逐次逼近寄存器模数转换器(SAR ADC)在逐次逼近的过程中,电容的切换会使参考电压上出现参考纹波噪声,该噪声会影响比较器的判定,进而输出错误的比较结果。针对该问题,基于CMOS 0.5μm工艺,设计了一种具有纹波消除技术的10 bit SAR ADC...逐次逼近寄存器模数转换器(SAR ADC)在逐次逼近的过程中,电容的切换会使参考电压上出现参考纹波噪声,该噪声会影响比较器的判定,进而输出错误的比较结果。针对该问题,基于CMOS 0.5μm工艺,设计了一种具有纹波消除技术的10 bit SAR ADC。通过增加纹波至比较器输入端的额外路径,将参考纹波满摆幅输入至比较器中;同时设计了消除数模转换器(DAC)模块,对参考纹波进行采样和输入,通过反转纹波噪声的极性,消除参考纹波对ADC输出的影响。该设计将信噪比(SNR)提高到56.75 dB,将有效位数(ENOB)提升到9.14 bit,将积分非线性(INL)从-1~5 LSB降低到-0.2~0.3 LSB,将微分非线性(DNL)从-3~4 LSB降低到-0.5~0.5 LSB。展开更多
采取变频调速控制策略的电液舵机可大幅降低操舵噪声,但系统线谱噪声明显且随工况变化而迁移,衰减难度大。基于此,结合泵源双冗余的电液舵机原理,仅改变原系统控制策略,提出基于辅助泵源合流的压力脉动控制措施。理论分析指出,两泵源转...采取变频调速控制策略的电液舵机可大幅降低操舵噪声,但系统线谱噪声明显且随工况变化而迁移,衰减难度大。基于此,结合泵源双冗余的电液舵机原理,仅改变原系统控制策略,提出基于辅助泵源合流的压力脉动控制措施。理论分析指出,两泵源转速一致,初始相位角为半个周期可衰减奇数次谐波。设计了主从同步控制策略,配置相应硬件,并应用于实际系统,实测相同操舵工况下可降低基脚结构振动总级3~5 d B,一阶线谱最大可衰减23 d B。展开更多
针对脑电检测的研究需要,研发了微弱EEG脑电信号采集专用芯片系统。该芯片使用斩波稳定去噪声技术,首先利用2 k Hz的斩波频率对100 Hz以下的EEG信号进行频域隔离,然后利用RRL纹波抑制环路反馈进行调制后位于chopper频率处的主要由失调...针对脑电检测的研究需要,研发了微弱EEG脑电信号采集专用芯片系统。该芯片使用斩波稳定去噪声技术,首先利用2 k Hz的斩波频率对100 Hz以下的EEG信号进行频域隔离,然后利用RRL纹波抑制环路反馈进行调制后位于chopper频率处的主要由失调与低频1/f闪烁噪声引起的纹波电压的抑制;单级斩波放大使用电流复用、亚阈值跨导增强技术对来自EEG传感器的低频(〈100 Hz)小信号(5~100μV)进行40 d B增益的稳定中频放大;级联S/H电路进行去累积毛刺滤波,配合前面斩波技术,达到整体低噪声性能;VGA/LPF通过改变输入、反馈/负载电容,分别进行增益/带宽的数字调整。EEG-DSP加速芯片实现对多通道采集的控制以及信号处理编码。设计使用SMICRF 180 nm混合工艺,使用Cadence的Spectre软件进行功能前/后仿真,使用Caliber工具进行DRC/LVS的版图验收。最后,对设计芯片进行实际测试,结果表明放大芯片关键性能为:8.1μW/通道、面积6.3 mm2/8通道、0.8μVrms(BW=100 Hz)等效输入噪声;该款自主研发的脑电斩波放大芯片性能达到国内外前列的水平,可进行正确的脑电EEG采集,可应用于可穿戴领域、对后续脑电数据分析具有重要的使用价值。展开更多
文摘采取变频调速控制策略的电液舵机可大幅降低操舵噪声,但系统线谱噪声明显且随工况变化而迁移,衰减难度大。基于此,结合泵源双冗余的电液舵机原理,仅改变原系统控制策略,提出基于辅助泵源合流的压力脉动控制措施。理论分析指出,两泵源转速一致,初始相位角为半个周期可衰减奇数次谐波。设计了主从同步控制策略,配置相应硬件,并应用于实际系统,实测相同操舵工况下可降低基脚结构振动总级3~5 d B,一阶线谱最大可衰减23 d B。