期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
L^p BOUNDEDNESS OF COMMUTATOR OPERATOR ASSOCIATED WITH SCHRDINGER OPERATORS ON HEISENBERG GROUP 被引量:3
1
作者 李澎涛 彭立中 《Acta Mathematica Scientia》 SCIE CSCD 2012年第2期568-578,共11页
Let L = -△Hn + V be a SchrSdinger operator on Heisenberg group Hn, where AHn is the sublaplacian and the nonnegative potential V belongs to the reverse HSlder class BQ/2 where Q is the homogeneous dimension of Hn. L... Let L = -△Hn + V be a SchrSdinger operator on Heisenberg group Hn, where AHn is the sublaplacian and the nonnegative potential V belongs to the reverse HSlder class BQ/2 where Q is the homogeneous dimension of Hn. Let T1 = (--△Hn +V)-1V, T2 = (-△Hn +V)-1/2V1/2, and T3 = (--AHn +V)-I/2△Hn, then we verify that [b, Ti], i = 1, 2, 3 are bounded on some LP(Hn), where b ∈ BMO(Hn). Note that the kernel of Ti, i = 1, 2, 3 has no smoothness. 展开更多
关键词 COMMUTATOR BMO Heisenberg group BOUNDEDNESS riesz transforms as-sociated to schrsdinger operators
下载PDF
Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated with magnetic Schriidinger operators 被引量:1
2
作者 Dachun YANG Dongyong YANG 《Frontiers of Mathematics in China》 SCIE CSCD 2015年第5期1203-1232,共30页
Let φ be a growth function, and let A := -(V- ia). (V- ia)+ V be a magnetic SchrSdinger operator on L2(Rn), n≥ 2, where a := (a1, a2... an) ∈ r L1 loc(Rn) We establish the equivalent characteriza- L2 ... Let φ be a growth function, and let A := -(V- ia). (V- ia)+ V be a magnetic SchrSdinger operator on L2(Rn), n≥ 2, where a := (a1, a2... an) ∈ r L1 loc(Rn) We establish the equivalent characteriza- L2 1oc(Rn, Rn) and 0 ≤ V ∈Lloc(Rn) tions of the Musielak-Orlicz-Hardy space HA,^(IRn), defined by the Lusin area function associated with {e-t2A}t〉0, in terms of the Lusin area function associated with {e-t√A}t〉0, the radial maximal functions and the non- tangential maximal functions associated with {e-t2A}t〉o and {e-t√A}t〉0, respectively. The boundedness of the Riesz transforms LkA-U1/2, k ∈ {1, 2... n}, from HA,φ(Rn) to Lφ(Rn) is also presented, where Lk is the closure of δ/δxk iak in L2(Rn). These results are new even when φ(x,t) := w(x)tp for all x ∈Rn and t∈ (0, +∞) with p ∈ (0, 1] and ω∈ A∞(Rn) (the class of Muckenhoupt weights on Rn). 展开更多
关键词 Magnetic schrsdinger operator Musielak-Orlicz-Hardy space Lusinarea function growth function maximal function riesz transform
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部