期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
RIESZ IDEMPOTENT OF (n, k)-QUASI-*-PARANORMAL OPERATORS
1
作者 曾清平 钟怀杰 《Acta Mathematica Scientia》 SCIE CSCD 2016年第5期1487-1491,共5页
A bounded linear operator T on a complex Hilbert space H is called(n, k)-quasi-*-paranormal if ║T;(T;x) ║;║ T;x║;≥║ T*(T;x)║ for all x ∈ H,where n, k are nonnegative integers. This class of operators has... A bounded linear operator T on a complex Hilbert space H is called(n, k)-quasi-*-paranormal if ║T;(T;x) ║;║ T;x║;≥║ T*(T;x)║ for all x ∈ H,where n, k are nonnegative integers. This class of operators has many interesting properties and contains the classes of n-*-paranormal operators and quasi-*-paranormal operators. The aim of this note is to show that every Riesz idempotent E;with respect to a non-zero isolated spectral point λ of an(n, k)-quasi-*-paranormal operator T is self-adjoint and satisfies ran E;= ker(T- λ) = ker(T- λ)*. 展开更多
关键词 *-class A operator *-paranormal operator riesz idempotent
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部