizing 1-dimensional compressible gas dynamics [17]. For example, an understanding of the asymptotic behavior of the Toda lattice in different regimes has been able to shed light on some of von Neumann's conjectures concerning the validity of the approximation of PDEs by dispersive systems of ODEs. Back in the 1990s several authors have worked on the long time asymptotics of the Toda lattice [2, 7, 8, 19]. Initially the method used was the method of Lax and Levermore [16], reducing the asymptotic problem to the solution of a minimization problem with constraints (an "equilibrium measure" problem). Later, it was found that the asyraptotic method of Deift and Zhou (analysis of the associated Riemann-Hilbert factorization problem in the complex plane) could apply to previously intractable problems and also produce more detailed information. Recently, together with Gerald Teschl, we have revisited the Toda lattice; instead of solu- tions in a constant or steplike constant background that were considered in the 1990s we have been able to study solutions in a periodic background. Two features are worth noting here. First, the associated Riemann-Hilbert factorization problem naturally lies in a hyperelliptic Riemann surface. We thus generalize the Deift- Zhou "nonlinear stationary phase method" to surfaces of nonzero genus. Second, we illustrate the important fact that very often even when applying the powerful Riemann-Hilbert method, a Lax-Levermore problem is still underlying and understanding it is crucial in the analysis and the proofs of the Deift-Zhou method! 展开更多
关键词 riemann-hilbert problem Toda lattice
下载PDF
Approximate Method of Riemann-Hilbert Problem for Elliptic Complex Equations of First Order in Multiply Connected Unbounded Domains
10
作者 Guochun Wen 《Applied Mathematics》 2013年第1期84-90,共7页
In this article, we discuss the approximate method of solving the Riemann-Hilbert boundary value problem for nonlinear uniformly elliptic complex equation of first order (0.1) with the boundary conditions (0.2) in a m... In this article, we discuss the approximate method of solving the Riemann-Hilbert boundary value problem for nonlinear uniformly elliptic complex equation of first order (0.1) with the boundary conditions (0.2) in a multiply connected unbounded domain D, the above boundary value problem will be called Problem A. If the complex Equation (0.1) satisfies the conditions similar to Condition C of (1.1), and the boundary condition (0.2) satisfies the conditions similar to (1.5), then we can obtain approximate solutions of the boundary value problems (0.1) and (0.2). Moreover the error estimates of approximate solutions for the boundary value problem is also given. The boundary value problem possesses many applications in mechanics and physics etc., for instance from (5.114) and (5.115), Chapter VI, [1], we see that Problem A of (0.1) possesses the important application to the shell and elasticity. 展开更多
关键词 APPROXIMATE Method riemann-hilbert problem Nonlinear ELLIPTIC Complex Equations Multiply Connected UNBOUNDED DOMAINS
下载PDF
Explicit Solutions of the Coupled mKdV Equation by the Dressing Method via Local Riemann-Hilbert Problem
11
作者 Ting Su Guohua Ding Zhiwei Wang 《Applied Mathematics》 2016年第15期1789-1797,共10页
We study the coupled mKdV equation by the dressing method via local Riemann-Hilbert problem. With the help of the Lax pairs, we obtain the matrix Riemann-Hilbert problem with zeros. The explicit solutions for the coup... We study the coupled mKdV equation by the dressing method via local Riemann-Hilbert problem. With the help of the Lax pairs, we obtain the matrix Riemann-Hilbert problem with zeros. The explicit solutions for the coupled mKdV equation are derived with the aid of the regularization of the Riemann-Hilbert problem. 展开更多
关键词 Coupled mKdV Equations riemann-hilbert problem the Dressing Method
下载PDF
Multi-Cuspon Solutions of the Wadati-Konno-Ichikawa Equation by Riemann-Hilbert Problem Method
12
作者 Youzhi Tu 《Open Journal of Applied Sciences》 2020年第3期100-109,共10页
In this paper, we consider the initial value problem for a complete integrable equation introduced by Wadati-Konno-Ichikawa (WKI). The solution ?is reconstructed in terms of the solution of a ?matrix Riemann-Hilbert p... In this paper, we consider the initial value problem for a complete integrable equation introduced by Wadati-Konno-Ichikawa (WKI). The solution ?is reconstructed in terms of the solution of a ?matrix Riemann-Hilbert problem via the asymptotic behavior of the spectral variable at one non-singularity point, i.e., . Then, the one-cuspon solution, two-cuspon solutions and three-cuspon solution are discussed in detail. Further, the numerical simulations are given to show the dynamic behaviors of these soliton solutions. 展开更多
关键词 WKI EQUATION INITIAL VALUE problem Cuspon Solution riemann-hilbert problem
下载PDF
一类Riemann-Hilbert边值逆问题 被引量:18
13
作者 王明华 《纯粹数学与应用数学》 CSCD 北大核心 2006年第4期532-537,共6页
给出解析函数的一类R iem ann-H ilbert边值逆问题的数学提法,依据解析函数R iem ann-H ilbert边值问题的经典理论,讨论了此边值问题的可解性,给出了该边值问题的可解条件和解的表示式.
关键词 riemann-hilbert边值逆问题 riemann-hilbert边值问题 标数 可解性
下载PDF
广义解析函数的广义Riemann-Hilbert问题 被引量:1
14
作者 宋洁 孙叶 王开民 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第6期952-954,共3页
讨论了广义解析函数的广义Riemann-Hilbert问题,通过把它们转化为相应的Riemann问题,证明在适当的假设下,此边值问题可解。
关键词 广义解析函数 广义riemann-hilbert问题 RIEMANN问题
下载PDF
平面上一阶椭圆型方程组的广义Riemann-Hilbert问题 被引量:1
15
作者 宋洁 李明忠 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第1期26-30,共5页
讨论一阶椭圆型方程组的广义Riemann-Hilbert问题,利用广义解析函数和奇异积分理论以及不动点原理,证明在适当的假设下,此边值问题可解.
关键词 广义riemann-hilbert问题 椭圆型方程组 不动点原理
下载PDF
一般形式的一阶椭圆型偏微分方程组拟线性Riemann-Hilbert问题 被引量:1
16
作者 李明忠 温小琴 《数学年刊(A辑)》 CSCD 北大核心 2002年第1期13-20,共8页
在文[l,2,3]中,E.Wegert和L.V.Wolfersdorf等人讨论了一类全纯函数的拟线性Riemann-Hilbert 问题在 Hardy空间中的可解性,在文[4]中,讨论了广义解析函数的拟线性 Riema... 在文[l,2,3]中,E.Wegert和L.V.Wolfersdorf等人讨论了一类全纯函数的拟线性Riemann-Hilbert 问题在 Hardy空间中的可解性,在文[4]中,讨论了广义解析函数的拟线性 Riemann-Hilbert问题,同样得到该边值问题在H2类解空间中的可解性、本文在前面研究工作的基础上,对一般形式的一阶椭圆型偏微分方程组拟线性Riemann-Hilbert问题作了更深入的讨论,在适当的假设条件下,应用积分算子理论,函数论方法及不动点原理,证明了该边值问题在相应的泛函空间中同样是可解的. 展开更多
关键词 拟线性riemann-hilbert问题 存在性定理 椭圆型偏微分方程
下载PDF
R^3空间中一类二阶偏微分方程组的Riemann-Hilbert边值问题 被引量:1
17
作者 夏嫦 吴开信 蒲松 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第9期20-24,共5页
运用函数论的方法讨论R3空间中一类二阶偏微分方程组在单位球上的Riemann-Hilbert问题,给出了该问题的可解条件和解的积分表示式.
关键词 R^3空间 riemann-hilbert边值问题 二阶偏微分方程组 单位球
下载PDF
解析函数的非正则型Riemann-Hilbert边值逆问题 被引量:2
18
作者 鄢盛勇 《兰州理工大学学报》 CAS 北大核心 2011年第2期141-145,共5页
给出解析函数的非正则型Riemann-Hilbert边值逆问题的提法,在将之转化为非正则型Riemann-Hilbert边值问题的基础上,利用解析函数的非正则型Riemann边值问题的相关理论,讨论此边值逆问题的可解性,给出它们的可解条件和解表达式.
关键词 riemann-hilbert边值逆问题 riemann-hilbert边值问题 非正则型
下载PDF
一般柱形域上广义双曲正则函数的Riemann-Hilbert边值问题 被引量:6
19
作者 鄢盛勇 杨柳 杨丕文 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第2期143-146,共4页
通过引入多双曲数,用函数论的方法研究了一个双曲复变函数的超定双曲型方程组的解,即多双曲复数的广义双曲正则函数在一般柱形域上它的R iem ann-H ilbert边值问题的提法、可解条件、解的表示、唯一性和存在性.
关键词 riemann-hilbert边值问题 双曲型方程组 一般柱形域
下载PDF
一类二阶超定双曲型复方程组的Riemann-Hilbert边值问题 被引量:2
20
作者 鄢盛勇 《重庆师范大学学报(自然科学版)》 CAS 2009年第3期55-59,共5页
考察了多双曲复数空间中,一类二阶超定双曲型复方程组{2ω/zizk}=(fik),i,k=1,2,z∈D在一般柱型域上的Riemann-Hilbert边值问题。通过引入新的函数把问题转化为先求两个一阶超定双曲型复方程组,即广义多双曲正则函数在一般柱型域... 考察了多双曲复数空间中,一类二阶超定双曲型复方程组{2ω/zizk}=(fik),i,k=1,2,z∈D在一般柱型域上的Riemann-Hilbert边值问题。通过引入新的函数把问题转化为先求两个一阶超定双曲型复方程组,即广义多双曲正则函数在一般柱型域上的Riemann-Hilbert边值问题,由已有结果得到它们各自的解,然后再把原问题化为一个一阶超定双曲型复方程组的Riemann-Hilbert边值问题,在一般柱型域上通过函数论的方法获得了其可解条件,解的积分表示以及解的唯一性。 展开更多
关键词 Riemann—hilbert边值问题 超定双曲型方程组 多双曲复数
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部