The Beishan rift zone in Xinjiang Uygur Autonomous Region was formed due to strong activities of faults on the basement of the Tarim continental crust.Despite the fact that many geological research results of the rift...The Beishan rift zone in Xinjiang Uygur Autonomous Region was formed due to strong activities of faults on the basement of the Tarim continental crust.Despite the fact that many geological research results of the rift zone have been achieved,only a few studies have been conducted on its regional geophysical characteristics.In this paper,the gravity and magnetic anomalies of the rift zone were highlighted through specific data processing of 1∶50000 high-precision aeromagnetic data and gravity data with a grid spacing of 2 km×2 km.Based on this,the geophysical evidence for the scope and internal structures of the Beishan rift zone was obtained for the first time.The distinct characteristics of magnetic and gravity fields in the areas to the north and south of the Beishan rift zone reveal that deep faults exist between the Beishan rift zone and the geological units on the southern and northern sides.Furthermore,the faults on the two areas contain the bidirectional thrusts and have flower-shaped structures according to the characteristics of the magnetic and gravity fields.The Beishan rift zone can be divided into two tectonomagmatic zones,namely the Zhongposhan-Bijiashan-Cihai-Baishanliang zone(the northern zone)and the Bayiquan-Qixin-Baishan zone(the southern zone).The northern zone can be further subdivided into three comet-shaped anomaly groups(tectonomagmatic areas),while the southern zone can be further subdivided into two tectonomagmatic areas.According to the characteristics of aeromagnetic anomalies and gravity field,19 mafic-ultramafic complexes were delineated.The known Pobei,Hongshishan,and Qixin complexes are all located within the inferred complexes,with estimates of total explored resources of Ni,Cu,and Au of 3×10^(6) t,10×10^(3) t and 10 t,respectively.The prospecting of high-grade copper-nickel deposits should focus on the periphery and deep parts of the known and inferred mafic-ultramafic complexes.Among them,the peripheral strata of the complexes specifically have great prospecting potential of large-scale high-grade copper-nickel deposits of magma injection type.Finally,this paper analyzed the application effects of the rapid airborne-ground-drilling synergetic exploration method in the prospecting of copper-nickel deposits in Qixin,Beishan,Xinjiang,which will provide references for further exploration of copper-nickel deposits in Beishan area,Xinjiang.展开更多
This paper deals with the interpretation of Bouguer gravity anomalies measured along a 250 km long Suhaitu-Etuokeqi gravity profile located at the transitional zone of the Alxa and Ordos blocks where geophysical chara...This paper deals with the interpretation of Bouguer gravity anomalies measured along a 250 km long Suhaitu-Etuokeqi gravity profile located at the transitional zone of the Alxa and Ordos blocks where geophysical characteristics are very complex. The analysis is carried out in terms of the ratio of elevation and Bouguer gravity anomaly, the normalized full gradient of a section of the Bouguer gravity anomaly (Gh) and the crustal density structure reveal that (1) the ratio of highs and lows of elevation and Bouguer gravity anomaly is large between Zhengyiguan fault (F4) and Helandonglu fault (F6), which can be explained due to crustal inhomogeneities related to the uplift of the Qinghai-Tibet block in the northeast; (2) the main active faults correspond to the Gh contour strip or cut the local region, and generally show strong deformation characteristics, for example the Bayanwulashan mountain front fault (F1) or the southeast boundary of Alxa block is in accord with the western change belt of Gh, a belt about 10 km wide that extends to about 30 km; (3) Yinchuan- Pingluo fault (FS) is the seismogenic structure of the Pin- gluo M earthquake, and its focal depth is about 15 km; (4) the Moho depth trend and Bouguer gravity anomaly vari- ation indicates that the regional gravity field is strongly correlated with the Moho discontinuity.展开更多
The Shanxi rift zone is one of the largest and active Cenozoic grabens in the world, studying the velocity structure of the crust and upper mantle in this region may help us to understand the mechanisms of rift proces...The Shanxi rift zone is one of the largest and active Cenozoic grabens in the world, studying the velocity structure of the crust and upper mantle in this region may help us to understand the mechanisms of rift processes and the seismogenic environment of active seismicity in continental rifts. In this work, using the broadband seismic data of Shanxi, Hebei, Henan, Shaanxi provinces, and the Inner Mongolia Autonomous Region from February 2009 to November 2011, we have picked out 350 high-quality phase velocity dispersion curves of fundamental mode Rayleigh waves at periods from 8 to 75 s, and Rayleigh wave phase velocity maps have been constructed from 8 to 75 s period with horizontal resolution ranging from 40 to 50 km by two-station surface-wave tomography. Then, using a genetic algorithm, a 3D shear-wave speed model of the crust and uppermost mantle have been derived from these maps with a spatial resolution of 0.4° × 0.4°. Four characteristics can be outlined from the results: (1) Except in the Datong volcanic zone, in the depth range of 11-30 km, the location of a transition zone between the highand low-velocity regions is in agreement with the seismicity pattern in the study region, and the earthquakes are mostly concentrated near this transition zone; (2) In the depth range of 31-40 km, shear-wave velocities are higher to the south of the Taiyuan Basin and lower to the north, which is similar to the distribution pattern of Moho depth variations in the Shanxi region; (3) The shear-wave velocity pattern of higher velocities to the south of 38×N and lower velocities to the north is found to be consistent with that from the upper crustal levels to depth of 70 km. At the deeper depths, the spatial scale of the low-velocity anomalies zone in the north is gradually shrinking with depth increasing, the low-velocity anomalies are gradually disappearing beneath the Datong volcanic zone at the depth of 151-200 km. We proposed that the root of the Datong volcano may reach to a depth around 150 km; (4) Along the N-S vertical profile at 112.8°E, the 38°N latitude is the boundary between high and low velocities, arguing the tectonic difference between the Shanxi rift zone and its flanks, in the rift zone the seismic velocity is dominated by low-velocity anomalies while in the flanks it is high.展开更多
We conducted the ambient noise tomography to image the shallow crustal structure of southern Tibet. The2D maps of phase velocity anomalies at the periods of10–16 s show that the low velocities are mainly confined alo...We conducted the ambient noise tomography to image the shallow crustal structure of southern Tibet. The2D maps of phase velocity anomalies at the periods of10–16 s show that the low velocities are mainly confined along or near some of the rift zones. While the maps at the periods of 18–25 s show that the coherent patterns that the low velocities expand outside of the rift zones. It means that the low velocities are prevailing in the middle crust of southern Tibet. According to the previous study of surface wave tomography with teleseismic data,we find that the low velocities from the lower crust to the lithospheric mantle are also restricted to the same rift zones. Thus,the integrated knowledge of the distribution of the low velocities in southern Tibet provides some new insight on the formation of the north–south trending rift zones. Compiling the multidiscipline evidences,we conclude that the rifting was an integrated process of the entire lithosphere in the early stage(*26–10 Ma),but mainly occurred within the upper crust due to the weakening a decoupling in the low velocity middle crust in the late stage(later than *8 Ma).展开更多
It is clarified in this paper that the Lower Yangtze depression is a Meso-Cenozoic rift zone formed on thebasement of the Hercynian-Indosinian foreland basins. The rift zone is divided into eastern and western sectors...It is clarified in this paper that the Lower Yangtze depression is a Meso-Cenozoic rift zone formed on thebasement of the Hercynian-Indosinian foreland basins. The rift zone is divided into eastern and western sectorsand is different in northern and southern parts. The rift zone in plane combination comprises parallel.trifurcate or splitting rifts. The North Jiangsu-South Yellow Sea region represents a 'drift-type' rift basinwhose deposition center migrates gradually castward. The formation mechanism and dynamic evolution of therift basin are discussed from a viewpoint of the crustal fine-structure, with evidence in geology and geophysicsand analysis results of dynamic forces given.展开更多
Dykes are primarily extensional fractures that form perpendicular to the minimum principal compressive stress,which have been extensively studied in the world during the past decades for various reasons including the
This paper presents a robust kinematic model that describes northern Red Sea and Gulf of Suez rifting and the development of marginal extensional half-graben sub-basins (ESB). A combination of Landsat Enhanced Themati...This paper presents a robust kinematic model that describes northern Red Sea and Gulf of Suez rifting and the development of marginal extensional half-graben sub-basins (ESB). A combination of Landsat Enhanced Thematic Mapper Plus (ETM+) and structural data was used to provide model constraints on the development of rift segments and ESB in the active rift zones. Structural analysis shows rotation and change in strike of rift-bounding faults. The model describes the northern Red Sea region as a poly-phase rift system initiated by late Oligocene (30 - 24 Ma) orthogonal rifting and the development of marginal ESB (now inland ESB), followed by oblique rifting and flank uplift during the early Miocene (24 - 18 Ma). The oblique rifting fragmented the rift depression into segments separated by oblique-slip accommodation within reactivated Pan-African (ca. 600 Ma) fracture zones, resulting in the development of antithetic faults and an en-echelon distribution of inland ESB. The current phase of rifting was instigated by the development of the Dead Sea Transform in response to increased northeasterly extension during the middle Miocene (ca. 18 Ma). The model explains the widening of the Red Sea rift during the last phase more than the Gulf of Suez rift by developing more antithetic faults and formation of offshore ESB, and deepening the rift depression.展开更多
The Mesoproterozoic Kunyang rift, which is located on the western margin of the Yangtze platform and the southern section of the Kangdian axis, is a rare massive Precambrian iron-copper polymetallic mineralization zon...The Mesoproterozoic Kunyang rift, which is located on the western margin of the Yangtze platform and the southern section of the Kangdian axis, is a rare massive Precambrian iron-copper polymetallic mineralization zone in China. The Mesoproterozoic Wulu (Wuding-Lufeng) basin in the middle of the rift is an elliptic basin controlled by a ring fracture system. Moreover, volcanic activities in the basin display zonation of an outer ring, a middle ring and an inner ring with carbonatitic volcanic rocks and sub-volcanic dykes discovered in the outer and middle rings. The Sm-Nd isochron ages have been determined for the outer-ring carbonatitic lavas (1685 Ma) and basaltic porphyrite of the radiating dyke swarm (1645 Ma) and the Rb-Sr isochron ages for the out-ring carbonatitic lavas (893 Ma) and the middle-ring dykes (1048 Ma). In combination of the U-Pb concordant ages of zircon (1743 Ma) in trachy-andesite of the corresponding period and stratum (1569 Ma) of the Etouchang Formation, as well as the Rb-Sr isochron age (1024 Ma) and K-Ar age (1186 Ma) of the dykes in the middle ring, the age of carbonarites in the basin is preliminarily determined. It is ensured that all of these carbonatites were formed in the Mesoprotero/oic period, whereby two stages could be identified as follows: in the first stage, carbonatitic volcanic groups, such as lavas, pyroclastic rocks and volcaniclastic sedimentary rocks, were formed in the outer ring; in the second stage, carbonatitic breccias and dykes appeared in the middle ring. The metamorphic age of the carbonatitic lavas in the outer ring was determined to be concurrent with the end of the first stage of the Neoproterozoic period, corresponding to the Jinning movement in central Yunnan.展开更多
The Baikal rift is the most seismically active continental rift in the world and is significant for studying the dynamics of continental rifts, although its precise dynamic mechanisms remain controversial. We calculat...The Baikal rift is the most seismically active continental rift in the world and is significant for studying the dynamics of continental rifts, although its precise dynamic mechanisms remain controversial. We calculated receiver functions (1748) from Global Seismographic Network seismic stations TLY and ULN and stacked receiver functions in different bins. Here we present discontinuities at depths of 410km and 660km and thickness of the mantle transition zone (MTZ) beneath the study area. The MTZ structure shows an obvious thickening (292km) in the Baikal rift zone except for an area of limited thinning (230km), whereas it is basically normal (250km) beneath the Mongolian area, to the southeast of the Baikal rift. Combining these results with previous findings, we propose that the large-scale thickening beneath the Baikal rift zone is likely to be caused by the Mesozoic collision between the Siberian Platform and the Mongolia-North China Block or magmatic intrusion into the lower crust, which would result in crust and lithosphere thickening. Thus, the lower crust becomes eclogitized and consequently detached into the deep mantle because of negative buoyancy. The detachment not only induces asthenosphere upwelling but also accelerates mantle convection of water detached from the subducted slab, which would increase mantle melting, while both processes promote the development of the rift. Our preliminary results indicate that the detachment and the consequent hot upwelling have an important influence on the development of the Baikal rift, and a small-scale mantle upwelling indicated by the located thinning may have destroyed the lithosphere and promoted this development.展开更多
The Shanxi rift zone,located in the Trans-North China Orogen(TNCO)of the North China Craton(NCC),is wellknown for hosting large intraplate earthquakes in continental China.The TNCO is a suture zone formed by the amalg...The Shanxi rift zone,located in the Trans-North China Orogen(TNCO)of the North China Craton(NCC),is wellknown for hosting large intraplate earthquakes in continental China.The TNCO is a suture zone formed by the amalgamation of the eastern and the western blocks of the NCC.After its formation,it was reactived and deformed by later tectonic activities,which result in complex lithospheric heterogeneities.Thus,the detailed crustal structure of the Shanxi rift zone is critical for understanding the tectonics and seismogenic mechanism in this area,which will shed new lights on the formation and dynamic evolution of the NCC.In this study,we applied ambient noise tomography based on 18 months continuous records from 108 seismic stations located in Shanxi and its surroundings,in order to constrain its detailed crustal structure.We measured 4437 Rayleigh wave phase velocity dispersion curves in the period of 5–45 s from the cross-correlation functions.Next,a surface wave direct inversion algorithm based on surface-wave ray tracing was used to resolve a 3-D S-wave velocity model in the upper 60 km with lateral resolution of~50–80 km.The tomographic images show that the sedimentary thickness of the Taiyuan Basin is less than 5 km.At depth of 0–10 km,we observe a good correlation between the imaged structural variations with geological and topographic features at the surface.For example,the center of rift shows low-velocity anomalies and the uplifting areas on both sides are characterized by high velocity anomalies.The western and eastern boundaries of the slow materials coincide with the faults that control the basin.The slow material extends from the shallow surface to depth of about 15 km but it getting smaller in shape at deeper depth.For the Taiyuan Basin,Linfen Basin,and Yuncheng Basin in the central and southern parts,the structure is dominant by slow materials in the upper crust but changes to strong high-velocity anomalies in the lower crust and the uppermost mantle at depth deeper than 25 km.We interprete these high-velocity anomalies to be associated with the cold remnant of the underplated basalt in the lower crust that were formed in early Tertiary before the basin was stretched.We also observe the low-velocity anomaly beneath the Datong volcanic area,which extends from the uppermost mantle to a depth of 20 km vertically and migrates from west to east laterally.It may reflect the upwelling channel of the magmatic material in Datong.Moreover,the strong low-velocity anomalies presented north of 38°N could be related to the heated crustal materials with paritial melting as a result of the intensive magmatic activities of the Datong Volcano since the Cenozoic.In our study region,seismicity mainly concentrates in the depth range of 5–20 km and we find that most earthquakes appear to occur in places where velocity changes from high to low rapidly,with slight higher concentration in the faster material areas.In summary,our high-resolution 3-D crustal velocity model provides important seismological constraints to understand the tectonic evolution and seismicity across the Shanxi rift zone.展开更多
The diverging plate boundaries in North Iceland and its shelf display a complex tectonic at the Kolbeinsey Ridge (K-R), the Northern Rift Zone (NRZ), and the Tj?rnes Fracture Zone containing the Grímsey Oblique R...The diverging plate boundaries in North Iceland and its shelf display a complex tectonic at the Kolbeinsey Ridge (K-R), the Northern Rift Zone (NRZ), and the Tj?rnes Fracture Zone containing the Grímsey Oblique Rift (GOR), the Húsavík-Flatey Fault (HFF), and the Dalvík Lineament (DL). While active deformation is well-known, the structural pattern is sporadically mapped and a comprehensive account of the upper Tertiary-present deformation is not fully at hand. To address the gaps, this paper provides new regional tectonic maps with continuous coverage, and detailed analyses of the deformation. Faults, open fractures, prominent joints and volcanic edifices were identified on Multibeam/Single beam, Spot 5, and Digital Elevation Model, and subjected to multidisciplinary structural analysis and correlation with selected data. Some of the results are: 1) Six sets constitute the structural pattern. The N-S rift-parallel normal faults are 1/3, and the shear fractures of the transform zone and the oblique rift 2/3 of the fracture population. The en échelon arrangements above deep-seated shear zones indicate dextral slip on WNW to NW, and sinistral slip on NNE to ENE faults, conformable with earthquake data. 2) During the polyphase tectonic, the six sets led to basin and horst formation, block compartmentalisation, rotation, horsetail splay, rhomb-graben in relay zone of strike-slips, and volcanism. 3) Listric faults are absent and the steeply-dipping faults are antithetic, synthetic, or form extensional flower structures above 4 km depth. The Plio-pleistocene/present syn-sedimentary deformation caused a deep half graben in the Eyjafjarearáll Basin (Ey), fault growth, rollover, and sediment onlaps, with some of the faults still active. 4) The plate boundaries of K-R/Ey, GOR/?xarfjreur/NRZ, and DL delimit a major microplate labelled here as Grímsey-Tj?rnes-Dalvík. 5) The WNW earthquake cluster in GOR corresponds either to a blind horsetail splay fault or to initiation of a transform segment parallel to the HFF. The described tectonic-sedimentary-magmatic deformation is relevant to other diverging plate boundaries where similar sets control the hydrocarbon and geothermal resources.展开更多
This paper presents a multidisciplinary structural analysis of a 165 km2 area in the Northern Rift Zone and the Tjörnes Fracture Zone of Iceland, and unravels the tectonic control of the Theistareykir geother...This paper presents a multidisciplinary structural analysis of a 165 km2 area in the Northern Rift Zone and the Tjörnes Fracture Zone of Iceland, and unravels the tectonic control of the Theistareykir geothermal field and its surroundings. About 10729 fracture segments (faults, open fractures, joints) are identified in the upper Tertiary to Holocene igneous series. The segments were extracted from aerial images and hillshade, and then analyzed in terms of number of sets, geometry, motions, frequency, and relative age. The correlation with surface geothermal manifestations, resistivity, earthquakes, and occasional well data reveals the critical regional and local fractures at the surface, reservoir level and greater depth. The main conclusions of this study are: 1) The structural pattern consists of N-S rift-parallel extensional fractures and the Riedel shears of the transform zone striking NNE, ENE, E-W, WNW and NW, which compartmentalize together the blocks at any scale. 2) The en échelon segmentation shows strike and oblique slips on the Riedel shears, with a dextral component on the WNW and NW planes and a sinistral component on the NNE to ENE faults. 3) Fractures form under the influence of the transform mechanism and the effect of rifting becomes significant only with time. 4) The WNW dextral oblique-slip Stórihver Fault of the transform zone has a horsetail splay that extends eastwards into the geothermal field. There, this structure, along with few NW, ENE, NNE and N-S fractures, controls the alteration, alignment of fumaroles, emanating deep gases. These fractures also rupture during natural or induced earthquakes. 5) The resistivity anomalies present en échelon geometries controlled by the six fracture sets. These anomalies display clockwise and anticlockwise rotations within the upper 8 km crustal depth, but at 8 km depth, only three sets (the N-S rift structures, and the E-W and the NW Riedel shears) are present at the rift and transform plate boundaries. Results of this study are relevant to resource exploration in other complex extensional contexts where rift and transform interact.ööö展开更多
Pb isotopic analyses were reported for sulfide and hydrothermal carbonate minerals and marble of the Xiquegou lead-zinc, the Zhenzigou zinc-lead and the Gaojiapuzi silver deposits from the Qingchengzi ore field and th...Pb isotopic analyses were reported for sulfide and hydrothermal carbonate minerals and marble of the Xiquegou lead-zinc, the Zhenzigou zinc-lead and the Gaojiapuzi silver deposits from the Qingchengzi ore field and the Beiwagou zinc-lead deposit in the west, Proterozoic Liaodong rift zone. Pb isotopic ratios of the marble from the Qingchengzi ore field range from 18.24 to 30.63 for 206 Pb/204Pb, 15.59 to 17.05 for207Pb/204Pb and 37.43 to 38.63 for 208Pb/204Pb. The marble gives a Pb-Pb isochron age of 1822±92 Ma, which is interpreted as the age of the metamorphism of the marble. Ore Pb, including Pb of sulfide and hydrothermal car- bonate minerals, from the Qingchengzi ore field shows limited variation with 206 Pb/204Pb=17.66- 17.96, 207 Pb/204Pb=15.60-15.74 and 208Pb/204Pb=37.94-38.60. In contrast, ore Pb from the Beiwagou deposit gives different Pb isotopic ratios with 206Pb/204Pb=15.68-15.81, 207 Pb/204Pb= 15.34-15.45 and 208Pb/204Pb=35.30-35.68. Pb of all deposits from the Liaodong rift zone is derived from the upper crust. Ore Pb of the Qingchengzi deposits is derived from a young upper crust. The model Th/U ratios of 4.40 to 4.74 for ore Pb are significantly different from that of 1.7 to 4.4 given by the marble of the Qingchengzi ore field, suggesting that marble is not the source of the ore Pb. Ore Pb of the Beiwagou deposit is extracted from its source and the deposit is formed at the Paleoproterozoic era. Different Pb isotopic ratios of the Qingchengzi ore field and the Beiwagou deposit are due to different ages of the deposits and suggest that the two types of deposits are derived from different sources and are possibly formed by different ore-forming processes.展开更多
基金supported by the National Key Research and Development Program of China(2017YFC0602206)the projects of the China Geological Survey(DD20160066,DD20190551).
文摘The Beishan rift zone in Xinjiang Uygur Autonomous Region was formed due to strong activities of faults on the basement of the Tarim continental crust.Despite the fact that many geological research results of the rift zone have been achieved,only a few studies have been conducted on its regional geophysical characteristics.In this paper,the gravity and magnetic anomalies of the rift zone were highlighted through specific data processing of 1∶50000 high-precision aeromagnetic data and gravity data with a grid spacing of 2 km×2 km.Based on this,the geophysical evidence for the scope and internal structures of the Beishan rift zone was obtained for the first time.The distinct characteristics of magnetic and gravity fields in the areas to the north and south of the Beishan rift zone reveal that deep faults exist between the Beishan rift zone and the geological units on the southern and northern sides.Furthermore,the faults on the two areas contain the bidirectional thrusts and have flower-shaped structures according to the characteristics of the magnetic and gravity fields.The Beishan rift zone can be divided into two tectonomagmatic zones,namely the Zhongposhan-Bijiashan-Cihai-Baishanliang zone(the northern zone)and the Bayiquan-Qixin-Baishan zone(the southern zone).The northern zone can be further subdivided into three comet-shaped anomaly groups(tectonomagmatic areas),while the southern zone can be further subdivided into two tectonomagmatic areas.According to the characteristics of aeromagnetic anomalies and gravity field,19 mafic-ultramafic complexes were delineated.The known Pobei,Hongshishan,and Qixin complexes are all located within the inferred complexes,with estimates of total explored resources of Ni,Cu,and Au of 3×10^(6) t,10×10^(3) t and 10 t,respectively.The prospecting of high-grade copper-nickel deposits should focus on the periphery and deep parts of the known and inferred mafic-ultramafic complexes.Among them,the peripheral strata of the complexes specifically have great prospecting potential of large-scale high-grade copper-nickel deposits of magma injection type.Finally,this paper analyzed the application effects of the rapid airborne-ground-drilling synergetic exploration method in the prospecting of copper-nickel deposits in Qixin,Beishan,Xinjiang,which will provide references for further exploration of copper-nickel deposits in Beishan area,Xinjiang.
基金supported by the Key Projects of China Seismic Array(201308011)Earthquake Science(201508006)the China Earthquake Administration,Institute of Seismology Foundation(201326126)
文摘This paper deals with the interpretation of Bouguer gravity anomalies measured along a 250 km long Suhaitu-Etuokeqi gravity profile located at the transitional zone of the Alxa and Ordos blocks where geophysical characteristics are very complex. The analysis is carried out in terms of the ratio of elevation and Bouguer gravity anomaly, the normalized full gradient of a section of the Bouguer gravity anomaly (Gh) and the crustal density structure reveal that (1) the ratio of highs and lows of elevation and Bouguer gravity anomaly is large between Zhengyiguan fault (F4) and Helandonglu fault (F6), which can be explained due to crustal inhomogeneities related to the uplift of the Qinghai-Tibet block in the northeast; (2) the main active faults correspond to the Gh contour strip or cut the local region, and generally show strong deformation characteristics, for example the Bayanwulashan mountain front fault (F1) or the southeast boundary of Alxa block is in accord with the western change belt of Gh, a belt about 10 km wide that extends to about 30 km; (3) Yinchuan- Pingluo fault (FS) is the seismogenic structure of the Pin- gluo M earthquake, and its focal depth is about 15 km; (4) the Moho depth trend and Bouguer gravity anomaly vari- ation indicates that the regional gravity field is strongly correlated with the Moho discontinuity.
基金supported by Open Grant from State key Laboratory of Geodesy and Earth’s Dynamics (Grant No. SKLGED2014-4-4-E)Office of Science and Technology in Shanxi province based on research Projects (2012011029)+1 种基金Scientific and Technological Research Projects in Shanxi province (20100311129-2, 20090311084)the China Earthquake Administration spark Project (XH15007)
文摘The Shanxi rift zone is one of the largest and active Cenozoic grabens in the world, studying the velocity structure of the crust and upper mantle in this region may help us to understand the mechanisms of rift processes and the seismogenic environment of active seismicity in continental rifts. In this work, using the broadband seismic data of Shanxi, Hebei, Henan, Shaanxi provinces, and the Inner Mongolia Autonomous Region from February 2009 to November 2011, we have picked out 350 high-quality phase velocity dispersion curves of fundamental mode Rayleigh waves at periods from 8 to 75 s, and Rayleigh wave phase velocity maps have been constructed from 8 to 75 s period with horizontal resolution ranging from 40 to 50 km by two-station surface-wave tomography. Then, using a genetic algorithm, a 3D shear-wave speed model of the crust and uppermost mantle have been derived from these maps with a spatial resolution of 0.4° × 0.4°. Four characteristics can be outlined from the results: (1) Except in the Datong volcanic zone, in the depth range of 11-30 km, the location of a transition zone between the highand low-velocity regions is in agreement with the seismicity pattern in the study region, and the earthquakes are mostly concentrated near this transition zone; (2) In the depth range of 31-40 km, shear-wave velocities are higher to the south of the Taiyuan Basin and lower to the north, which is similar to the distribution pattern of Moho depth variations in the Shanxi region; (3) The shear-wave velocity pattern of higher velocities to the south of 38×N and lower velocities to the north is found to be consistent with that from the upper crustal levels to depth of 70 km. At the deeper depths, the spatial scale of the low-velocity anomalies zone in the north is gradually shrinking with depth increasing, the low-velocity anomalies are gradually disappearing beneath the Datong volcanic zone at the depth of 151-200 km. We proposed that the root of the Datong volcano may reach to a depth around 150 km; (4) Along the N-S vertical profile at 112.8°E, the 38°N latitude is the boundary between high and low velocities, arguing the tectonic difference between the Shanxi rift zone and its flanks, in the rift zone the seismic velocity is dominated by low-velocity anomalies while in the flanks it is high.
基金funded by the National Natural Science Foundation of China (Grant No.: 41274002 and 41125015)
文摘We conducted the ambient noise tomography to image the shallow crustal structure of southern Tibet. The2D maps of phase velocity anomalies at the periods of10–16 s show that the low velocities are mainly confined along or near some of the rift zones. While the maps at the periods of 18–25 s show that the coherent patterns that the low velocities expand outside of the rift zones. It means that the low velocities are prevailing in the middle crust of southern Tibet. According to the previous study of surface wave tomography with teleseismic data,we find that the low velocities from the lower crust to the lithospheric mantle are also restricted to the same rift zones. Thus,the integrated knowledge of the distribution of the low velocities in southern Tibet provides some new insight on the formation of the north–south trending rift zones. Compiling the multidiscipline evidences,we conclude that the rifting was an integrated process of the entire lithosphere in the early stage(*26–10 Ma),but mainly occurred within the upper crust due to the weakening a decoupling in the low velocity middle crust in the late stage(later than *8 Ma).
文摘It is clarified in this paper that the Lower Yangtze depression is a Meso-Cenozoic rift zone formed on thebasement of the Hercynian-Indosinian foreland basins. The rift zone is divided into eastern and western sectorsand is different in northern and southern parts. The rift zone in plane combination comprises parallel.trifurcate or splitting rifts. The North Jiangsu-South Yellow Sea region represents a 'drift-type' rift basinwhose deposition center migrates gradually castward. The formation mechanism and dynamic evolution of therift basin are discussed from a viewpoint of the crustal fine-structure, with evidence in geology and geophysicsand analysis results of dynamic forces given.
文摘Dykes are primarily extensional fractures that form perpendicular to the minimum principal compressive stress,which have been extensively studied in the world during the past decades for various reasons including the
文摘This paper presents a robust kinematic model that describes northern Red Sea and Gulf of Suez rifting and the development of marginal extensional half-graben sub-basins (ESB). A combination of Landsat Enhanced Thematic Mapper Plus (ETM+) and structural data was used to provide model constraints on the development of rift segments and ESB in the active rift zones. Structural analysis shows rotation and change in strike of rift-bounding faults. The model describes the northern Red Sea region as a poly-phase rift system initiated by late Oligocene (30 - 24 Ma) orthogonal rifting and the development of marginal ESB (now inland ESB), followed by oblique rifting and flank uplift during the early Miocene (24 - 18 Ma). The oblique rifting fragmented the rift depression into segments separated by oblique-slip accommodation within reactivated Pan-African (ca. 600 Ma) fracture zones, resulting in the development of antithetic faults and an en-echelon distribution of inland ESB. The current phase of rifting was instigated by the development of the Dead Sea Transform in response to increased northeasterly extension during the middle Miocene (ca. 18 Ma). The model explains the widening of the Red Sea rift during the last phase more than the Gulf of Suez rift by developing more antithetic faults and formation of offshore ESB, and deepening the rift depression.
基金supported by a key project of resources and environment of the Chinese Academy of Sciences(No:KZ951-B1-404)the Project 211 of the China University of Geosciences
文摘The Mesoproterozoic Kunyang rift, which is located on the western margin of the Yangtze platform and the southern section of the Kangdian axis, is a rare massive Precambrian iron-copper polymetallic mineralization zone in China. The Mesoproterozoic Wulu (Wuding-Lufeng) basin in the middle of the rift is an elliptic basin controlled by a ring fracture system. Moreover, volcanic activities in the basin display zonation of an outer ring, a middle ring and an inner ring with carbonatitic volcanic rocks and sub-volcanic dykes discovered in the outer and middle rings. The Sm-Nd isochron ages have been determined for the outer-ring carbonatitic lavas (1685 Ma) and basaltic porphyrite of the radiating dyke swarm (1645 Ma) and the Rb-Sr isochron ages for the out-ring carbonatitic lavas (893 Ma) and the middle-ring dykes (1048 Ma). In combination of the U-Pb concordant ages of zircon (1743 Ma) in trachy-andesite of the corresponding period and stratum (1569 Ma) of the Etouchang Formation, as well as the Rb-Sr isochron age (1024 Ma) and K-Ar age (1186 Ma) of the dykes in the middle ring, the age of carbonarites in the basin is preliminarily determined. It is ensured that all of these carbonatites were formed in the Mesoprotero/oic period, whereby two stages could be identified as follows: in the first stage, carbonatitic volcanic groups, such as lavas, pyroclastic rocks and volcaniclastic sedimentary rocks, were formed in the outer ring; in the second stage, carbonatitic breccias and dykes appeared in the middle ring. The metamorphic age of the carbonatitic lavas in the outer ring was determined to be concurrent with the end of the first stage of the Neoproterozoic period, corresponding to the Jinning movement in central Yunnan.
基金supported by National Natural Science Foundation of China(Grant Nos. 40974025 and 40721003)Innovative Research Group Science Foundation (Grant No. 41021063)National Key Project (Grant No.2008ZX05008-006)
文摘The Baikal rift is the most seismically active continental rift in the world and is significant for studying the dynamics of continental rifts, although its precise dynamic mechanisms remain controversial. We calculated receiver functions (1748) from Global Seismographic Network seismic stations TLY and ULN and stacked receiver functions in different bins. Here we present discontinuities at depths of 410km and 660km and thickness of the mantle transition zone (MTZ) beneath the study area. The MTZ structure shows an obvious thickening (292km) in the Baikal rift zone except for an area of limited thinning (230km), whereas it is basically normal (250km) beneath the Mongolian area, to the southeast of the Baikal rift. Combining these results with previous findings, we propose that the large-scale thickening beneath the Baikal rift zone is likely to be caused by the Mesozoic collision between the Siberian Platform and the Mongolia-North China Block or magmatic intrusion into the lower crust, which would result in crust and lithosphere thickening. Thus, the lower crust becomes eclogitized and consequently detached into the deep mantle because of negative buoyancy. The detachment not only induces asthenosphere upwelling but also accelerates mantle convection of water detached from the subducted slab, which would increase mantle melting, while both processes promote the development of the rift. Our preliminary results indicate that the detachment and the consequent hot upwelling have an important influence on the development of the Baikal rift, and a small-scale mantle upwelling indicated by the located thinning may have destroyed the lithosphere and promoted this development.
基金supported by the Earthquake Science and Technology Spark Project of China Earthquake Administration(Grant No.XH20009Y)the National Natural Science Foundation of China(Grant Nos.41790464,41574034,41704040)the LU JIAXI International Team Program supported by the KC Wong Education Foundation and Chinese Academy of Sciences(Grant No.GJTD-2018-12)。
文摘The Shanxi rift zone,located in the Trans-North China Orogen(TNCO)of the North China Craton(NCC),is wellknown for hosting large intraplate earthquakes in continental China.The TNCO is a suture zone formed by the amalgamation of the eastern and the western blocks of the NCC.After its formation,it was reactived and deformed by later tectonic activities,which result in complex lithospheric heterogeneities.Thus,the detailed crustal structure of the Shanxi rift zone is critical for understanding the tectonics and seismogenic mechanism in this area,which will shed new lights on the formation and dynamic evolution of the NCC.In this study,we applied ambient noise tomography based on 18 months continuous records from 108 seismic stations located in Shanxi and its surroundings,in order to constrain its detailed crustal structure.We measured 4437 Rayleigh wave phase velocity dispersion curves in the period of 5–45 s from the cross-correlation functions.Next,a surface wave direct inversion algorithm based on surface-wave ray tracing was used to resolve a 3-D S-wave velocity model in the upper 60 km with lateral resolution of~50–80 km.The tomographic images show that the sedimentary thickness of the Taiyuan Basin is less than 5 km.At depth of 0–10 km,we observe a good correlation between the imaged structural variations with geological and topographic features at the surface.For example,the center of rift shows low-velocity anomalies and the uplifting areas on both sides are characterized by high velocity anomalies.The western and eastern boundaries of the slow materials coincide with the faults that control the basin.The slow material extends from the shallow surface to depth of about 15 km but it getting smaller in shape at deeper depth.For the Taiyuan Basin,Linfen Basin,and Yuncheng Basin in the central and southern parts,the structure is dominant by slow materials in the upper crust but changes to strong high-velocity anomalies in the lower crust and the uppermost mantle at depth deeper than 25 km.We interprete these high-velocity anomalies to be associated with the cold remnant of the underplated basalt in the lower crust that were formed in early Tertiary before the basin was stretched.We also observe the low-velocity anomaly beneath the Datong volcanic area,which extends from the uppermost mantle to a depth of 20 km vertically and migrates from west to east laterally.It may reflect the upwelling channel of the magmatic material in Datong.Moreover,the strong low-velocity anomalies presented north of 38°N could be related to the heated crustal materials with paritial melting as a result of the intensive magmatic activities of the Datong Volcano since the Cenozoic.In our study region,seismicity mainly concentrates in the depth range of 5–20 km and we find that most earthquakes appear to occur in places where velocity changes from high to low rapidly,with slight higher concentration in the faster material areas.In summary,our high-resolution 3-D crustal velocity model provides important seismological constraints to understand the tectonic evolution and seismicity across the Shanxi rift zone.
文摘The diverging plate boundaries in North Iceland and its shelf display a complex tectonic at the Kolbeinsey Ridge (K-R), the Northern Rift Zone (NRZ), and the Tj?rnes Fracture Zone containing the Grímsey Oblique Rift (GOR), the Húsavík-Flatey Fault (HFF), and the Dalvík Lineament (DL). While active deformation is well-known, the structural pattern is sporadically mapped and a comprehensive account of the upper Tertiary-present deformation is not fully at hand. To address the gaps, this paper provides new regional tectonic maps with continuous coverage, and detailed analyses of the deformation. Faults, open fractures, prominent joints and volcanic edifices were identified on Multibeam/Single beam, Spot 5, and Digital Elevation Model, and subjected to multidisciplinary structural analysis and correlation with selected data. Some of the results are: 1) Six sets constitute the structural pattern. The N-S rift-parallel normal faults are 1/3, and the shear fractures of the transform zone and the oblique rift 2/3 of the fracture population. The en échelon arrangements above deep-seated shear zones indicate dextral slip on WNW to NW, and sinistral slip on NNE to ENE faults, conformable with earthquake data. 2) During the polyphase tectonic, the six sets led to basin and horst formation, block compartmentalisation, rotation, horsetail splay, rhomb-graben in relay zone of strike-slips, and volcanism. 3) Listric faults are absent and the steeply-dipping faults are antithetic, synthetic, or form extensional flower structures above 4 km depth. The Plio-pleistocene/present syn-sedimentary deformation caused a deep half graben in the Eyjafjarearáll Basin (Ey), fault growth, rollover, and sediment onlaps, with some of the faults still active. 4) The plate boundaries of K-R/Ey, GOR/?xarfjreur/NRZ, and DL delimit a major microplate labelled here as Grímsey-Tj?rnes-Dalvík. 5) The WNW earthquake cluster in GOR corresponds either to a blind horsetail splay fault or to initiation of a transform segment parallel to the HFF. The described tectonic-sedimentary-magmatic deformation is relevant to other diverging plate boundaries where similar sets control the hydrocarbon and geothermal resources.
文摘This paper presents a multidisciplinary structural analysis of a 165 km2 area in the Northern Rift Zone and the Tjörnes Fracture Zone of Iceland, and unravels the tectonic control of the Theistareykir geothermal field and its surroundings. About 10729 fracture segments (faults, open fractures, joints) are identified in the upper Tertiary to Holocene igneous series. The segments were extracted from aerial images and hillshade, and then analyzed in terms of number of sets, geometry, motions, frequency, and relative age. The correlation with surface geothermal manifestations, resistivity, earthquakes, and occasional well data reveals the critical regional and local fractures at the surface, reservoir level and greater depth. The main conclusions of this study are: 1) The structural pattern consists of N-S rift-parallel extensional fractures and the Riedel shears of the transform zone striking NNE, ENE, E-W, WNW and NW, which compartmentalize together the blocks at any scale. 2) The en échelon segmentation shows strike and oblique slips on the Riedel shears, with a dextral component on the WNW and NW planes and a sinistral component on the NNE to ENE faults. 3) Fractures form under the influence of the transform mechanism and the effect of rifting becomes significant only with time. 4) The WNW dextral oblique-slip Stórihver Fault of the transform zone has a horsetail splay that extends eastwards into the geothermal field. There, this structure, along with few NW, ENE, NNE and N-S fractures, controls the alteration, alignment of fumaroles, emanating deep gases. These fractures also rupture during natural or induced earthquakes. 5) The resistivity anomalies present en échelon geometries controlled by the six fracture sets. These anomalies display clockwise and anticlockwise rotations within the upper 8 km crustal depth, but at 8 km depth, only three sets (the N-S rift structures, and the E-W and the NW Riedel shears) are present at the rift and transform plate boundaries. Results of this study are relevant to resource exploration in other complex extensional contexts where rift and transform interact.ööö
文摘Pb isotopic analyses were reported for sulfide and hydrothermal carbonate minerals and marble of the Xiquegou lead-zinc, the Zhenzigou zinc-lead and the Gaojiapuzi silver deposits from the Qingchengzi ore field and the Beiwagou zinc-lead deposit in the west, Proterozoic Liaodong rift zone. Pb isotopic ratios of the marble from the Qingchengzi ore field range from 18.24 to 30.63 for 206 Pb/204Pb, 15.59 to 17.05 for207Pb/204Pb and 37.43 to 38.63 for 208Pb/204Pb. The marble gives a Pb-Pb isochron age of 1822±92 Ma, which is interpreted as the age of the metamorphism of the marble. Ore Pb, including Pb of sulfide and hydrothermal car- bonate minerals, from the Qingchengzi ore field shows limited variation with 206 Pb/204Pb=17.66- 17.96, 207 Pb/204Pb=15.60-15.74 and 208Pb/204Pb=37.94-38.60. In contrast, ore Pb from the Beiwagou deposit gives different Pb isotopic ratios with 206Pb/204Pb=15.68-15.81, 207 Pb/204Pb= 15.34-15.45 and 208Pb/204Pb=35.30-35.68. Pb of all deposits from the Liaodong rift zone is derived from the upper crust. Ore Pb of the Qingchengzi deposits is derived from a young upper crust. The model Th/U ratios of 4.40 to 4.74 for ore Pb are significantly different from that of 1.7 to 4.4 given by the marble of the Qingchengzi ore field, suggesting that marble is not the source of the ore Pb. Ore Pb of the Beiwagou deposit is extracted from its source and the deposit is formed at the Paleoproterozoic era. Different Pb isotopic ratios of the Qingchengzi ore field and the Beiwagou deposit are due to different ages of the deposits and suggest that the two types of deposits are derived from different sources and are possibly formed by different ore-forming processes.