The P-wave velocity structure in the shallow crust is investigated in and around the Sulu-Dabie region by using seismic reflection data for deep soundings in 48 survey profiles and from rock velocity determinations.Th...The P-wave velocity structure in the shallow crust is investigated in and around the Sulu-Dabie region by using seismic reflection data for deep soundings in 48 survey profiles and from rock velocity determinations.The observed velocity distributions show obvious heterogeneities in this region.The low velocity anomalies are observed mainly in the west of the Dabie region and the East Sea regions.The high velocity anomalies emerge in the shallow crust of the Sulu and Dabie orogeny.These high-velocity anomalies can be attributed to the ultra-high pressure metamorphosed(UHPM)rock formed by exhumation motion of mantle materials during the orogeny.The high-velocity anomalies in the different shallow layers beneath the Sulu region are located to the northeast of the Tan-Lu fault.The high-velocity anomalies beneath the Dabie region are located southwest of the Tan-Lu fault.Such a distribution pattern of velocity anomaly zones may reveal historical motion of a left-lateral strike-slip for the Tan-Lu fault,which differs from the result of a right-lateral strike-slip motion regime known from modern seismology,indicating a more complex tectonic motion along the Tan-Lu fault.展开更多
Various earthquake fault types, mechanism solutions, stress field, and other geophysical data were analyzed for study on the crust movement in the Tibetan plateau and its tectonic implications. The results show that n...Various earthquake fault types, mechanism solutions, stress field, and other geophysical data were analyzed for study on the crust movement in the Tibetan plateau and its tectonic implications. The results show that numbers of thrust fault and strike-slip fault type earthquakes with strong compressive stress near NNE-SSW direction occurred in the edges around the plateau except the eastern boundary. Some normal faulting type earthquakes concentrate in the Central Tibetan plateau. The strikes of fault planes of thrust and strike-slip faulting earthquakes are almost in the E-W direction based on the analyses of the Wulff stereonet diagrams of fault plane solutions. This implies that the dislocation slip vectors of the thrust and strike-slip faulting type events have quite great components in the N-S direction. The compression motion mainly probably plays the tectonic active regime around the plateau edges. The compressive stress in N-S or NE-SW directions predominates earthquake occurrence in the thrust and strike-slip faulting event region around the plateau. The compressive motion around the Tibetan plateau edge is attributable to the northward motion of the Indian subcontinent plate. The northward motion of the Tibetan plateau shortened in the N-S direction encounters probably strong obstructions at the western and northern margins.展开更多
基金This study was supported financially by the Natural Science Foundation of China(Grant No.41374052)the Science Foundation of China Geological Survey(No.J1901)the project of Regional Geological Survey(No.D1911).
文摘The P-wave velocity structure in the shallow crust is investigated in and around the Sulu-Dabie region by using seismic reflection data for deep soundings in 48 survey profiles and from rock velocity determinations.The observed velocity distributions show obvious heterogeneities in this region.The low velocity anomalies are observed mainly in the west of the Dabie region and the East Sea regions.The high velocity anomalies emerge in the shallow crust of the Sulu and Dabie orogeny.These high-velocity anomalies can be attributed to the ultra-high pressure metamorphosed(UHPM)rock formed by exhumation motion of mantle materials during the orogeny.The high-velocity anomalies in the different shallow layers beneath the Sulu region are located to the northeast of the Tan-Lu fault.The high-velocity anomalies beneath the Dabie region are located southwest of the Tan-Lu fault.Such a distribution pattern of velocity anomaly zones may reveal historical motion of a left-lateral strike-slip for the Tan-Lu fault,which differs from the result of a right-lateral strike-slip motion regime known from modern seismology,indicating a more complex tectonic motion along the Tan-Lu fault.
基金supported by the National Natural Science Foundation of China (No. 40674026)
文摘Various earthquake fault types, mechanism solutions, stress field, and other geophysical data were analyzed for study on the crust movement in the Tibetan plateau and its tectonic implications. The results show that numbers of thrust fault and strike-slip fault type earthquakes with strong compressive stress near NNE-SSW direction occurred in the edges around the plateau except the eastern boundary. Some normal faulting type earthquakes concentrate in the Central Tibetan plateau. The strikes of fault planes of thrust and strike-slip faulting earthquakes are almost in the E-W direction based on the analyses of the Wulff stereonet diagrams of fault plane solutions. This implies that the dislocation slip vectors of the thrust and strike-slip faulting type events have quite great components in the N-S direction. The compression motion mainly probably plays the tectonic active regime around the plateau edges. The compressive stress in N-S or NE-SW directions predominates earthquake occurrence in the thrust and strike-slip faulting event region around the plateau. The compressive motion around the Tibetan plateau edge is attributable to the northward motion of the Indian subcontinent plate. The northward motion of the Tibetan plateau shortened in the N-S direction encounters probably strong obstructions at the western and northern margins.