We have found that the expression of ring finger and WD repeat domain 3(RFWD3)is significantly higher in unpaired and paired hepatocellular carcinoma(HCC)tissues than in normal tissues.Moreover,this expression has a s...We have found that the expression of ring finger and WD repeat domain 3(RFWD3)is significantly higher in unpaired and paired hepatocellular carcinoma(HCC)tissues than in normal tissues.Moreover,this expression has a significant correlation with the infiltration level of 14 immune cell types and when the detected RFWD3 expression levels were grouped as high and low,a prominent difference was revealed for overall survival,disease-specific survival,and progression-free interval.Through statistical analysis(univariate Cox),we were also able to identify RFWD3 as an independent prognostic element for HCC,with RFWD3 having an ability to accurately predict HCC prognosis(area under the curve of 0.863).Finally,we have generated prognostic nomograms for probabilities of 1-,3-and 5-year overall survival in HCC via integrating the factors of age,pathologic stage,alpha-fetoprotein level,and RFWD3 expression.展开更多
A large number of testis-specific genes are involved in the complex process of mammalian spermatogenesis. Identification of these genes and their roles is important for understanding the mechanisms underlying spermato...A large number of testis-specific genes are involved in the complex process of mammalian spermatogenesis. Identification of these genes and their roles is important for understanding the mechanisms underlying spermatogenesis. Here we report on a novel human RING finger protein, ZNF645, which contains a C3HC4 RING finger domain, a C2H2 zinc-finger domain, and a proline-rich region, indicating that it has a structure similar to that of the c-Cbl-like protein Hakai. ZNF645 was exclusively expressed in normal human testicular tissue. Immunohistochemical analysis confirmed that ZNF645 protein was present in spermatocytes, round and elongated spermatids, and Leydig cells. Immunofluorescence staining of mature sperms further showed that the ZNF645 protein was localized over the postacrosomal perinuclear theca region and the entire length of sperm tail. An in vitro ubiquitination assay indicated that the RING finger domain of the ZNF645 protein had E3 ubiquitin ligase activity. Therefore, we suggest that ZNF645 might act as an E3 ubiquitin-protein ligase and play a role in human sperm production and quality control.展开更多
RING finger E3 ligases play an important role in regulating plant growth and development by mediating substrate degradation.In this study,we identified TaGW2L,encoding a Grain width and weight2(GW2)-like RING finger E...RING finger E3 ligases play an important role in regulating plant growth and development by mediating substrate degradation.In this study,we identified TaGW2L,encoding a Grain width and weight2(GW2)-like RING finger E3 ligase,as a novel positive regulator of heading date in wheat(Triticum aestivum L.).TaGW2L exhibited high amino acid sequence similarities with TaGW2 homoeologs,particularly in the conserved RING finger domain.Expression analysis indicated that TaGW2L was constitutively expressed in various wheat tissues.TaGW2L showed transactivation activity in yeast and could interact with the ubiquitin-conjugating enzymes E2_(s).An in vitro ubiquitination assay verified that TaGW2L possessed a similar E3 ligase activity to TaGW2.Overexpression of the TaGW2L-7A homoeolog in wheat led to a significantly earlier heading date under both natural conditions and long-day conditions.Transcriptome analysis revealed that multiple known genes positively regulating wheat heading were significantly upregulated in the TaGW2L-7A-overexpression plants compared with the wild-type control.Together,our findings shed light on the role of TaGW2L in wheat heading date and provide potential applications of TaGW2L for the adaptation improvement of crops.展开更多
AIM:To examine the methylation status of the promoter region of the checkpoint with forkhead-associated and ring fi nger(CHFR) and microsatellite mutator status in 59 primary gastric cancers.METHODS:We investigated th...AIM:To examine the methylation status of the promoter region of the checkpoint with forkhead-associated and ring fi nger(CHFR) and microsatellite mutator status in 59 primary gastric cancers.METHODS:We investigated the promoter methylation of CHFR in 59 cases of gastric cancer using methylation-specifi c PCR.Five microsatellite loci were analyzed using high-intensity microsatellite analysis reported previously, and p53 gene mutations were investigated by direct sequencing.RESULTS:Twenty cases(33.9%) showed promoter methylation and no relation was observed with the clinicopathological factors.We found that the promoter methylation of CHFR was frequently accompanied with microsatellite instability(MIN).Seven of 20(35.0%) cases showed MIN in hypermethylation of the CHFR tumor, while three of 39(7.7%) cases showed MIN in the non-methylated CHFR tumor(P < 0.01).However, we failed to fi nd any relationship between CHFR methylation and p53 mutation status.CONCLUSION:The coordinated loss of both the mitotic check point function and mismatch repair system suggests the potential to overcome the cell cycle check point, which may lead to an accumulation of mutations.However, the p53 mutation was not related to hypermethylation of the CHFR promoter and MIN, which indicates that an abnormality in p53 occurs as an independent process from the mismatch repair deficiency in carcinogenesis.展开更多
BACKGROUND Gastric cancer(GC)is one of the most prevalent malignant tumors that endangers human health.Early diagnosis is essential for improving the prognosis and survival rate of GC patients.Ring finger protein 180(...BACKGROUND Gastric cancer(GC)is one of the most prevalent malignant tumors that endangers human health.Early diagnosis is essential for improving the prognosis and survival rate of GC patients.Ring finger protein 180(RNF180)is involved in the regulation of cell differentiation,proliferation,apoptosis,and tumorigenesis,and aberrant hypermethylation of CpG islands in the promoter is strongly associated with the occurrence and development of GC.Thus,methylated RNF180 can be used as a potential biomarker for GC diagnosis.AIM To use droplet digital polymerase chain reaction(ddPCR)to quantify the methylation level of the RN180 gene.A reproducible ddPCR assay to detect methylated RNF180 from trace DNA was designed and optimized.METHODS The primer and probe were designed and selected,the conversion time of bisulfite was optimized,the ddPCR system was adjusted by primer concentration,amplification temperature and amplification cycles,and the detection limit of ddPCR was determined.RESULTS The best conversion time for blood DNA was 2 h 10 min,and that for plasma DNA was 2 h 10 min and 2 h 30 min.The results of ddPCR were better when the amplification temperature was 56°C and the number of amplification cycles was 50.Primer concentrations showed little effect on the assay outcome.Therefore,the primer concentration could be adjusted according to the reaction system and DNA input.The assay required at least 0.1 ng of input DNA.CONCLUSION In summary,a ddPCR assay was established to detect methylated RNF180,which is expected to be a new diagnostic biomarker for GC.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)exhibits high invasiveness and mortality rates,and the molecular mechanisms of HCC have gained increasing research interest.The abnormal DNA damage response has long been recogn...BACKGROUND Hepatocellular carcinoma(HCC)exhibits high invasiveness and mortality rates,and the molecular mechanisms of HCC have gained increasing research interest.The abnormal DNA damage response has long been recognized as one of the important factors for tumor occurrence and development.Recent studies have shown the potential of the protein RING finger and WD repeat domain 3(RFWD3)that positively regulates p53 stability in response to DNA damage as a therapeutic target in cancers.AIM To investigate the relationship between HCC and RFWD3 in vitro and in vivo and explored the underlying molecular signalling transduction pathways.METHODS RFWD3 gene expression was analyzed in HCC tissues and adjacent normal tissues.Lentivirus was used to stably knockdown RFWD3 expression in HCC cell lines.After verifying the silencing efficiency,Celigo/cell cycle/apoptosis and MTT assays were used to evaluate cell proliferation and apoptosis.Subsequently,cell migration and invasion were assessed by wound healing and transwell assays.In addition,transduced cells were implanted subcutaneously and injected into the tail vein of nude mice to observe tumor growth and metastasis.Next,we used lentiviral-mediated rescue of RFWD3 shRNA to verify the phenotype.Finally,the microarray,ingenuity pathway analysis,and western blot analysis were used to analyze the regulatory network underlying HCC.RESULTS Compared with adjacent tissues,RFWD3 expression levels were significantly higher in clinical HCC tissues and correlated with tumor size and TNM stage(P<0.05),which indicated a poor prognosis state.RFWD3 silencing in BEL-7404 and HCC-LM3 cells increased apoptosis,decreased growth,and inhibited the migration in shRNAi cells compared with those in shCtrl cells(P<0.05).Furthermore,the in vitro results were supported by the findings of the in vivo experiments with the reduction of tumor cell invasion and migration.Moreover,the rescue of RFWD3 shRNAi resulted in the resumption of invasion and metastasis in HCC cell lines.Finally,gene expression profiling and subsequent experimental verification revealed that RFWD3 might influence the proliferation and metastasis of HCC via the Wnt/β-catenin signalling pathway.CONCLUSION We provide evidence for the expression and function of RFWD3 in HCC.RFWD3 affects the prognosis,proliferation,invasion,and metastasis of HCC by regulating the Wnt/β-catenin signalling pathway.展开更多
【目的】对绵羊痘病毒甘肃古浪株RING finger蛋白的基因进行克隆,表达以及序列分析,初步探究绵羊痘病毒RING finger蛋白是否具有E3泛素连接酶活性,为阐明其在绵羊痘病毒感染过程中对泛素蛋白酶体系统的调控作用奠定基础.【方法】以绵羊...【目的】对绵羊痘病毒甘肃古浪株RING finger蛋白的基因进行克隆,表达以及序列分析,初步探究绵羊痘病毒RING finger蛋白是否具有E3泛素连接酶活性,为阐明其在绵羊痘病毒感染过程中对泛素蛋白酶体系统的调控作用奠定基础.【方法】以绵羊痘病毒甘肃古浪株DNA为模板,通过PCR扩增 RING finger 基因.利用Pfam数据库、DNAstar等软件进行序列及遗传进化分析;将 RING finger 基因片段插入原核表达载体pGEX-4T-1中,构建pGEX-SPPVRFP重组表达载体,在大肠杆菌BL21(DE3)中诱导表达,并进行SDS-PAGA和Western-blot分析.【结果】绵羊痘病毒 RING finger 基因由723个核苷酸组成,编码的240个氨基酸的分子量约为28.5 ku,具有RING finger结构域.不同羊痘病毒株间 RING finger 基因核苷酸序列同源性高达99.2%,氨基酸序列同源性高达98.3%.不同的RING finger蛋白都含有8个保守的半胱氨酸和组氨酸.SDS-PAGA分析显示,重组SPPVRFP大小约为55 ku,Western-blot分析显示,重组SPPVRFP不能与绵羊痘病毒阳性血清反应.【结论】成功克隆、表达并纯化了绵羊痘病毒 RING finger 基因,对SPPV GS-GL株RING-finger蛋白进行序列分析,推测其可能具有E3泛素连接酶活性.展开更多
Background: The mitogen-activated extracellular signal-regulated kinase 1/2(MEK1/2) inhibitor trametinib has shown promising therapeutic effects on melanoma, but its efficacy on colorectal cancer(CRC) is limited. Synt...Background: The mitogen-activated extracellular signal-regulated kinase 1/2(MEK1/2) inhibitor trametinib has shown promising therapeutic effects on melanoma, but its efficacy on colorectal cancer(CRC) is limited. Synthetic lethality arises with a combination of two or more separate gene mutations that causes cell death, whereas individual mutations keep cells alive. This study aimed to identify the genes responsible for resistance to trametinib in CRC cells,using a synthetic lethal short hairpin RNA(shRNA) screening approach.Methods: We infected HT29 cells with a pooled lentiviral shRNA library and applied next-generation sequencing to identify shRNAs with reduced abundance after 8-day treatment of 20 nmol/L trametinib. HCT116 and HT29 cells were used in validation studies. Stable ring finger protein 183(RNF183)-overexpressing cell lines were generated by pcDNA4-myc/his-RNF183 transfection. Stable RNF 183-knockdown cell lines were generated by infection of lentiviruses that express RNF183 shRNA, and small interference RNA(siRNA) was used to knock down RNF183 transiently.Quantitative real-time PCR was used to determine the mRNA expression. Western blotting, immunohistochemical analysis, and enzyme-linked immunosorbent assay(ELISA) were used to evaluate the protein abundance. MTT assay,colony formation assay, and subcutaneous xenograft tumor growth model were used to evaluate cell proliferation.Results: In the primary screening, we found that the abundance of RNF183 shRNA was markedly reduced after treatment with trametinib. Trametinib induced the expression of RNF183, which conferred resistance to drug-induced cell growth repression and apoptotic and non-apoptotic cell deaths. Moreover, interleukin-8(IL-8) was a downstream gene of RNF183 and was required for the function of RNF183 in facilitating cell growth. Additionally, elevated RNF183 expression partly reduced the inhibitory effect of trametinib on IL-8 expression. Finally, xenograft tumor model showed the synergism of RNF183 knockdown and trametinib in repressing the growth of CRC cells in vivo.Conclusion: The RNF183-IL-8 axis is responsible for the resistance of CRC cells to the MEK1/2 inhibitor trametinib and may serve as a candidate target for combined therapy for CRC.展开更多
Objective:The aim of this study was to help people comprehensively understand the research advances related to ring finger protein 213 (RNF213) in moyamoya disease (MMD) and to understand the disease at the molec...Objective:The aim of this study was to help people comprehensively understand the research advances related to ring finger protein 213 (RNF213) in moyamoya disease (MMD) and to understand the disease at the molecular level to provide a new perspective of the diagnosis of the disease.Data Sources:This review was based on data in articles published between 2005 and 2015 that were retrieved from the PubMed database.The search terms included RNF213,MMD,intracranial major artery stenosis/occlusion (ICASO),genotype,phenotype,mutant and variants,and the combinations of these terms.Study Selection:Articles related to MMD and RNF213 were selected for review,and we also reviewed publications related to ICASO.Results:RNF213 is not only associated with MMD but also associated with intracranial major artery stenosis.In addition,RNF213 variants exhibit apparent ethnic diversity;specifically,the c.14576G〉A variant is mainly detected in Korean,Chinese,and Japanese populations,particularly the latter population.The genotypes of RNF213 correlate with the phenotypes of MMD;for example,the homozygous c.14576G〉A variant is associated with early-onset,severe symptoms,and an unfavorable prognosis.Furthermore,the RNF213 c.14576G〉A variant should be considered during the diagnosis of MMD because no patients with quasi-MMD have been reported to carry the RNF213 c.14576G〉A variant whereas 66 of 78 patients with definite MMD have been found to carry this variant.Conclusions:The growing literature demonstrates that MMD is primarily caused by the synergy of genetic and environmental factors,and unknown genetic modifiers might play roles in the etiology of MMD.Further research should be conducted to clarify the pathogenic mechanism of MMD.展开更多
Leaves are the most important plant parts for photosynthesis and respiration. Many genes are involved in determining leaf shape;however, little is known about the effects of brassinosteroid (BR) signaling-pathway gene...Leaves are the most important plant parts for photosynthesis and respiration. Many genes are involved in determining leaf shape;however, little is known about the effects of brassinosteroid (BR) signaling-pathway genes on the development of leaf shape. Here, the brassinosteroid-responsive RING-H2 (BRH1) gene, which is suppressed by 24-epi-brassinolide treatment, was isolated from Arabidopsis thaliana. The amino acid sequence contained a highly conserved RING finger domain. In a phylogenetic analysis,BRH1 clustered closely with GLYMA11G02470.1. The leaves of brh1 mutant plants were not much different to those of the wild-type, while transgenic plants with high BRH1 expression levels had rounder rosette leaves. Mutants of the BR synthesis pathway also had a similar round leaf phenotype, and greater BRH1 expression levels. Moreover, the related marker genes KNAT1,AtHB13 and ROT4, which are known to control leaf shape, altered transcriptional levels in both transgenic BRH1 and BR-synthesis mutant lines. Thus, BRH1 may be involved in the BR signaling pathway and regulate the growth and development of rosette leaves. Research on BRH1 may prove valuable for understanding the regulatory mechanism of leaf shape and improving the leaf shapes of ornamental plants.展开更多
The transition from the vegetative phase to the reproductive phase is a major developmental process in flowering plants.The underlying mechanism controlling this cellular process remains a research focus in the field ...The transition from the vegetative phase to the reproductive phase is a major developmental process in flowering plants.The underlying mechanism controlling this cellular process remains a research focus in the field of plant molecular biology.In the present work,we identified a gene encoding the C3H2C3-type RING finger protein Nt RCP1 from tobacco BY-2 cells.Enzymatic analysis demonstrated that Nt RCP1 is a functional E3 ubiquitin ligase.In tobacco plants,expression level of Nt RCP1 was higher in the reproductive shoot apices than in the vegetative ones.Nt RCP1-overexpressing plants underwent a more rapid transition from the vegetative to the reproductive phase and flowered markedly earlier than the wild-type control.Histological analysis revealed that the shoot apical meristem of Nt RCP1-overexpressing plants initiated inflorescence primordia precociously compared to the wild-type plant due to accelerated cell division.Overexpression of Nt RCP1 in BY-2 suspension cells promoted cell division,which was a consequence of the shortened G2 phase in the cell cycle.Together,our data suggest that Nt RCP1 may act as a regulator of the phase transition,possibly through its role in cell cycle regulation,during vegetative/reproductive development in tobacco plant.展开更多
Aim It is our opinion that the CDC and the WHO have underestimated cross-contamination under examination gloves in dental clinics while wearing jewelry, such as finger rings. These agencies only "recommend" removing...Aim It is our opinion that the CDC and the WHO have underestimated cross-contamination under examination gloves in dental clinics while wearing jewelry, such as finger rings. These agencies only "recommend" removing jewelry, and only washing hands for 15 seconds with soap and warm water before donning gloves. This study examined several washing procedures and finger rings using simulated microbes. Methodology A gloved robber hand manikin was made and fitted with a flesh disposable vinyl glove. Four fingers were fitted with rings or no ring, dusted with simulated microbes, and washed with a scrub brush for 5, 15, and 25 seconds under 20℃ and 40℃ water alone, or with liquid hand soap. Light levels (in lux) of fluorescent powder before and after washing were measured and delta scores calculated for changes in light levels, equivalent to effectiveness of hand washing procedures. A full-factorial, 3-factor analysis of variance (ANOVA) was used to test for differences among levels of the three study factors-time, temperature, and soap use. Tukey's post hoc honestly significant difference (HSD) test was applied to significant factors to examine pair-wise differences between factor levels. Results It was found that the longer the hands with rings were washed with a scrub brush under flowing water, the more simulated microbes were removed. By 25 seconds, all methods were essentially the same. Simulated microbes were more difficult to remove from the palm compared to the back of the hand. The liquid hand soap used in this study was more effective with warm water than cold. When given a choice of washing with cold water up to 15 seconds, it would be preferable not to use soap to remove simulated microbes. Qualitatively, the outer surface of finger rings were more effectively cleaned than the crevice below the ring, and the ring with a stone setting appeared to accumulate and retain simulated microbes more than other rings. Conclusion The most effective treatment was washing with warm water and liquid soap. Longer times were more effective. Rings should not be worn under examination gloves due to difficulty cleaning in the crevice under the ring, and the well-known consequences of cross-contamination between the patient and the health care worker.展开更多
Background: RING H2 finger E3 ligase (RH2FE3) genes encode cysteine rich proteins that mediate E3 ubiquitin ligase activity and degrade target substrates. The roles of these genes in plant responses to phytohormone...Background: RING H2 finger E3 ligase (RH2FE3) genes encode cysteine rich proteins that mediate E3 ubiquitin ligase activity and degrade target substrates. The roles of these genes in plant responses to phytohormones and abiotic stresses are well documented in various species, but their roles in cotton fiber development are poorly understood. To date, genome wide identification and expression analyses of Gossypium hirsutum RH2FE3 genes have not been reported. Methods: We performed computational identification, structural and phylogenetic analyses, chromosomal distribution analysis and estimated KJKs values of G hirsutum RH2FE3 genes. Orthologous and paralogous gene pairs were identified by all versus all BLASTP searches. We predicted cis regulatory elements and analyzed microarray data sets to generate heatmaps at different development stages. Tissue specific expression in cotton fiber, and hormonal and abiotic stress responses were determined by quantitative real time polymerase chain reaction (qRT PCR) analysis. Results: We investigated 140 G hirsutum, 80 G. orboreum, and evolutionary mechanisms and compared them with orthologs 89 G. roimondii putative RH2FB genes and their in Arobidopsis and rice. A domain based analysis of the G hirsutum RH2FE3 genes predicted conserved signature motifs and gene structures. Chromosomal localization showed the genes were distributed across all G hirsutum chromosomes, and 60 duplication events (4 tandem and 56 segmental duplications) and 98 orthologs were detected, cis elements were detected in the promoter regions of G hirsutum RH2FE3 genes. Microarray data and qRT PCR analyses showed that G hirsutum RH2FE3 genes were strongly correlated with cotton fiber development. Additionally, almost all the (brassinolide, gibberellic acid (GA), indole 3-acetic acid drought, and salt). dentified genes were up regulated in response to phytohormones (IAA), and salicylic acid (SA)) and abiotic stresses (cold, heat, Conclusions: The genome wide identification, comprehensive analysis, and characterization of conserved domains and gene structures, as well as phylogenetic analysis, cis element prediction, and expression profile analysis of G hirsutum RH2FE3 genes and their roles in cotton fiber development and responses to plant hormones and abiotic stresses are reported here for the first time. Our findings will contribute to the genome wide analysis of putative RH2FE3 genes in other species and lay a foundation for future physiological and functional research on G hirsutum RH2FE3 genes.展开更多
Bovine infected-cell protein 0 (BICP0) encoded by bovine herpes virus 1 (BHV-1) immediate early gene is necessary for efficient productive infection, in a large part, because it activates all 3 classes of BHV-1 genes....Bovine infected-cell protein 0 (BICP0) encoded by bovine herpes virus 1 (BHV-1) immediate early gene is necessary for efficient productive infection, in a large part, because it activates all 3 classes of BHV-1 genes. It also has the ability to efficiently transactivate promoters that are not derived from BHV-1. To investigate the mechanism by which BICP0 achieves these effects, we expressed and purified BICP0 and its different mutants in E. coli. In vitro assays showed that both full-length BICP0 and its isolated RING finger domain induce the accumulation of polyubiquitin chains. Mutations within the RING finger region that abolish the in vitro ubiquitination activity also cause severe reduc- tions in BICP0 activity in other assays. Based on these, we conclude that BICP0 has the potential to act as an E3 ubiq- uitin ligase during viral infection and its RING finger do- main is necessary for this function. These strongly support the hypothesis that BICP0 might influence virus infection through its ability to interact with the ubiquitin-proteasome pathway.展开更多
文摘We have found that the expression of ring finger and WD repeat domain 3(RFWD3)is significantly higher in unpaired and paired hepatocellular carcinoma(HCC)tissues than in normal tissues.Moreover,this expression has a significant correlation with the infiltration level of 14 immune cell types and when the detected RFWD3 expression levels were grouped as high and low,a prominent difference was revealed for overall survival,disease-specific survival,and progression-free interval.Through statistical analysis(univariate Cox),we were also able to identify RFWD3 as an independent prognostic element for HCC,with RFWD3 having an ability to accurately predict HCC prognosis(area under the curve of 0.863).Finally,we have generated prognostic nomograms for probabilities of 1-,3-and 5-year overall survival in HCC via integrating the factors of age,pathologic stage,alpha-fetoprotein level,and RFWD3 expression.
文摘A large number of testis-specific genes are involved in the complex process of mammalian spermatogenesis. Identification of these genes and their roles is important for understanding the mechanisms underlying spermatogenesis. Here we report on a novel human RING finger protein, ZNF645, which contains a C3HC4 RING finger domain, a C2H2 zinc-finger domain, and a proline-rich region, indicating that it has a structure similar to that of the c-Cbl-like protein Hakai. ZNF645 was exclusively expressed in normal human testicular tissue. Immunohistochemical analysis confirmed that ZNF645 protein was present in spermatocytes, round and elongated spermatids, and Leydig cells. Immunofluorescence staining of mature sperms further showed that the ZNF645 protein was localized over the postacrosomal perinuclear theca region and the entire length of sperm tail. An in vitro ubiquitination assay indicated that the RING finger domain of the ZNF645 protein had E3 ubiquitin ligase activity. Therefore, we suggest that ZNF645 might act as an E3 ubiquitin-protein ligase and play a role in human sperm production and quality control.
基金supported by the National Natural Science Foundation of China (32172045, 31671687)the National Key Research and Development Program of China (2016YFD0100302)the Agricultural Science and Technology Innovation Program of the CAAS
文摘RING finger E3 ligases play an important role in regulating plant growth and development by mediating substrate degradation.In this study,we identified TaGW2L,encoding a Grain width and weight2(GW2)-like RING finger E3 ligase,as a novel positive regulator of heading date in wheat(Triticum aestivum L.).TaGW2L exhibited high amino acid sequence similarities with TaGW2 homoeologs,particularly in the conserved RING finger domain.Expression analysis indicated that TaGW2L was constitutively expressed in various wheat tissues.TaGW2L showed transactivation activity in yeast and could interact with the ubiquitin-conjugating enzymes E2_(s).An in vitro ubiquitination assay verified that TaGW2L possessed a similar E3 ligase activity to TaGW2.Overexpression of the TaGW2L-7A homoeolog in wheat led to a significantly earlier heading date under both natural conditions and long-day conditions.Transcriptome analysis revealed that multiple known genes positively regulating wheat heading were significantly upregulated in the TaGW2L-7A-overexpression plants compared with the wild-type control.Together,our findings shed light on the role of TaGW2L in wheat heading date and provide potential applications of TaGW2L for the adaptation improvement of crops.
文摘AIM:To examine the methylation status of the promoter region of the checkpoint with forkhead-associated and ring fi nger(CHFR) and microsatellite mutator status in 59 primary gastric cancers.METHODS:We investigated the promoter methylation of CHFR in 59 cases of gastric cancer using methylation-specifi c PCR.Five microsatellite loci were analyzed using high-intensity microsatellite analysis reported previously, and p53 gene mutations were investigated by direct sequencing.RESULTS:Twenty cases(33.9%) showed promoter methylation and no relation was observed with the clinicopathological factors.We found that the promoter methylation of CHFR was frequently accompanied with microsatellite instability(MIN).Seven of 20(35.0%) cases showed MIN in hypermethylation of the CHFR tumor, while three of 39(7.7%) cases showed MIN in the non-methylated CHFR tumor(P < 0.01).However, we failed to fi nd any relationship between CHFR methylation and p53 mutation status.CONCLUSION:The coordinated loss of both the mitotic check point function and mismatch repair system suggests the potential to overcome the cell cycle check point, which may lead to an accumulation of mutations.However, the p53 mutation was not related to hypermethylation of the CHFR promoter and MIN, which indicates that an abnormality in p53 occurs as an independent process from the mismatch repair deficiency in carcinogenesis.
基金Supported by the National Key Research and Development Program of China,No.2020YFC2002700the National Natural Science Foundation of China,No.81972010+1 种基金the CAMS Initiative for Innovative Medicine,No.2016-I2M-1-007the Science Developing Funds of Navy General Hospital,No.CXPY201810.
文摘BACKGROUND Gastric cancer(GC)is one of the most prevalent malignant tumors that endangers human health.Early diagnosis is essential for improving the prognosis and survival rate of GC patients.Ring finger protein 180(RNF180)is involved in the regulation of cell differentiation,proliferation,apoptosis,and tumorigenesis,and aberrant hypermethylation of CpG islands in the promoter is strongly associated with the occurrence and development of GC.Thus,methylated RNF180 can be used as a potential biomarker for GC diagnosis.AIM To use droplet digital polymerase chain reaction(ddPCR)to quantify the methylation level of the RN180 gene.A reproducible ddPCR assay to detect methylated RNF180 from trace DNA was designed and optimized.METHODS The primer and probe were designed and selected,the conversion time of bisulfite was optimized,the ddPCR system was adjusted by primer concentration,amplification temperature and amplification cycles,and the detection limit of ddPCR was determined.RESULTS The best conversion time for blood DNA was 2 h 10 min,and that for plasma DNA was 2 h 10 min and 2 h 30 min.The results of ddPCR were better when the amplification temperature was 56°C and the number of amplification cycles was 50.Primer concentrations showed little effect on the assay outcome.Therefore,the primer concentration could be adjusted according to the reaction system and DNA input.The assay required at least 0.1 ng of input DNA.CONCLUSION In summary,a ddPCR assay was established to detect methylated RNF180,which is expected to be a new diagnostic biomarker for GC.
基金Supported by National Natural Science Foundation of China,No.82172944 and No.81900558Co-operation Research Plan of Medical Science and Technology of Henan Province,No.LHGJ20190149the Key Scientific Research Projects of Universities of Henan Province,No.21A320052。
文摘BACKGROUND Hepatocellular carcinoma(HCC)exhibits high invasiveness and mortality rates,and the molecular mechanisms of HCC have gained increasing research interest.The abnormal DNA damage response has long been recognized as one of the important factors for tumor occurrence and development.Recent studies have shown the potential of the protein RING finger and WD repeat domain 3(RFWD3)that positively regulates p53 stability in response to DNA damage as a therapeutic target in cancers.AIM To investigate the relationship between HCC and RFWD3 in vitro and in vivo and explored the underlying molecular signalling transduction pathways.METHODS RFWD3 gene expression was analyzed in HCC tissues and adjacent normal tissues.Lentivirus was used to stably knockdown RFWD3 expression in HCC cell lines.After verifying the silencing efficiency,Celigo/cell cycle/apoptosis and MTT assays were used to evaluate cell proliferation and apoptosis.Subsequently,cell migration and invasion were assessed by wound healing and transwell assays.In addition,transduced cells were implanted subcutaneously and injected into the tail vein of nude mice to observe tumor growth and metastasis.Next,we used lentiviral-mediated rescue of RFWD3 shRNA to verify the phenotype.Finally,the microarray,ingenuity pathway analysis,and western blot analysis were used to analyze the regulatory network underlying HCC.RESULTS Compared with adjacent tissues,RFWD3 expression levels were significantly higher in clinical HCC tissues and correlated with tumor size and TNM stage(P<0.05),which indicated a poor prognosis state.RFWD3 silencing in BEL-7404 and HCC-LM3 cells increased apoptosis,decreased growth,and inhibited the migration in shRNAi cells compared with those in shCtrl cells(P<0.05).Furthermore,the in vitro results were supported by the findings of the in vivo experiments with the reduction of tumor cell invasion and migration.Moreover,the rescue of RFWD3 shRNAi resulted in the resumption of invasion and metastasis in HCC cell lines.Finally,gene expression profiling and subsequent experimental verification revealed that RFWD3 might influence the proliferation and metastasis of HCC via the Wnt/β-catenin signalling pathway.CONCLUSION We provide evidence for the expression and function of RFWD3 in HCC.RFWD3 affects the prognosis,proliferation,invasion,and metastasis of HCC by regulating the Wnt/β-catenin signalling pathway.
文摘【目的】对绵羊痘病毒甘肃古浪株RING finger蛋白的基因进行克隆,表达以及序列分析,初步探究绵羊痘病毒RING finger蛋白是否具有E3泛素连接酶活性,为阐明其在绵羊痘病毒感染过程中对泛素蛋白酶体系统的调控作用奠定基础.【方法】以绵羊痘病毒甘肃古浪株DNA为模板,通过PCR扩增 RING finger 基因.利用Pfam数据库、DNAstar等软件进行序列及遗传进化分析;将 RING finger 基因片段插入原核表达载体pGEX-4T-1中,构建pGEX-SPPVRFP重组表达载体,在大肠杆菌BL21(DE3)中诱导表达,并进行SDS-PAGA和Western-blot分析.【结果】绵羊痘病毒 RING finger 基因由723个核苷酸组成,编码的240个氨基酸的分子量约为28.5 ku,具有RING finger结构域.不同羊痘病毒株间 RING finger 基因核苷酸序列同源性高达99.2%,氨基酸序列同源性高达98.3%.不同的RING finger蛋白都含有8个保守的半胱氨酸和组氨酸.SDS-PAGA分析显示,重组SPPVRFP大小约为55 ku,Western-blot分析显示,重组SPPVRFP不能与绵羊痘病毒阳性血清反应.【结论】成功克隆、表达并纯化了绵羊痘病毒 RING finger 基因,对SPPV GS-GL株RING-finger蛋白进行序列分析,推测其可能具有E3泛素连接酶活性.
基金supported by the National Natural Science Foundation of China(Nos.81672744,81472252)Science and Technology Project of Guangdong Province(No.2016A020217007)Guangdong Esophageal Cancer Institute(No.M201606)
文摘Background: The mitogen-activated extracellular signal-regulated kinase 1/2(MEK1/2) inhibitor trametinib has shown promising therapeutic effects on melanoma, but its efficacy on colorectal cancer(CRC) is limited. Synthetic lethality arises with a combination of two or more separate gene mutations that causes cell death, whereas individual mutations keep cells alive. This study aimed to identify the genes responsible for resistance to trametinib in CRC cells,using a synthetic lethal short hairpin RNA(shRNA) screening approach.Methods: We infected HT29 cells with a pooled lentiviral shRNA library and applied next-generation sequencing to identify shRNAs with reduced abundance after 8-day treatment of 20 nmol/L trametinib. HCT116 and HT29 cells were used in validation studies. Stable ring finger protein 183(RNF183)-overexpressing cell lines were generated by pcDNA4-myc/his-RNF183 transfection. Stable RNF 183-knockdown cell lines were generated by infection of lentiviruses that express RNF183 shRNA, and small interference RNA(siRNA) was used to knock down RNF183 transiently.Quantitative real-time PCR was used to determine the mRNA expression. Western blotting, immunohistochemical analysis, and enzyme-linked immunosorbent assay(ELISA) were used to evaluate the protein abundance. MTT assay,colony formation assay, and subcutaneous xenograft tumor growth model were used to evaluate cell proliferation.Results: In the primary screening, we found that the abundance of RNF183 shRNA was markedly reduced after treatment with trametinib. Trametinib induced the expression of RNF183, which conferred resistance to drug-induced cell growth repression and apoptotic and non-apoptotic cell deaths. Moreover, interleukin-8(IL-8) was a downstream gene of RNF183 and was required for the function of RNF183 in facilitating cell growth. Additionally, elevated RNF183 expression partly reduced the inhibitory effect of trametinib on IL-8 expression. Finally, xenograft tumor model showed the synergism of RNF183 knockdown and trametinib in repressing the growth of CRC cells in vivo.Conclusion: The RNF183-IL-8 axis is responsible for the resistance of CRC cells to the MEK1/2 inhibitor trametinib and may serve as a candidate target for combined therapy for CRC.
基金This study was supported by the grants from the National Science and Technology Supporting Plan (the "11^th Five-Year Plan") (No. 2006BAI01A13) and the National Natural Science Foundation of China (No. 81371292).
文摘Objective:The aim of this study was to help people comprehensively understand the research advances related to ring finger protein 213 (RNF213) in moyamoya disease (MMD) and to understand the disease at the molecular level to provide a new perspective of the diagnosis of the disease.Data Sources:This review was based on data in articles published between 2005 and 2015 that were retrieved from the PubMed database.The search terms included RNF213,MMD,intracranial major artery stenosis/occlusion (ICASO),genotype,phenotype,mutant and variants,and the combinations of these terms.Study Selection:Articles related to MMD and RNF213 were selected for review,and we also reviewed publications related to ICASO.Results:RNF213 is not only associated with MMD but also associated with intracranial major artery stenosis.In addition,RNF213 variants exhibit apparent ethnic diversity;specifically,the c.14576G〉A variant is mainly detected in Korean,Chinese,and Japanese populations,particularly the latter population.The genotypes of RNF213 correlate with the phenotypes of MMD;for example,the homozygous c.14576G〉A variant is associated with early-onset,severe symptoms,and an unfavorable prognosis.Furthermore,the RNF213 c.14576G〉A variant should be considered during the diagnosis of MMD because no patients with quasi-MMD have been reported to carry the RNF213 c.14576G〉A variant whereas 66 of 78 patients with definite MMD have been found to carry this variant.Conclusions:The growing literature demonstrates that MMD is primarily caused by the synergy of genetic and environmental factors,and unknown genetic modifiers might play roles in the etiology of MMD.Further research should be conducted to clarify the pathogenic mechanism of MMD.
基金supported by the Major Program of Joint Funds (Sinkiang) of the National Natural Science Foundation of China(U1303282)
文摘Leaves are the most important plant parts for photosynthesis and respiration. Many genes are involved in determining leaf shape;however, little is known about the effects of brassinosteroid (BR) signaling-pathway genes on the development of leaf shape. Here, the brassinosteroid-responsive RING-H2 (BRH1) gene, which is suppressed by 24-epi-brassinolide treatment, was isolated from Arabidopsis thaliana. The amino acid sequence contained a highly conserved RING finger domain. In a phylogenetic analysis,BRH1 clustered closely with GLYMA11G02470.1. The leaves of brh1 mutant plants were not much different to those of the wild-type, while transgenic plants with high BRH1 expression levels had rounder rosette leaves. Mutants of the BR synthesis pathway also had a similar round leaf phenotype, and greater BRH1 expression levels. Moreover, the related marker genes KNAT1,AtHB13 and ROT4, which are known to control leaf shape, altered transcriptional levels in both transgenic BRH1 and BR-synthesis mutant lines. Thus, BRH1 may be involved in the BR signaling pathway and regulate the growth and development of rosette leaves. Research on BRH1 may prove valuable for understanding the regulatory mechanism of leaf shape and improving the leaf shapes of ornamental plants.
基金supported by the Natural Science Foundation of China(Grant Nos.31100870 and30800556)
文摘The transition from the vegetative phase to the reproductive phase is a major developmental process in flowering plants.The underlying mechanism controlling this cellular process remains a research focus in the field of plant molecular biology.In the present work,we identified a gene encoding the C3H2C3-type RING finger protein Nt RCP1 from tobacco BY-2 cells.Enzymatic analysis demonstrated that Nt RCP1 is a functional E3 ubiquitin ligase.In tobacco plants,expression level of Nt RCP1 was higher in the reproductive shoot apices than in the vegetative ones.Nt RCP1-overexpressing plants underwent a more rapid transition from the vegetative to the reproductive phase and flowered markedly earlier than the wild-type control.Histological analysis revealed that the shoot apical meristem of Nt RCP1-overexpressing plants initiated inflorescence primordia precociously compared to the wild-type plant due to accelerated cell division.Overexpression of Nt RCP1 in BY-2 suspension cells promoted cell division,which was a consequence of the shortened G2 phase in the cell cycle.Together,our data suggest that Nt RCP1 may act as a regulator of the phase transition,possibly through its role in cell cycle regulation,during vegetative/reproductive development in tobacco plant.
文摘Aim It is our opinion that the CDC and the WHO have underestimated cross-contamination under examination gloves in dental clinics while wearing jewelry, such as finger rings. These agencies only "recommend" removing jewelry, and only washing hands for 15 seconds with soap and warm water before donning gloves. This study examined several washing procedures and finger rings using simulated microbes. Methodology A gloved robber hand manikin was made and fitted with a flesh disposable vinyl glove. Four fingers were fitted with rings or no ring, dusted with simulated microbes, and washed with a scrub brush for 5, 15, and 25 seconds under 20℃ and 40℃ water alone, or with liquid hand soap. Light levels (in lux) of fluorescent powder before and after washing were measured and delta scores calculated for changes in light levels, equivalent to effectiveness of hand washing procedures. A full-factorial, 3-factor analysis of variance (ANOVA) was used to test for differences among levels of the three study factors-time, temperature, and soap use. Tukey's post hoc honestly significant difference (HSD) test was applied to significant factors to examine pair-wise differences between factor levels. Results It was found that the longer the hands with rings were washed with a scrub brush under flowing water, the more simulated microbes were removed. By 25 seconds, all methods were essentially the same. Simulated microbes were more difficult to remove from the palm compared to the back of the hand. The liquid hand soap used in this study was more effective with warm water than cold. When given a choice of washing with cold water up to 15 seconds, it would be preferable not to use soap to remove simulated microbes. Qualitatively, the outer surface of finger rings were more effectively cleaned than the crevice below the ring, and the ring with a stone setting appeared to accumulate and retain simulated microbes more than other rings. Conclusion The most effective treatment was washing with warm water and liquid soap. Longer times were more effective. Rings should not be worn under examination gloves due to difficulty cleaning in the crevice under the ring, and the well-known consequences of cross-contamination between the patient and the health care worker.
基金supported by the Major Research Plan of National Natural Science Foundation of China(NO.31690093)Young Elite Scientist Sponsorship Program by CAST(China Association for Science and Technology)
文摘Background: RING H2 finger E3 ligase (RH2FE3) genes encode cysteine rich proteins that mediate E3 ubiquitin ligase activity and degrade target substrates. The roles of these genes in plant responses to phytohormones and abiotic stresses are well documented in various species, but their roles in cotton fiber development are poorly understood. To date, genome wide identification and expression analyses of Gossypium hirsutum RH2FE3 genes have not been reported. Methods: We performed computational identification, structural and phylogenetic analyses, chromosomal distribution analysis and estimated KJKs values of G hirsutum RH2FE3 genes. Orthologous and paralogous gene pairs were identified by all versus all BLASTP searches. We predicted cis regulatory elements and analyzed microarray data sets to generate heatmaps at different development stages. Tissue specific expression in cotton fiber, and hormonal and abiotic stress responses were determined by quantitative real time polymerase chain reaction (qRT PCR) analysis. Results: We investigated 140 G hirsutum, 80 G. orboreum, and evolutionary mechanisms and compared them with orthologs 89 G. roimondii putative RH2FB genes and their in Arobidopsis and rice. A domain based analysis of the G hirsutum RH2FE3 genes predicted conserved signature motifs and gene structures. Chromosomal localization showed the genes were distributed across all G hirsutum chromosomes, and 60 duplication events (4 tandem and 56 segmental duplications) and 98 orthologs were detected, cis elements were detected in the promoter regions of G hirsutum RH2FE3 genes. Microarray data and qRT PCR analyses showed that G hirsutum RH2FE3 genes were strongly correlated with cotton fiber development. Additionally, almost all the (brassinolide, gibberellic acid (GA), indole 3-acetic acid drought, and salt). dentified genes were up regulated in response to phytohormones (IAA), and salicylic acid (SA)) and abiotic stresses (cold, heat, Conclusions: The genome wide identification, comprehensive analysis, and characterization of conserved domains and gene structures, as well as phylogenetic analysis, cis element prediction, and expression profile analysis of G hirsutum RH2FE3 genes and their roles in cotton fiber development and responses to plant hormones and abiotic stresses are reported here for the first time. Our findings will contribute to the genome wide analysis of putative RH2FE3 genes in other species and lay a foundation for future physiological and functional research on G hirsutum RH2FE3 genes.
基金supported by the National Natural Science Foundation of China(Grant No.30170038)the Rising Star Program from Shanghai Municipal Government and the Distinguished Young Scholars Program from National Natural Science Foundation of China(Grant No.30225013).
文摘Bovine infected-cell protein 0 (BICP0) encoded by bovine herpes virus 1 (BHV-1) immediate early gene is necessary for efficient productive infection, in a large part, because it activates all 3 classes of BHV-1 genes. It also has the ability to efficiently transactivate promoters that are not derived from BHV-1. To investigate the mechanism by which BICP0 achieves these effects, we expressed and purified BICP0 and its different mutants in E. coli. In vitro assays showed that both full-length BICP0 and its isolated RING finger domain induce the accumulation of polyubiquitin chains. Mutations within the RING finger region that abolish the in vitro ubiquitination activity also cause severe reduc- tions in BICP0 activity in other assays. Based on these, we conclude that BICP0 has the potential to act as an E3 ubiq- uitin ligase during viral infection and its RING finger do- main is necessary for this function. These strongly support the hypothesis that BICP0 might influence virus infection through its ability to interact with the ubiquitin-proteasome pathway.