Based on research result concerning the preparation and activity of strong earthquakes in groups and using the finite element method, a finite element dynamic model for Southwest China is established in this paper. Us...Based on research result concerning the preparation and activity of strong earthquakes in groups and using the finite element method, a finite element dynamic model for Southwest China is established in this paper. Using this model, the stress adjustment in the whole of the Southwest China region in response to the stress change due to strong earthquake occurrence is studied. The preliminary result shows that many strong earthquakes occurred in areas where the stress heightened after the last strong earthquake. So, the finite element model set up in this paper is useful for judging the regions where strong earthquakes are likely to occur in future.展开更多
Roughly along the Animaqing Maji peak, the Kunlun fault section between the Tuosuo Lake and Kendingna (east Maqin) can be subdivided into two geometric segments: the Huashixia and the Maqin segments. These two segment...Roughly along the Animaqing Maji peak, the Kunlun fault section between the Tuosuo Lake and Kendingna (east Maqin) can be subdivided into two geometric segments: the Huashixia and the Maqin segments. These two segments behave differently in their Holocene slip rates and paleo-earthquake activities, with obviously higher paleo-seismic activity on the Huashixia segment than on Maqin segment. As many as four strong Holocene earthquakes are identified on the Huashixia segment from trenching and geomorphic studies. The recurrent interval for the latest three earthquakes are at about 500 a and 640 a, respectively. On the Maqin segment, at least three paleo-earthquake events can be defined from trenching, with a recurrent interval for the latest two events at about 1000 a. M = 7.5 earthquakes on Huashixia segment recur at every 411 a to 608 a with a characteristic slip at 5.75±0.57 m. Although the Maqin segment is less active, its accumulated strain energy during the long time period since last earthquake occurred (about 1070 a BP) deserves enough notice on its future earthquake probabilities.展开更多
The reason for the failure to forecast the Wenchuan Ms 8.0 earthquake is under study, based on the systematically collection of the seismicity anomalies and their analysis results from annual earthquake tendency forec...The reason for the failure to forecast the Wenchuan Ms 8.0 earthquake is under study, based on the systematically collection of the seismicity anomalies and their analysis results from annual earthquake tendency forecasts between the 2001 Western Kunlun Mountains Pass Ms8. 1 earthquake and the 2008 Wenchuan Ms8.0 earthquake. The results show that the earthquake tendency estimation of Chinese Mainland is for strong earthquakes to occur in the active stage, and that there is still potential for the occurrence of a Ms8.0 large earthquake in Chinese Mainland after the 2001 Western Kuulun Mountains Pass earthquake. However the phenomena that many large earthquakes occurred around Chinese Mainland, and the 6-year long quietude of Ms7.0 earthquake and an obvious quietude of Ms5.0 and Ms6.0 earthquakes during 2002- 2007 led to the distinctly lower forecast estimation of earthquake tendency in Chinese Mainland after 2006. The middle part in the north-south seismic belt has been designated a seismic risk area of strong earthquake in recent years, but, the estimation of the risk degree in Southwestern China is insufficient after the Ning'er Ms6.4 earthquake in Yunnan in 2007. There are no records of earthquakes with Ms ≥ 7.0 in the Longmenshan fault, which is one of reasons that this fault was not considered a seismic risk area of strong earthquakes in recent years.展开更多
基金ThisprojectwassponsoredbytheNationalKeyBasicResearchProgram (G19980 4 0 7) China .
文摘Based on research result concerning the preparation and activity of strong earthquakes in groups and using the finite element method, a finite element dynamic model for Southwest China is established in this paper. Using this model, the stress adjustment in the whole of the Southwest China region in response to the stress change due to strong earthquake occurrence is studied. The preliminary result shows that many strong earthquakes occurred in areas where the stress heightened after the last strong earthquake. So, the finite element model set up in this paper is useful for judging the regions where strong earthquakes are likely to occur in future.
基金Sino-French Cooperative Research program ″The Shortening Mechanisms of Eastern Kunlun Lithosphere″.
文摘Roughly along the Animaqing Maji peak, the Kunlun fault section between the Tuosuo Lake and Kendingna (east Maqin) can be subdivided into two geometric segments: the Huashixia and the Maqin segments. These two segments behave differently in their Holocene slip rates and paleo-earthquake activities, with obviously higher paleo-seismic activity on the Huashixia segment than on Maqin segment. As many as four strong Holocene earthquakes are identified on the Huashixia segment from trenching and geomorphic studies. The recurrent interval for the latest three earthquakes are at about 500 a and 640 a, respectively. On the Maqin segment, at least three paleo-earthquake events can be defined from trenching, with a recurrent interval for the latest two events at about 1000 a. M = 7.5 earthquakes on Huashixia segment recur at every 411 a to 608 a with a characteristic slip at 5.75±0.57 m. Although the Maqin segment is less active, its accumulated strain energy during the long time period since last earthquake occurred (about 1070 a BP) deserves enough notice on its future earthquake probabilities.
基金sponsored by the Key Project of Chinese National Programs for Fundamental Research and Development (973 program) (2004CB418406)the State Science and Technology Program of Tackle Key Problem(2006BAC01B02-01-04),China
文摘The reason for the failure to forecast the Wenchuan Ms 8.0 earthquake is under study, based on the systematically collection of the seismicity anomalies and their analysis results from annual earthquake tendency forecasts between the 2001 Western Kunlun Mountains Pass Ms8. 1 earthquake and the 2008 Wenchuan Ms8.0 earthquake. The results show that the earthquake tendency estimation of Chinese Mainland is for strong earthquakes to occur in the active stage, and that there is still potential for the occurrence of a Ms8.0 large earthquake in Chinese Mainland after the 2001 Western Kuulun Mountains Pass earthquake. However the phenomena that many large earthquakes occurred around Chinese Mainland, and the 6-year long quietude of Ms7.0 earthquake and an obvious quietude of Ms5.0 and Ms6.0 earthquakes during 2002- 2007 led to the distinctly lower forecast estimation of earthquake tendency in Chinese Mainland after 2006. The middle part in the north-south seismic belt has been designated a seismic risk area of strong earthquake in recent years, but, the estimation of the risk degree in Southwestern China is insufficient after the Ning'er Ms6.4 earthquake in Yunnan in 2007. There are no records of earthquakes with Ms ≥ 7.0 in the Longmenshan fault, which is one of reasons that this fault was not considered a seismic risk area of strong earthquakes in recent years.