A method of equivalent simplification,using equivalent-plate models(EPMs),is developed.It is to achieve goals of rapid modeling and effective analysis in structural dynamics and flutter analysis of complex wing struct...A method of equivalent simplification,using equivalent-plate models(EPMs),is developed.It is to achieve goals of rapid modeling and effective analysis in structural dynamics and flutter analysis of complex wing structures.It is on the assumption that the wing structures discussed are composed of skin,beams and ribs,and the different plate units(such as skin,beam web,rib web)are not distinguished in modeling,which is to avoid the complex pre-processing and make it more generalized.Taking the effect of transverse shear deformation into consideration,the equivalence is based on the first-order shear deformation theory,and it can import the model files of MSC/NASTRAN and process the information to accomplish the equivalent modeling.The Ritz method is applied with the Legendre polynomials,which is used to define the geometry,structure and displacements of the wing.Particularly,the selection of Legendre polynomials as trial functions brings good accuracy to the modeling and can avoid the ill-conditions.This is in contrast to the EPM method based on the classical plate theory.Through vibration and flutter analysis,the results obtained by using EPM agree well with those obtained by the finite element method,which indicates the accuracy and effectiveness in vibration and flutter analysis of the EPM method.展开更多
In this survey we give a brief introduction to orthogonal polynomials, including a short review of classical asymptotic methods. Then we turn to a discussion of the Riemann-Hilbert formulation of orthogonal polynomial...In this survey we give a brief introduction to orthogonal polynomials, including a short review of classical asymptotic methods. Then we turn to a discussion of the Riemann-Hilbert formulation of orthogonal polynomials, and the Delft & Zhou method of steepest descent. We illustrate this new approach, and a modified version, with the Hermite polynomials. Other recent progress of this method is also mentioned, including applications to discrete orthogonal polynomials, orthogonal polynomials on curves, multiple orthogonal polynomials, and certain orthogonal polynomials with singular behavior.展开更多
Generalized Jacobi polynomials with indexes α,β∈ R are introduced and some basic properties are established. As examples of applications,the second- and fourth-order elliptic boundary value problems with Dirichlet ...Generalized Jacobi polynomials with indexes α,β∈ R are introduced and some basic properties are established. As examples of applications,the second- and fourth-order elliptic boundary value problems with Dirichlet or Robin boundary conditions are considered,and the generalized Jacobi spectral schemes are proposed. For the diagonalization of discrete systems,the Jacobi-Sobolev orthogonal basis functions are constructed,which allow the exact solutions and the approximate solutions to be represented in the forms of infinite and truncated Jacobi series. Error estimates are obtained and numerical results are provided to illustrate the effectiveness and the spectral accuracy.展开更多
In this article, we establish the Bessel polynomials with varying large negative parameters and discuss their orthogonality based on the generalized Bessel polynomials. By using the Riemann-Hilbert boundary value prob...In this article, we establish the Bessel polynomials with varying large negative parameters and discuss their orthogonality based on the generalized Bessel polynomials. By using the Riemann-Hilbert boundary value problem on the positive real axis, we get the Riemann-Hilbert characterization of the main Bessel polynomials with varying large negative parameters.展开更多
A global asymptotic analysis of orthogonal polynomials via the Riemann-Hilbert approach is presented,with respect to the polynomial degree.The domains of uniformity are described in certain phase variables.A resurgenc...A global asymptotic analysis of orthogonal polynomials via the Riemann-Hilbert approach is presented,with respect to the polynomial degree.The domains of uniformity are described in certain phase variables.A resurgence relation within the sequence of Riemann-Hilbert problems is observed in the procedure of derivation.Global asymptotic approximations are obtained in terms of the Airy function.The system of Hermite polynomials is used as an illustration.展开更多
In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm i...In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm integral equations are obtained using the Laguerre wavelet method.To do this,these two-dimensional nonlinear integral equations are transformed into a system of nonlinear algebraic equations in matrix form.By solving these systems,unknown coefficients are obtained.Also,some theorems are proved for convergence analysis.Some numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the proposed method.展开更多
In this article, the authors discuss the Riemann boundary value problems with given principal part. First, authors consider a special case and give a classification of the solution class Rn by the way. And then, they ...In this article, the authors discuss the Riemann boundary value problems with given principal part. First, authors consider a special case and give a classification of the solution class Rn by the way. And then, they consider the general case. The solvable conditions for this problem and its solutions is obtained when it is solvable.展开更多
文摘A method of equivalent simplification,using equivalent-plate models(EPMs),is developed.It is to achieve goals of rapid modeling and effective analysis in structural dynamics and flutter analysis of complex wing structures.It is on the assumption that the wing structures discussed are composed of skin,beams and ribs,and the different plate units(such as skin,beam web,rib web)are not distinguished in modeling,which is to avoid the complex pre-processing and make it more generalized.Taking the effect of transverse shear deformation into consideration,the equivalence is based on the first-order shear deformation theory,and it can import the model files of MSC/NASTRAN and process the information to accomplish the equivalent modeling.The Ritz method is applied with the Legendre polynomials,which is used to define the geometry,structure and displacements of the wing.Particularly,the selection of Legendre polynomials as trial functions brings good accuracy to the modeling and can avoid the ill-conditions.This is in contrast to the EPM method based on the classical plate theory.Through vibration and flutter analysis,the results obtained by using EPM agree well with those obtained by the finite element method,which indicates the accuracy and effectiveness in vibration and flutter analysis of the EPM method.
基金supported in part by the National Natural Science Foundation of China (10471154 and 10871212)
文摘In this survey we give a brief introduction to orthogonal polynomials, including a short review of classical asymptotic methods. Then we turn to a discussion of the Riemann-Hilbert formulation of orthogonal polynomials, and the Delft & Zhou method of steepest descent. We illustrate this new approach, and a modified version, with the Hermite polynomials. Other recent progress of this method is also mentioned, including applications to discrete orthogonal polynomials, orthogonal polynomials on curves, multiple orthogonal polynomials, and certain orthogonal polynomials with singular behavior.
基金the National Natural Science Foundation of China (Nos.11571238,11601332,91130014,11471312 and 91430216).
文摘Generalized Jacobi polynomials with indexes α,β∈ R are introduced and some basic properties are established. As examples of applications,the second- and fourth-order elliptic boundary value problems with Dirichlet or Robin boundary conditions are considered,and the generalized Jacobi spectral schemes are proposed. For the diagonalization of discrete systems,the Jacobi-Sobolev orthogonal basis functions are constructed,which allow the exact solutions and the approximate solutions to be represented in the forms of infinite and truncated Jacobi series. Error estimates are obtained and numerical results are provided to illustrate the effectiveness and the spectral accuracy.
基金supported by NNSF of China(#11171260)RFDP of Higher Education of China(#20100141110054)
文摘In this article, we establish the Bessel polynomials with varying large negative parameters and discuss their orthogonality based on the generalized Bessel polynomials. By using the Riemann-Hilbert boundary value problem on the positive real axis, we get the Riemann-Hilbert characterization of the main Bessel polynomials with varying large negative parameters.
基金supported in part by National Natural Science Foundation of China(Grant Nos. 10471154,10871212)
文摘A global asymptotic analysis of orthogonal polynomials via the Riemann-Hilbert approach is presented,with respect to the polynomial degree.The domains of uniformity are described in certain phase variables.A resurgence relation within the sequence of Riemann-Hilbert problems is observed in the procedure of derivation.Global asymptotic approximations are obtained in terms of the Airy function.The system of Hermite polynomials is used as an illustration.
文摘In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm integral equations are obtained using the Laguerre wavelet method.To do this,these two-dimensional nonlinear integral equations are transformed into a system of nonlinear algebraic equations in matrix form.By solving these systems,unknown coefficients are obtained.Also,some theorems are proved for convergence analysis.Some numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the proposed method.
基金Sponsored by the National NSFC under grant No10471107the Research Foundation for Outstanding Young Teachers, China University of Geosciences(Wuhan)
文摘In this article, the authors discuss the Riemann boundary value problems with given principal part. First, authors consider a special case and give a classification of the solution class Rn by the way. And then, they consider the general case. The solvable conditions for this problem and its solutions is obtained when it is solvable.