Background: Appropriate sample requesting, collecting and timely dispatch to the appropriate laboratory is essential in establishing diagnosis of pathologies with lesions. Much time and effort may be wasted if this is...Background: Appropriate sample requesting, collecting and timely dispatch to the appropriate laboratory is essential in establishing diagnosis of pathologies with lesions. Much time and effort may be wasted if this is not done according to certain standards. We conducted this study to assess the route of lymph node samples from requests to reaching the laboratories. Methods: We conducted an audit over a period from 4th June until 10th Aug 2023. Data for all the procedures performed over this period on lymph node samples (was entered into and analysed using Excel. Results: A total of eighteen samples for sixteen patients were obtained during this period. Median age of the patients was 34 years (19 - 73) with a M:F ratio of 5:11. Among the IR samples, nine samples were from the neck, three from inguinal area and one from axilla. Seven samples (53.8%) were tru-cut biopsies, six samples (46.15%) were FNA. All samples were sent to the pathology laboratory fixed in formalin. Samples for TB were sent only for five cases (31.25%) and for only two cases (12.5%) were samples sent for bacterial culture. For the OR samples, none were sent for either bacterial culture or TB. Overall, eight patients (50%) were not investigated for any infectious etiologies like brucella, toxoplasmosis, CMV, EBV plus other possible causes. Repeat sampling was required for 25% of patients (within and out of the audit period). Conclusions: to avoid delays in making diagnoses, it is paramount to consider infectious etiologies as possible diagnosis for lymphadenopathy and request appropriate investigations. This requires liaising with infectious diseases/clinical microbiology experts to guide regarding types of samples, types of media and timely dispatch to the correct laboratory.展开更多
Federated learning is an important distributed model training technique in Internet of Things(IoT),in which participant selection is a key component that plays a role in improving training efficiency and model accurac...Federated learning is an important distributed model training technique in Internet of Things(IoT),in which participant selection is a key component that plays a role in improving training efficiency and model accuracy.This module enables a central server to select a subset of participants to performmodel training based on data and device information.By doing so,selected participants are rewarded and actively perform model training,while participants that are detrimental to training efficiency and model accuracy are excluded.However,in practice,participants may suspect that the central server may have miscalculated and thus not made the selection honestly.This lack of trustworthiness problem,which can demotivate participants,has received little attention.Another problem that has received little attention is the leakage of participants’private information during the selection process.We will therefore propose a federated learning framework with auditable participant selection.It supports smart contracts in selecting a set of suitable participants based on their training loss without compromising the privacy.Considering the possibility of malicious campaigning and impersonation of participants,the framework employs commitment schemes and zero-knowledge proofs to counteract these malicious behaviors.Finally,we analyze the security of the framework and conduct a series of experiments to demonstrate that the framework can effectively improve the efficiency of federated learning.展开更多
Currently,there is a growing trend among users to store their data in the cloud.However,the cloud is vulnerable to persistent data corruption risks arising from equipment failures and hacker attacks.Additionally,when ...Currently,there is a growing trend among users to store their data in the cloud.However,the cloud is vulnerable to persistent data corruption risks arising from equipment failures and hacker attacks.Additionally,when users perform file operations,the semantic integrity of the data can be compromised.Ensuring both data integrity and semantic correctness has become a critical issue that requires attention.We introduce a pioneering solution called Sec-Auditor,the first of its kind with the ability to verify data integrity and semantic correctness simultaneously,while maintaining a constant communication cost independent of the audited data volume.Sec-Auditor also supports public auditing,enabling anyone with access to public information to conduct data audits.This feature makes Sec-Auditor highly adaptable to open data environments,such as the cloud.In Sec-Auditor,users are assigned specific rules that are utilized to verify the accuracy of data semantic.Furthermore,users are given the flexibility to update their own rules as needed.We conduct in-depth analyses of the correctness and security of Sec-Auditor.We also compare several important security attributes with existing schemes,demonstrating the superior properties of Sec-Auditor.Evaluation results demonstrate that even for time-consuming file upload operations,our solution is more efficient than the comparison one.展开更多
With the intelligentization of the Internet of Vehicles(lovs),Artificial Intelligence(Al)technology is becoming more and more essential,especially deep learning.Federated Deep Learning(FDL)is a novel distributed machi...With the intelligentization of the Internet of Vehicles(lovs),Artificial Intelligence(Al)technology is becoming more and more essential,especially deep learning.Federated Deep Learning(FDL)is a novel distributed machine learning technology and is able to address the challenges like data security,privacy risks,and huge communication overheads from big raw data sets.However,FDL can only guarantee data security and privacy among multiple clients during data training.If the data sets stored locally in clients are corrupted,including being tampered with and lost,the training results of the FDL in intelligent IoVs must be negatively affected.In this paper,we are the first to design a secure data auditing protocol to guarantee the integrity and availability of data sets in FDL-empowered IoVs.Specifically,the cuckoo filter and Reed-Solomon codes are utilized to guarantee error tolerance,including efficient corrupted data locating and recovery.In addition,a novel data structure,Skip Hash Table(SHT)is designed to optimize data dynamics.Finally,we illustrate the security of the scheme with the Computational Diffie-Hellman(CDH)assumption on bilinear groups.Sufficient theoretical analyses and performance evaluations demonstrate the security and efficiency of our scheme for data sets in FDL-empowered IoVs.展开更多
As a unique environmental regulation in China,the official accountability audit was piloted in 2014.With a focus on prioritizing the ecological environment,officials in pilot districts have implemented economic constr...As a unique environmental regulation in China,the official accountability audit was piloted in 2014.With a focus on prioritizing the ecological environment,officials in pilot districts have implemented economic construction,adjusted industrial structures,and promoted coordinated development between the economy and environment.The effects of implementation have garnered widespread attention from society.However,there is limited research on the impact of an accountability audit on industrial structure adjustments.Using the“Accountability Audit of Officials for Natural Resource Assets(Trial)”released in 2015 as a quasi-natural experiment,this study collected panel data from 279 cities between 2013 and 2017.It then empirically analyzed the impact mechanism and effects of the accountability audit on industrial structure adjustment using the Propensity Score Matching and Difference-in-Differences model.The research findings indicate that the accountability audit directly impacted industrial structure adjustment,promoting the upgrading of the primary industry to the secondary industry and restricting the development of the tertiary industry.In addition,the audit is beneficial for enterprise entry,but not conducive to technological innovation,and has no significant impact on foreign direct investment.This conclusion fills a gap in the existing research and provides valuable insights for policymakers.展开更多
This paper aims to investigate the effect of the characteristics of the internal audit function(IAF)on earnings management(EM)for a sample of 27 Tunisian listed companies.The authors employed the Correlated Panels Cor...This paper aims to investigate the effect of the characteristics of the internal audit function(IAF)on earnings management(EM)for a sample of 27 Tunisian listed companies.The authors employed the Correlated Panels Corrected Standard Errors model to estimate the regression equation.The results showed that EM is negatively associated with internal audit effectiveness,frequency of audit committee meetings with Chief Audit Executives(CAEs),the partial outsourcing of internal audit,and the firm’s size.Moreover,the authors found a positive relationship between EM and the use of IAF as a training ground for management and the private sector.This study is important to academics,regulators,and policymakers in introducing new governance reforms to strengthen the IAF as an important internal governance mechanism to reduce earnings management practices in emerging countries.The results also provide useful information for investors to examine the effect of internal audit characteristics on earnings management.展开更多
The aim of this study is to examine the qualities that auditors engaged in detecting potential fraud within multinational corporations in Sub-Saharan Africa should possess.To achieve this goal,a quantitative approach ...The aim of this study is to examine the qualities that auditors engaged in detecting potential fraud within multinational corporations in Sub-Saharan Africa should possess.To achieve this goal,a quantitative approach was used to develop and test a research model based on three theories:agency theory,attribution theory,and cognitive dissonance theory.Responses from a panel of two hundred and nine(209)auditors who conducted a legal audit mission in a Sub-Saharan multinational were analyzed using SmartPLS 3.3.3 software.The results emphasize the crucial importance of auditors’competence and continuous training in fraud detection.However,professional skepticism and time pressure were found to be non-significant in this context.This conclusion provides essential insights for auditors,highlighting the key qualities needed to effectively address fraud detection within multinational corporations in Sub-Saharan Africa.展开更多
This paper focuses on the innovation of audit business management in the information technology era.In the wave of digitalization,audit companies need to adjust their management mode to take advantage of the advantage...This paper focuses on the innovation of audit business management in the information technology era.In the wave of digitalization,audit companies need to adjust their management mode to take advantage of the advantages of informatization.The key is to use digital tools to strengthen data analysis and reshape the audit process.This not only improves efficiency and accuracy but also improves the overall audit quality.The article also highlights the importance of developing a culture of continued auditor learning and skills development to ensure competitiveness in the digital age.At the end of the paper,the success of audit companies depends on innovation ability and the importance of combining management mode with technological innovation.展开更多
As China strives towards the second centenary goal,increasing attention is being paid to environmental pollution and other related issues.Concurrently,with the rapid development of big data technology,many big data so...As China strives towards the second centenary goal,increasing attention is being paid to environmental pollution and other related issues.Concurrently,with the rapid development of big data technology,many big data solutions have been applied to environmental pollution control audits,exerting a significant impact.This paper presents the current situation of environmental pollution audits,summarizing the application of big data from the perspectives of both domestic and international research.In terms of data collection and data analysis for environmental pollution audits,cloud platform technology,and visualization technology are selected based on multiple data sources.The impact in the field of environmental pollution control audits is further analyzed.It is found that the environmental pollution audit cloud platform is not yet perfect,the technical skills of audit personnel are insufficient,and some technologies are not mature.Relevant suggestions are put forward to provide a reference for the future development of big data technology and its integration with environmental pollution control audits.展开更多
文摘Background: Appropriate sample requesting, collecting and timely dispatch to the appropriate laboratory is essential in establishing diagnosis of pathologies with lesions. Much time and effort may be wasted if this is not done according to certain standards. We conducted this study to assess the route of lymph node samples from requests to reaching the laboratories. Methods: We conducted an audit over a period from 4th June until 10th Aug 2023. Data for all the procedures performed over this period on lymph node samples (was entered into and analysed using Excel. Results: A total of eighteen samples for sixteen patients were obtained during this period. Median age of the patients was 34 years (19 - 73) with a M:F ratio of 5:11. Among the IR samples, nine samples were from the neck, three from inguinal area and one from axilla. Seven samples (53.8%) were tru-cut biopsies, six samples (46.15%) were FNA. All samples were sent to the pathology laboratory fixed in formalin. Samples for TB were sent only for five cases (31.25%) and for only two cases (12.5%) were samples sent for bacterial culture. For the OR samples, none were sent for either bacterial culture or TB. Overall, eight patients (50%) were not investigated for any infectious etiologies like brucella, toxoplasmosis, CMV, EBV plus other possible causes. Repeat sampling was required for 25% of patients (within and out of the audit period). Conclusions: to avoid delays in making diagnoses, it is paramount to consider infectious etiologies as possible diagnosis for lymphadenopathy and request appropriate investigations. This requires liaising with infectious diseases/clinical microbiology experts to guide regarding types of samples, types of media and timely dispatch to the correct laboratory.
基金supported by the Key-Area Research and Development Program of Guangdong Province under Grant No.2020B0101090004the National Natural Science Foundation of China under Grant No.62072215,the Guangzhou Basic Research Plan City-School Joint Funding Project under Grant No.2024A03J0405+1 种基金the Guangzhou Basic and Applied Basic Research Foundation under Grant No.2024A04J3458the State Archives Administration Science and Technology Program Plan of China under Grant 2023-X-028.
文摘Federated learning is an important distributed model training technique in Internet of Things(IoT),in which participant selection is a key component that plays a role in improving training efficiency and model accuracy.This module enables a central server to select a subset of participants to performmodel training based on data and device information.By doing so,selected participants are rewarded and actively perform model training,while participants that are detrimental to training efficiency and model accuracy are excluded.However,in practice,participants may suspect that the central server may have miscalculated and thus not made the selection honestly.This lack of trustworthiness problem,which can demotivate participants,has received little attention.Another problem that has received little attention is the leakage of participants’private information during the selection process.We will therefore propose a federated learning framework with auditable participant selection.It supports smart contracts in selecting a set of suitable participants based on their training loss without compromising the privacy.Considering the possibility of malicious campaigning and impersonation of participants,the framework employs commitment schemes and zero-knowledge proofs to counteract these malicious behaviors.Finally,we analyze the security of the framework and conduct a series of experiments to demonstrate that the framework can effectively improve the efficiency of federated learning.
基金This research was supported by the Qinghai Provincial High-End Innovative and Entrepreneurial Talents Project.
文摘Currently,there is a growing trend among users to store their data in the cloud.However,the cloud is vulnerable to persistent data corruption risks arising from equipment failures and hacker attacks.Additionally,when users perform file operations,the semantic integrity of the data can be compromised.Ensuring both data integrity and semantic correctness has become a critical issue that requires attention.We introduce a pioneering solution called Sec-Auditor,the first of its kind with the ability to verify data integrity and semantic correctness simultaneously,while maintaining a constant communication cost independent of the audited data volume.Sec-Auditor also supports public auditing,enabling anyone with access to public information to conduct data audits.This feature makes Sec-Auditor highly adaptable to open data environments,such as the cloud.In Sec-Auditor,users are assigned specific rules that are utilized to verify the accuracy of data semantic.Furthermore,users are given the flexibility to update their own rules as needed.We conduct in-depth analyses of the correctness and security of Sec-Auditor.We also compare several important security attributes with existing schemes,demonstrating the superior properties of Sec-Auditor.Evaluation results demonstrate that even for time-consuming file upload operations,our solution is more efficient than the comparison one.
基金supported by the National Natural Science Foundation of China under Grants No.U1836115,No.61922045,No.61877034,No.61772280the Natural Science Foundation of Jiangsu Province under Grant No.BK20181408+2 种基金the Peng Cheng Laboratory Project of Guangdong Province PCL2018KP004the CICAEET fundthe PAPD fund.
文摘With the intelligentization of the Internet of Vehicles(lovs),Artificial Intelligence(Al)technology is becoming more and more essential,especially deep learning.Federated Deep Learning(FDL)is a novel distributed machine learning technology and is able to address the challenges like data security,privacy risks,and huge communication overheads from big raw data sets.However,FDL can only guarantee data security and privacy among multiple clients during data training.If the data sets stored locally in clients are corrupted,including being tampered with and lost,the training results of the FDL in intelligent IoVs must be negatively affected.In this paper,we are the first to design a secure data auditing protocol to guarantee the integrity and availability of data sets in FDL-empowered IoVs.Specifically,the cuckoo filter and Reed-Solomon codes are utilized to guarantee error tolerance,including efficient corrupted data locating and recovery.In addition,a novel data structure,Skip Hash Table(SHT)is designed to optimize data dynamics.Finally,we illustrate the security of the scheme with the Computational Diffie-Hellman(CDH)assumption on bilinear groups.Sufficient theoretical analyses and performance evaluations demonstrate the security and efficiency of our scheme for data sets in FDL-empowered IoVs.
文摘As a unique environmental regulation in China,the official accountability audit was piloted in 2014.With a focus on prioritizing the ecological environment,officials in pilot districts have implemented economic construction,adjusted industrial structures,and promoted coordinated development between the economy and environment.The effects of implementation have garnered widespread attention from society.However,there is limited research on the impact of an accountability audit on industrial structure adjustments.Using the“Accountability Audit of Officials for Natural Resource Assets(Trial)”released in 2015 as a quasi-natural experiment,this study collected panel data from 279 cities between 2013 and 2017.It then empirically analyzed the impact mechanism and effects of the accountability audit on industrial structure adjustment using the Propensity Score Matching and Difference-in-Differences model.The research findings indicate that the accountability audit directly impacted industrial structure adjustment,promoting the upgrading of the primary industry to the secondary industry and restricting the development of the tertiary industry.In addition,the audit is beneficial for enterprise entry,but not conducive to technological innovation,and has no significant impact on foreign direct investment.This conclusion fills a gap in the existing research and provides valuable insights for policymakers.
文摘This paper aims to investigate the effect of the characteristics of the internal audit function(IAF)on earnings management(EM)for a sample of 27 Tunisian listed companies.The authors employed the Correlated Panels Corrected Standard Errors model to estimate the regression equation.The results showed that EM is negatively associated with internal audit effectiveness,frequency of audit committee meetings with Chief Audit Executives(CAEs),the partial outsourcing of internal audit,and the firm’s size.Moreover,the authors found a positive relationship between EM and the use of IAF as a training ground for management and the private sector.This study is important to academics,regulators,and policymakers in introducing new governance reforms to strengthen the IAF as an important internal governance mechanism to reduce earnings management practices in emerging countries.The results also provide useful information for investors to examine the effect of internal audit characteristics on earnings management.
文摘The aim of this study is to examine the qualities that auditors engaged in detecting potential fraud within multinational corporations in Sub-Saharan Africa should possess.To achieve this goal,a quantitative approach was used to develop and test a research model based on three theories:agency theory,attribution theory,and cognitive dissonance theory.Responses from a panel of two hundred and nine(209)auditors who conducted a legal audit mission in a Sub-Saharan multinational were analyzed using SmartPLS 3.3.3 software.The results emphasize the crucial importance of auditors’competence and continuous training in fraud detection.However,professional skepticism and time pressure were found to be non-significant in this context.This conclusion provides essential insights for auditors,highlighting the key qualities needed to effectively address fraud detection within multinational corporations in Sub-Saharan Africa.
文摘This paper focuses on the innovation of audit business management in the information technology era.In the wave of digitalization,audit companies need to adjust their management mode to take advantage of the advantages of informatization.The key is to use digital tools to strengthen data analysis and reshape the audit process.This not only improves efficiency and accuracy but also improves the overall audit quality.The article also highlights the importance of developing a culture of continued auditor learning and skills development to ensure competitiveness in the digital age.At the end of the paper,the success of audit companies depends on innovation ability and the importance of combining management mode with technological innovation.
文摘As China strives towards the second centenary goal,increasing attention is being paid to environmental pollution and other related issues.Concurrently,with the rapid development of big data technology,many big data solutions have been applied to environmental pollution control audits,exerting a significant impact.This paper presents the current situation of environmental pollution audits,summarizing the application of big data from the perspectives of both domestic and international research.In terms of data collection and data analysis for environmental pollution audits,cloud platform technology,and visualization technology are selected based on multiple data sources.The impact in the field of environmental pollution control audits is further analyzed.It is found that the environmental pollution audit cloud platform is not yet perfect,the technical skills of audit personnel are insufficient,and some technologies are not mature.Relevant suggestions are put forward to provide a reference for the future development of big data technology and its integration with environmental pollution control audits.