The service cycle and dynamic performance of structural parts are afected by the weld grinding accuracy and surface consistency. Because of reasons such as assembly errors and thermal deformation, the actual track of ...The service cycle and dynamic performance of structural parts are afected by the weld grinding accuracy and surface consistency. Because of reasons such as assembly errors and thermal deformation, the actual track of the robot does not coincide with the theoretical track when the weld is ground ofine, resulting in poor workpiece surface quality. Considering these problems, in this study, a vision sensing-based online correction system for robotic weld grinding was developed. The system mainly included three subsystems: weld feature extraction, grinding, and robot real-time control. The grinding equipment was frst set as a substation for the robot using the WorkVisual software. The input/output (I/O) ports for communication between the robot and the grinding equipment were confgured via the I/O mapping function to enable the robot to control the grinding equipment (start, stop, and speed control). Subsequently, the Ethernet KRL software package was used to write the data interaction structure to realize realtime communication between the robot and the laser vision system. To correct the measurement error caused by the bending deformation of the workpiece, we established a surface profle model of the base material in the weld area using a polynomial ftting algorithm to compensate for the measurement data. The corrected extracted weld width and height errors were reduced by 2.01% and 9.3%, respectively. Online weld seam extraction and correction experiments verifed the efectiveness of the system’s correction function, and the system could control the grinding trajectory error within 0.2 mm. The reliability of the system was verifed through actual weld grinding experiments. The roughness, Ra, could reach 0.504 µm and the average residual height was within 0.21 mm. In this study, we developed a vision sensing-based online correction system for robotic weld grinding with a good correction efect and high robustness.展开更多
All-position robots are widely applied in the welding of complicated parts.Welding of intersecting pipes is one of the most typical tasks.The welding seam is a complicated saddle-like space curve,which puts a great ch...All-position robots are widely applied in the welding of complicated parts.Welding of intersecting pipes is one of the most typical tasks.The welding seam is a complicated saddle-like space curve,which puts a great challenge to the pose planning of end-effector.The special robots designed specifically for this kind of tasks are rare in China and lack sufficient theoretical research.In this paper,a systematic research on the pose planning for the end-effectors of robot in the welding of intersecting pipes is conducted. First,the intersecting curve of pipes is mathematically analyzed.The mathematical model of the most general intersecting curve of pipes is derived,and several special forms of this model in degraded situations are also discussed.A new pose planning approach of bisecting angle in main normal plane(BAMNP) for the welding-gun is proposed by using differential geometry and the comparison with the traditional bisecting angle in axial rotation plane(BAARP) method is also analytically conducted.The optimal pose of the welding-gun is to make the orientation posed at the center of the small space formed by the two cylinders and the intersecting curve to help the welding-pool run smoothly.The BAMNP method can make sure the pose vertical to the curve and center between the two cylinders at the same time,therefore its performance in welding-technique is superior to the BAARP method.By using the traditional BAARP method,the robot structure can become simpler and easier to be controlled,because one degree of freedom(DOF) of the robot can be reduced.For the special case of perpendicular intersecting,an index is constructed to evaluate the quality of welding technique in the process of welding.The effect of different combination of pipe size on this index is also discussed.On the basis of practical consideration,selection principle for BAARP and BAMNP is described.The simulations of those two methods for a serial joint-type robot are made in MATLAB,and the simulation results are consistent to the analysis.The mathematical model and the proposed new pose-planning method will lay a solid foundation for future researches on the control and design of all-position welding robots.展开更多
Expandable profile liner(EPL) is a promising new oil well casing cementing technique, and welding is a major EPLs connection technology. Connection of EPL is still in the stage of manual welding so far, automatic we...Expandable profile liner(EPL) is a promising new oil well casing cementing technique, and welding is a major EPLs connection technology. Connection of EPL is still in the stage of manual welding so far, automatic welding technology is a hotspot of EPL which is one of the key technologies to be solved. A robot for automatic welding of"8" type EPL is studied. Four quadrants of mathematical equations of the 8-shaped cross-section track of EPL, consisting of multiple arcs, are established. Mechanism program for complex cross-section welding of EPL based on angle detection is proposed according to characteristics of small size, small valleys, and large forming errors, etc. A welding velocity vector control model is established by linkage control of a welding vehicle, a small driven actuator, and a height tracking mechanism. A constant speed control model based on an angle and symmetrical analysis model of rectangular coordinate system for EPL is built. Constraint conditions of constant speed control between each section are analyzed with 4 sections in first quadrant as an example, and cooperation work mechanism of the welding vehicle and the small tracking actuator is established based on pressure detection. The constant speed control model using angle self-test can be used to avoid the need for a precise mathematical model for tracking control and to adapt manufacture and installation deviation of EPL workpiece. The model is able to solve constant speed and trajectory tracking problems of EPL cross-section welding. EPL seams welded by the studied robot are good in appearance, and non-destructive testing(NDT) shows the seams are good in quality with no welding defects. Bulge tests show that the maximum pressure of welded EPL is 35 MPa, which can fulfill expansion performance requirements.展开更多
An algorithm of auto-searching weld line for welding mobile robot is presented. Auto-searching weld line is that the robot can automatically recognize a weld groove according to the characteristics of the weld groove ...An algorithm of auto-searching weld line for welding mobile robot is presented. Auto-searching weld line is that the robot can automatically recognize a weld groove according to the characteristics of the weld groove before welding, and then adjust itself posture to the desired status preparing for welding, namely, it is a process that the robot autonomously aligns itself to the center of welding seam. Firstly, the configuration of welding mobile robot with the function of auto-searching weld line is introduced, then the algorithm and implementation of auto-searching weld line are presented on the basis of kinematics model of the robot, at last trajectory planning among auto-searching weld line is investigated in detail. The experiment result shows that the developed welding mobile robot can successfully implement the task of auto-searching weld line before welding, tracking error precision can be controlled to approximate ±1.5 mm, and satisfy the requirement of practical welding project.展开更多
Working principle for a four-axis oblique intersection line welding robot is analyzed. A mathematical model for welding torch orientation angle is established, and an interpolation algorithm based on time division is ...Working principle for a four-axis oblique intersection line welding robot is analyzed. A mathematical model for welding torch orientation angle is established, and an interpolation algorithm based on time division is proposed. The algorithm makes all interpolation points fall on a required curve in theory with no accumulated errors and a direct interpolation control on the saddle-shaped curve trajectory and space orientation angle can be achieved. It is shown by MATLAB simulation that the algorithm is real-time and fully meets the precision requirement. The algorithm has been applied to real robots.展开更多
A new seam-tracking method based on dynamic trajectory planning for a mobile welding robot is proposed in order to improve the response lag of the mobile robot and the high frequency oscillation in seam-tracking.By us...A new seam-tracking method based on dynamic trajectory planning for a mobile welding robot is proposed in order to improve the response lag of the mobile robot and the high frequency oscillation in seam-tracking.By using a front-placed laser-based vision sensor to dynamically extract the location of the weld seam in front of torch,the trend and direction of the weld line is roughly obtained.The robot system autonomously and dynamically performs trajectory planning based on the isometric approximation model.Arc sensor technology is applied to detect the offset during welding process in real time.The dynamic compensation of the weld path is done in combination with the control of the mobile robot and the executive body installed on it.Simulated and experimental results demonstrate that the method effectively increases the stability of welding speed and smoothness of the weld track,and hence the weld formation in curves and corners is improved.展开更多
Off line programming provides an essential link between CAD and CAM, whose development will result in greater use of robotic arc welding. An arc welding system with a robot and a rotating/tilting positioner is one of...Off line programming provides an essential link between CAD and CAM, whose development will result in greater use of robotic arc welding. An arc welding system with a robot and a rotating/tilting positioner is one of the most typical workcells. The inverse kinematics of robot and positioner is the foundation of the off line programming system. The previous researchers only focused on a special solution of the positioner inverse kinematics, which is the solution at down hand welding position. In this paper, we introduce a method for representing welding position. Then a general algorithm of rotating/tilting positioner inverse kinematics is presented, and an approach to find the unique solution of the inverse kinematics is discussed. The simulation experiment results show that the general algorithm can improve the ability of robotic arc welding off line programming system to program all types of welding positions.展开更多
Aiming at the welding condition of space complex seam is uncertain and the intelligence of welding robot is unideal, a two-wheeled mobile robot is developed. It not only has the capacity of autonomous decision and avo...Aiming at the welding condition of space complex seam is uncertain and the intelligence of welding robot is unideal, a two-wheeled mobile robot is developed. It not only has the capacity of autonomous decision and avoiding obstacles, but also can flexibly move and strongly adapt variable environment. The composition of the welding robot is described and the dynamic model is established. The feasible control strategy and control algorithm is put forward. The simulation experiments of real world are conducted, the results are satisfying.展开更多
In this paper, a planning algorithm for multi path/multi layer circular locus is poposed. The algorithm is applied to weld the nipples on the header of boiler. Multi path/multi layer circular locus is planned acco...In this paper, a planning algorithm for multi path/multi layer circular locus is poposed. The algorithm is applied to weld the nipples on the header of boiler. Multi path/multi layer circular locus is planned according to three teaching points, which is lapped head on end to satisfy the requirement of technology. For the nipples wherever they are arranged radially or axially, even if there are errors caused by positioning and thermal deformations, providing that nipple's position and orientation relative to the teaching one can be measured, the multi path/multi layer circular locus can be planned without teaching any more. The algorithm has been applied in welding robot for manufacturing power station' boiler.展开更多
A measurement setup used for robot calibration was designed to meet the requirement of off line programming technique. The robot end effector pose (position and orientation) can be calculated indirectly by using thi...A measurement setup used for robot calibration was designed to meet the requirement of off line programming technique. The robot end effector pose (position and orientation) can be calculated indirectly by using this setup. The setup has been applied to RHJD4 1 arc welding robot. The experimental results show the method of pose measuring using the measurement setup is simple and reliable to finish pose measuring for robot calibration. In addition, the setup can measure the position repeatability of robot.展开更多
Aiming at the robotic welding positioner with characteristic of parameter change, load change, nonlinearity, and an intelligent control system was researched and developed. This control system used a two-mode controll...Aiming at the robotic welding positioner with characteristic of parameter change, load change, nonlinearity, and an intelligent control system was researched and developed. This control system used a two-mode controller that based on Fuzzy and PID control method. The results of simulation show that the dynamic and steady performances of the intelligent controller are better than that of single PID or Fuzzy controller. This paper has made a detail theoretical analysis of the constitution design and real-time controlled software and brought up the design and fulfillment method of multi-task real-time control software of high precisely and numerically controlled welding positioner, which has a good result in practice.展开更多
A method is put forward to realize the recognition and guiding of initial welding position. The weld seams are marked with black lines, which simplify the computational complexity of image processing greatly. A two-ti...A method is put forward to realize the recognition and guiding of initial welding position. The weld seams are marked with black lines, which simplify the computational complexity of image processing greatly. A two-time template matching method has been advanced to search for the target point, which is simple and has higher calculation speed. According to the depth computing principle with the special point matching using binocular stereovision, the initial welding position can be confirmed by calculating the middle point of the perpendicular line of two radials in the space. Taking the welding of propellant fuel container for example, good results are obtained with the algorithms. Finally, similar method for terminating welding position is also advanced.展开更多
A study of the interference simulation based on robot welding of the radar pedestal was carried out by using the KUKA Sim Pro simulation software and off-line program technology. Compared with the actual robot welding...A study of the interference simulation based on robot welding of the radar pedestal was carried out by using the KUKA Sim Pro simulation software and off-line program technology. Compared with the actual robot welding process, it was found that the trajectory of the simulated robot welding process in line with that recorded in the actual welding process, and the actual limit and interference appeared at the same place as the simulation process. There was no interference phenomenon on the outside weld-seam; on the internal weld-seam, especially on the weld-joint of support plate connected to the cylinder, a phenomenon of interference appeared. It was helpful to use the simulation method to guide the actual robot welding so as to protect robot from impacting and reduce the weld defects.展开更多
The development of welding robots suitable for specially unstructured working enviroments has been become an important development direction of industrial robot application because large-scale welding structures have ...The development of welding robots suitable for specially unstructured working enviroments has been become an important development direction of industrial robot application because large-scale welding structures have been used more and more widely in modern industry. In this paper, an intelligent mobile robot for welding of ship deck with the function of autosearching weld line was presented. A wheeled motion mechanism and a cross adjustment slider are used for the welding robot body. A sensing system based on laser-PSD (position sensitive detector) displacement sensor was developed to obtain two dimensional deviation signals during seam tracking. A full-digital control system based on DSP and CPLD has also been realized to implement complex and high-performance control algorithms. Furthermore, the system has still the function of auto-searching weld line according to the characteristics information of weld groove and adjusting posture itself to the desired status preparing for welding. The experiment of auto-searching welding line shows that the robot has high tracing accuracy, and can satisfy the requirement of practical welding project.展开更多
The Al-alloy arc-welding shaping system based on arc-welding robot is established, and the Al-alloy shaping manufacture is realized with the DC (direct current) gas metal arc welding (GMAW). The research indicates...The Al-alloy arc-welding shaping system based on arc-welding robot is established, and the Al-alloy shaping manufacture is realized with the DC (direct current) gas metal arc welding (GMAW). The research indicates that the metal transfer type of DC GMA W, heat input and the initial temperature of the workpiece greatly affect the Al-alloy shaping based on arc welding robot. On the penetration, the weld width and the reinforcement, the influence of welding parameters is analyzed by generalized regression neural network (GRNN) fitting.展开更多
It is of great significance to develop an intelligent monitoring system for weld penetration defects such as incomplete penetration and burn-through in real-time during robotic arc welding process. In this paper, robo...It is of great significance to develop an intelligent monitoring system for weld penetration defects such as incomplete penetration and burn-through in real-time during robotic arc welding process. In this paper, robotic gas metal arc welding experiments are carried out on the mild steel test pieces with Vee-type groove. Through-the-arc sensing method is used to capture the transient values of the welding voltage and current. The raw data of the captured welding current and voltage are processed statistically, and the feature vector SIO is extracted to correlate the welding conditions to the weld penetration information. It lays foundation for intelligent monitoring of weld quality in robotic arc welding.展开更多
An intelligent welding robot for spherical tank's all-position multi-layerwelds is developed. Based on the dynamics analyzing and simulation testing, a flexible magneticwheel mechanism is created as the robot'...An intelligent welding robot for spherical tank's all-position multi-layerwelds is developed. Based on the dynamics analyzing and simulation testing, a flexible magneticwheel mechanism is created as the robot's walking carriage. It makes the robot directly attracted tothe surface of the spherical tank so as to realize the all-position walking and welding withoutrail. At the same time, a CCD real-time tracing system is developed for the robot to repeatedlytrace the all-position and multi-layer seams. The welding tests show that the welding robot can makethe all-position and multi-layer welds with high tracing accuracy, excellent quality and reliablebehavior, and it can be applied for practical production.展开更多
基金Supported by Hunan Provincial Natural Science Foundation of China(Grant No.2021JJ50116).
文摘The service cycle and dynamic performance of structural parts are afected by the weld grinding accuracy and surface consistency. Because of reasons such as assembly errors and thermal deformation, the actual track of the robot does not coincide with the theoretical track when the weld is ground ofine, resulting in poor workpiece surface quality. Considering these problems, in this study, a vision sensing-based online correction system for robotic weld grinding was developed. The system mainly included three subsystems: weld feature extraction, grinding, and robot real-time control. The grinding equipment was frst set as a substation for the robot using the WorkVisual software. The input/output (I/O) ports for communication between the robot and the grinding equipment were confgured via the I/O mapping function to enable the robot to control the grinding equipment (start, stop, and speed control). Subsequently, the Ethernet KRL software package was used to write the data interaction structure to realize realtime communication between the robot and the laser vision system. To correct the measurement error caused by the bending deformation of the workpiece, we established a surface profle model of the base material in the weld area using a polynomial ftting algorithm to compensate for the measurement data. The corrected extracted weld width and height errors were reduced by 2.01% and 9.3%, respectively. Online weld seam extraction and correction experiments verifed the efectiveness of the system’s correction function, and the system could control the grinding trajectory error within 0.2 mm. The reliability of the system was verifed through actual weld grinding experiments. The roughness, Ra, could reach 0.504 µm and the average residual height was within 0.21 mm. In this study, we developed a vision sensing-based online correction system for robotic weld grinding with a good correction efect and high robustness.
基金supported by National Nautural Science Foundation of China(Grant No.50775002)Key Science and Technology Research Program of Beijing Municipal Commission of Education of China(Grant No.KZ200910005003)
文摘All-position robots are widely applied in the welding of complicated parts.Welding of intersecting pipes is one of the most typical tasks.The welding seam is a complicated saddle-like space curve,which puts a great challenge to the pose planning of end-effector.The special robots designed specifically for this kind of tasks are rare in China and lack sufficient theoretical research.In this paper,a systematic research on the pose planning for the end-effectors of robot in the welding of intersecting pipes is conducted. First,the intersecting curve of pipes is mathematically analyzed.The mathematical model of the most general intersecting curve of pipes is derived,and several special forms of this model in degraded situations are also discussed.A new pose planning approach of bisecting angle in main normal plane(BAMNP) for the welding-gun is proposed by using differential geometry and the comparison with the traditional bisecting angle in axial rotation plane(BAARP) method is also analytically conducted.The optimal pose of the welding-gun is to make the orientation posed at the center of the small space formed by the two cylinders and the intersecting curve to help the welding-pool run smoothly.The BAMNP method can make sure the pose vertical to the curve and center between the two cylinders at the same time,therefore its performance in welding-technique is superior to the BAARP method.By using the traditional BAARP method,the robot structure can become simpler and easier to be controlled,because one degree of freedom(DOF) of the robot can be reduced.For the special case of perpendicular intersecting,an index is constructed to evaluate the quality of welding technique in the process of welding.The effect of different combination of pipe size on this index is also discussed.On the basis of practical consideration,selection principle for BAARP and BAMNP is described.The simulations of those two methods for a serial joint-type robot are made in MATLAB,and the simulation results are consistent to the analysis.The mathematical model and the proposed new pose-planning method will lay a solid foundation for future researches on the control and design of all-position welding robots.
基金supported by National Natural Science Foundation of China(Grant No.51275051)
文摘Expandable profile liner(EPL) is a promising new oil well casing cementing technique, and welding is a major EPLs connection technology. Connection of EPL is still in the stage of manual welding so far, automatic welding technology is a hotspot of EPL which is one of the key technologies to be solved. A robot for automatic welding of"8" type EPL is studied. Four quadrants of mathematical equations of the 8-shaped cross-section track of EPL, consisting of multiple arcs, are established. Mechanism program for complex cross-section welding of EPL based on angle detection is proposed according to characteristics of small size, small valleys, and large forming errors, etc. A welding velocity vector control model is established by linkage control of a welding vehicle, a small driven actuator, and a height tracking mechanism. A constant speed control model based on an angle and symmetrical analysis model of rectangular coordinate system for EPL is built. Constraint conditions of constant speed control between each section are analyzed with 4 sections in first quadrant as an example, and cooperation work mechanism of the welding vehicle and the small tracking actuator is established based on pressure detection. The constant speed control model using angle self-test can be used to avoid the need for a precise mathematical model for tracking control and to adapt manufacture and installation deviation of EPL workpiece. The model is able to solve constant speed and trajectory tracking problems of EPL cross-section welding. EPL seams welded by the studied robot are good in appearance, and non-destructive testing(NDT) shows the seams are good in quality with no welding defects. Bulge tests show that the maximum pressure of welded EPL is 35 MPa, which can fulfill expansion performance requirements.
基金This project is supported by Program of International Science and Technology Cooperation(No.2004 DFA02400).
文摘An algorithm of auto-searching weld line for welding mobile robot is presented. Auto-searching weld line is that the robot can automatically recognize a weld groove according to the characteristics of the weld groove before welding, and then adjust itself posture to the desired status preparing for welding, namely, it is a process that the robot autonomously aligns itself to the center of welding seam. Firstly, the configuration of welding mobile robot with the function of auto-searching weld line is introduced, then the algorithm and implementation of auto-searching weld line are presented on the basis of kinematics model of the robot, at last trajectory planning among auto-searching weld line is investigated in detail. The experiment result shows that the developed welding mobile robot can successfully implement the task of auto-searching weld line before welding, tracking error precision can be controlled to approximate ±1.5 mm, and satisfy the requirement of practical welding project.
文摘Working principle for a four-axis oblique intersection line welding robot is analyzed. A mathematical model for welding torch orientation angle is established, and an interpolation algorithm based on time division is proposed. The algorithm makes all interpolation points fall on a required curve in theory with no accumulated errors and a direct interpolation control on the saddle-shaped curve trajectory and space orientation angle can be achieved. It is shown by MATLAB simulation that the algorithm is real-time and fully meets the precision requirement. The algorithm has been applied to real robots.
基金supported by the National Natural Science Foundation of China(51605251)Tsinghua University Initiative Scientific Research Program(2014Z05093).
文摘A new seam-tracking method based on dynamic trajectory planning for a mobile welding robot is proposed in order to improve the response lag of the mobile robot and the high frequency oscillation in seam-tracking.By using a front-placed laser-based vision sensor to dynamically extract the location of the weld seam in front of torch,the trend and direction of the weld line is roughly obtained.The robot system autonomously and dynamically performs trajectory planning based on the isometric approximation model.Arc sensor technology is applied to detect the offset during welding process in real time.The dynamic compensation of the weld path is done in combination with the control of the mobile robot and the executive body installed on it.Simulated and experimental results demonstrate that the method effectively increases the stability of welding speed and smoothness of the weld track,and hence the weld formation in curves and corners is improved.
基金ThispaperissupportedbyNationalNatureScienceFoundation (No .5 96 35 16 0 )AdvancedUniversityDoctoralSubjectFoundation (No .980 2 1311)
文摘Off line programming provides an essential link between CAD and CAM, whose development will result in greater use of robotic arc welding. An arc welding system with a robot and a rotating/tilting positioner is one of the most typical workcells. The inverse kinematics of robot and positioner is the foundation of the off line programming system. The previous researchers only focused on a special solution of the positioner inverse kinematics, which is the solution at down hand welding position. In this paper, we introduce a method for representing welding position. Then a general algorithm of rotating/tilting positioner inverse kinematics is presented, and an approach to find the unique solution of the inverse kinematics is discussed. The simulation experiment results show that the general algorithm can improve the ability of robotic arc welding off line programming system to program all types of welding positions.
文摘Aiming at the welding condition of space complex seam is uncertain and the intelligence of welding robot is unideal, a two-wheeled mobile robot is developed. It not only has the capacity of autonomous decision and avoiding obstacles, but also can flexibly move and strongly adapt variable environment. The composition of the welding robot is described and the dynamic model is established. The feasible control strategy and control algorithm is put forward. The simulation experiments of real world are conducted, the results are satisfying.
文摘In this paper, a planning algorithm for multi path/multi layer circular locus is poposed. The algorithm is applied to weld the nipples on the header of boiler. Multi path/multi layer circular locus is planned according to three teaching points, which is lapped head on end to satisfy the requirement of technology. For the nipples wherever they are arranged radially or axially, even if there are errors caused by positioning and thermal deformations, providing that nipple's position and orientation relative to the teaching one can be measured, the multi path/multi layer circular locus can be planned without teaching any more. The algorithm has been applied in welding robot for manufacturing power station' boiler.
文摘A measurement setup used for robot calibration was designed to meet the requirement of off line programming technique. The robot end effector pose (position and orientation) can be calculated indirectly by using this setup. The setup has been applied to RHJD4 1 arc welding robot. The experimental results show the method of pose measuring using the measurement setup is simple and reliable to finish pose measuring for robot calibration. In addition, the setup can measure the position repeatability of robot.
文摘Aiming at the robotic welding positioner with characteristic of parameter change, load change, nonlinearity, and an intelligent control system was researched and developed. This control system used a two-mode controller that based on Fuzzy and PID control method. The results of simulation show that the dynamic and steady performances of the intelligent controller are better than that of single PID or Fuzzy controller. This paper has made a detail theoretical analysis of the constitution design and real-time controlled software and brought up the design and fulfillment method of multi-task real-time control software of high precisely and numerically controlled welding positioner, which has a good result in practice.
基金This project is supported by National Natural Science Foundation of China(No.60474036) and Shanghai Municipal Science and Technology CommitteeFoundation, China (No.021111116).
文摘A method is put forward to realize the recognition and guiding of initial welding position. The weld seams are marked with black lines, which simplify the computational complexity of image processing greatly. A two-time template matching method has been advanced to search for the target point, which is simple and has higher calculation speed. According to the depth computing principle with the special point matching using binocular stereovision, the initial welding position can be confirmed by calculating the middle point of the perpendicular line of two radials in the space. Taking the welding of propellant fuel container for example, good results are obtained with the algorithms. Finally, similar method for terminating welding position is also advanced.
基金Funded by Anhui Provincial Natural Science Foundation of China(GFKJ2015B002)Quality Engineering Project of Anhui province(2014zy122)
文摘A study of the interference simulation based on robot welding of the radar pedestal was carried out by using the KUKA Sim Pro simulation software and off-line program technology. Compared with the actual robot welding process, it was found that the trajectory of the simulated robot welding process in line with that recorded in the actual welding process, and the actual limit and interference appeared at the same place as the simulation process. There was no interference phenomenon on the outside weld-seam; on the internal weld-seam, especially on the weld-joint of support plate connected to the cylinder, a phenomenon of interference appeared. It was helpful to use the simulation method to guide the actual robot welding so as to protect robot from impacting and reduce the weld defects.
文摘The development of welding robots suitable for specially unstructured working enviroments has been become an important development direction of industrial robot application because large-scale welding structures have been used more and more widely in modern industry. In this paper, an intelligent mobile robot for welding of ship deck with the function of autosearching weld line was presented. A wheeled motion mechanism and a cross adjustment slider are used for the welding robot body. A sensing system based on laser-PSD (position sensitive detector) displacement sensor was developed to obtain two dimensional deviation signals during seam tracking. A full-digital control system based on DSP and CPLD has also been realized to implement complex and high-performance control algorithms. Furthermore, the system has still the function of auto-searching weld line according to the characteristics information of weld groove and adjusting posture itself to the desired status preparing for welding. The experiment of auto-searching welding line shows that the robot has high tracing accuracy, and can satisfy the requirement of practical welding project.
文摘The Al-alloy arc-welding shaping system based on arc-welding robot is established, and the Al-alloy shaping manufacture is realized with the DC (direct current) gas metal arc welding (GMAW). The research indicates that the metal transfer type of DC GMA W, heat input and the initial temperature of the workpiece greatly affect the Al-alloy shaping based on arc welding robot. On the penetration, the weld width and the reinforcement, the influence of welding parameters is analyzed by generalized regression neural network (GRNN) fitting.
文摘It is of great significance to develop an intelligent monitoring system for weld penetration defects such as incomplete penetration and burn-through in real-time during robotic arc welding process. In this paper, robotic gas metal arc welding experiments are carried out on the mild steel test pieces with Vee-type groove. Through-the-arc sensing method is used to capture the transient values of the welding voltage and current. The raw data of the captured welding current and voltage are processed statistically, and the feature vector SIO is extracted to correlate the welding conditions to the weld penetration information. It lays foundation for intelligent monitoring of weld quality in robotic arc welding.
基金This project is supported by National 863 High Technology R&D Program (No.863-512-9913-02).
文摘An intelligent welding robot for spherical tank's all-position multi-layerwelds is developed. Based on the dynamics analyzing and simulation testing, a flexible magneticwheel mechanism is created as the robot's walking carriage. It makes the robot directly attracted tothe surface of the spherical tank so as to realize the all-position walking and welding withoutrail. At the same time, a CCD real-time tracing system is developed for the robot to repeatedlytrace the all-position and multi-layer seams. The welding tests show that the welding robot can makethe all-position and multi-layer welds with high tracing accuracy, excellent quality and reliablebehavior, and it can be applied for practical production.